updated README.md
Browse files
README.md
CHANGED
|
@@ -2,8 +2,82 @@
|
|
| 2 |
tags:
|
| 3 |
- model_hub_mixin
|
| 4 |
- pytorch_model_hub_mixin
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
---
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
tags:
|
| 3 |
- model_hub_mixin
|
| 4 |
- pytorch_model_hub_mixin
|
| 5 |
+
pipeline_tag: tabular-regression
|
| 6 |
+
library_name: pytorch
|
| 7 |
+
datasets:
|
| 8 |
+
- gvlassis/california_housing
|
| 9 |
+
metrics:
|
| 10 |
+
- rmse
|
| 11 |
---
|
| 12 |
|
| 13 |
+
# wide-and-deep-net-california-housing
|
| 14 |
+
|
| 15 |
+
A wide & deep neural network trained on the California Housing dataset.
|
| 16 |
+
|
| 17 |
+
It takes eight inputs: `'MedInc'`, `'HouseAge'`, `'AveRooms'`, `'AveBedrms'`, `'Population'`, `'AveOccup'`, `'Latitude'` and `'Longitude'`. It predicts `'MedHouseVal'`.
|
| 18 |
+
|
| 19 |
+
It is a PyTorch adaptation of the TensorFlow model in Chapter 10 of Aurelien Geron's book 'Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow'.
|
| 20 |
+
|
| 21 |
+

|
| 22 |
+
|
| 23 |
+
Code: https://github.com/sambitmukherjee/handson-ml3-pytorch/blob/main/chapter10/wide_and_deep_net_california_housing.ipynb
|
| 24 |
+
|
| 25 |
+
Experiment tracking: https://wandb.ai/sadhaklal/wide-and-deep-net-california-housing
|
| 26 |
+
|
| 27 |
+
## Usage
|
| 28 |
+
|
| 29 |
+
```
|
| 30 |
+
from sklearn.datasets import fetch_california_housing
|
| 31 |
+
|
| 32 |
+
housing = fetch_california_housing(as_frame=True)
|
| 33 |
+
|
| 34 |
+
from sklearn.model_selection import train_test_split
|
| 35 |
+
|
| 36 |
+
X_train_full, X_test, y_train_full, y_test = train_test_split(housing['data'], housing['target'], test_size=0.25, random_state=42)
|
| 37 |
+
X_train, X_valid, y_train, y_valid = train_test_split(X_train_full, y_train_full, test_size=0.25, random_state=42)
|
| 38 |
+
|
| 39 |
+
X_means, X_stds = X_train.mean(axis=0), X_train.std(axis=0)
|
| 40 |
+
X_train = (X_train - X_means) / X_stds
|
| 41 |
+
X_valid = (X_valid - X_means) / X_stds
|
| 42 |
+
X_test = (X_test - X_means) / X_stds
|
| 43 |
+
|
| 44 |
+
import torch
|
| 45 |
+
|
| 46 |
+
device = torch.device("cpu")
|
| 47 |
+
|
| 48 |
+
import torch.nn as nn
|
| 49 |
+
from huggingface_hub import PyTorchModelHubMixin
|
| 50 |
+
|
| 51 |
+
class WideAndDeepNet(nn.Module, PyTorchModelHubMixin):
|
| 52 |
+
def __init__(self):
|
| 53 |
+
super().__init__()
|
| 54 |
+
self.hidden1 = nn.Linear(8, 30)
|
| 55 |
+
self.hidden2 = nn.Linear(30, 30)
|
| 56 |
+
self.output = nn.Linear(38, 1)
|
| 57 |
+
|
| 58 |
+
def forward(self, x):
|
| 59 |
+
act = torch.relu(self.hidden1(x))
|
| 60 |
+
act = torch.relu(self.hidden2(act))
|
| 61 |
+
concat = torch.cat([x, act], axis=1)
|
| 62 |
+
return self.output(concat)
|
| 63 |
+
|
| 64 |
+
model = WideAndDeepNet.from_pretrained("sadhaklal/wide-and-deep-net-california-housing")
|
| 65 |
+
model.to(device)
|
| 66 |
+
model.eval()
|
| 67 |
+
|
| 68 |
+
# Let's predict on 3 unseen examples from the test set:
|
| 69 |
+
print(f"Ground truth housing prices: {y_test.values[:3]}")
|
| 70 |
+
x_new = torch.tensor(X_test.values[:3], dtype=torch.float32)
|
| 71 |
+
x_new = x_new.to(device)
|
| 72 |
+
with torch.no_grad():
|
| 73 |
+
preds = model(x_new)
|
| 74 |
+
print(f"Predicted housing prices: {preds.squeeze()}")
|
| 75 |
+
```
|
| 76 |
+
|
| 77 |
+
## Metric
|
| 78 |
+
|
| 79 |
+
RMSE on the test set: 0.546
|
| 80 |
+
|
| 81 |
+
---
|
| 82 |
+
|
| 83 |
+
This model has been pushed to the Hub using the [PyTorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration.
|