added "Usage" section in README.md
Browse files
README.md
CHANGED
|
@@ -19,6 +19,60 @@ Code: https://github.com/sambitmukherjee/dlwpt-exercises/blob/main/chapter_7/exe
|
|
| 19 |
|
| 20 |
Experiment tracking: https://wandb.ai/sadhaklal/mlp-cifar2-v2
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
## Metric
|
| 23 |
|
| 24 |
-
Accuracy on cifar2_val
|
|
|
|
| 19 |
|
| 20 |
Experiment tracking: https://wandb.ai/sadhaklal/mlp-cifar2-v2
|
| 21 |
|
| 22 |
+
## Usage
|
| 23 |
+
|
| 24 |
+
!pip install -q datasets
|
| 25 |
+
|
| 26 |
+
from datasets import load_dataset
|
| 27 |
+
|
| 28 |
+
cifar10 = load_dataset("cifar10")
|
| 29 |
+
label_map = {0: 0.0, 2: 1.0}
|
| 30 |
+
class_names = ['airplane', 'bird']
|
| 31 |
+
cifar2_train = [(example['img'], label_map[example['label']]) for example in cifar10['train'] if example['label'] in [0, 2]]
|
| 32 |
+
cifar2_val = [(example['img'], label_map[example['label']]) for example in cifar10['test'] if example['label'] in [0, 2]]
|
| 33 |
+
|
| 34 |
+
example = cifar2_val[0]
|
| 35 |
+
img, label = example
|
| 36 |
+
|
| 37 |
+
import torch
|
| 38 |
+
from torchvision.transforms import v2
|
| 39 |
+
|
| 40 |
+
val_tfms = v2.Compose([
|
| 41 |
+
v2.ToImage(),
|
| 42 |
+
v2.ToDtype(torch.float32, scale=True),
|
| 43 |
+
v2.Normalize(mean=[0.4915, 0.4823, 0.4468], std=[0.2470, 0.2435, 0.2616])
|
| 44 |
+
])
|
| 45 |
+
img = val_tfms(img)
|
| 46 |
+
batch = img.reshape(-1).unsqueeze(0) # Flatten.
|
| 47 |
+
|
| 48 |
+
import torch.nn as nn
|
| 49 |
+
from huggingface_hub import PyTorchModelHubMixin
|
| 50 |
+
|
| 51 |
+
class MLPForCIFAR2(nn.Module, PyTorchModelHubMixin):
|
| 52 |
+
def __init__(self):
|
| 53 |
+
super().__init__()
|
| 54 |
+
self.mlp = nn.Sequential(
|
| 55 |
+
nn.Linear(3072, 64), # Hidden layer.
|
| 56 |
+
nn.Tanh(),
|
| 57 |
+
nn.Linear(64, 1) # Output layer.
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
def forward(self, x):
|
| 61 |
+
return self.mlp(x)
|
| 62 |
+
|
| 63 |
+
model = MLPForCIFAR2.from_pretrained("sadhaklal/mlp-cifar2-v2")
|
| 64 |
+
model.eval()
|
| 65 |
+
|
| 66 |
+
import torch.nn.functional as F
|
| 67 |
+
|
| 68 |
+
with torch.no_grad():
|
| 69 |
+
logits = model(batch)
|
| 70 |
+
proba = F.sigmoid(logits.squeeze())
|
| 71 |
+
pred = int(proba.item() > 0.5)
|
| 72 |
+
|
| 73 |
+
print(f"Predicted class: {class_names[pred]}")
|
| 74 |
+
print(f"Predicted class probabilities ('airplane' vs. 'bird'): {[proba.item(), 1 - proba.item()]}")
|
| 75 |
+
|
| 76 |
## Metric
|
| 77 |
|
| 78 |
+
Accuracy on `cifar2_val`: 0.829
|