add model
Browse files- README.md +98 -0
- config.json +57 -0
- model.safetensors +3 -0
- preprocessor_config.json +18 -0
README.md
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- vision
|
| 5 |
+
pipeline_tag: depth-estimation
|
| 6 |
+
widget:
|
| 7 |
+
- inference: false
|
| 8 |
+
---
|
| 9 |
+
|
| 10 |
+
# Depth Anything (large-sized model, Transformers version)
|
| 11 |
+
|
| 12 |
+
Depth Anything model. It was introduced in the paper [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) by Lihe Yang et al. and first released in [this repository](https://github.com/LiheYoung/Depth-Anything).
|
| 13 |
+
|
| 14 |
+
[Online demo](https://huggingface.co/spaces/LiheYoung/Depth-Anything) is also provided.
|
| 15 |
+
|
| 16 |
+
Disclaimer: The team releasing Depth Anything did not write a model card for this model so this model card has been written by the Hugging Face team.
|
| 17 |
+
|
| 18 |
+
## Model description
|
| 19 |
+
|
| 20 |
+
Depth Anything leverages the [DPT](https://huggingface.co/docs/transformers/model_doc/dpt) architecture with a [DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2) backbone.
|
| 21 |
+
|
| 22 |
+
The model is trained on ~62 million images, obtaining state-of-the-art results for both relative and absolute depth estimation.
|
| 23 |
+
|
| 24 |
+
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/depth_anything_overview.jpg"
|
| 25 |
+
alt="drawing" width="600"/>
|
| 26 |
+
|
| 27 |
+
<small> Depth Anything overview. Taken from the <a href="https://arxiv.org/abs/2401.10891">original paper</a>.</small>
|
| 28 |
+
|
| 29 |
+
## Intended uses & limitations
|
| 30 |
+
|
| 31 |
+
You can use the raw model for tasks like zero-shot depth estimation. See the [model hub](https://huggingface.co/models?search=depth-anything) to look for
|
| 32 |
+
other versions on a task that interests you.
|
| 33 |
+
|
| 34 |
+
### How to use
|
| 35 |
+
|
| 36 |
+
Here is how to use this model to perform zero-shot depth estimation:
|
| 37 |
+
|
| 38 |
+
```python
|
| 39 |
+
from transformers import pipeline
|
| 40 |
+
from PIL import Image
|
| 41 |
+
import requests
|
| 42 |
+
|
| 43 |
+
# load pipe
|
| 44 |
+
pipe = pipeline(task="depth-estimation", model="LiheYoung/depth-anything-large-hf")
|
| 45 |
+
|
| 46 |
+
# load image
|
| 47 |
+
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
| 48 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
| 49 |
+
|
| 50 |
+
# inference
|
| 51 |
+
depth = pipe(image)["depth"]
|
| 52 |
+
```
|
| 53 |
+
|
| 54 |
+
Alternatively, one can use the classes themselves:
|
| 55 |
+
|
| 56 |
+
```python
|
| 57 |
+
from transformers import AutoImageProcessor, AutoModelForDepthEstimation
|
| 58 |
+
import torch
|
| 59 |
+
import numpy as np
|
| 60 |
+
from PIL import Image
|
| 61 |
+
import requests
|
| 62 |
+
|
| 63 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 64 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
| 65 |
+
|
| 66 |
+
image_processor = AutoImageProcessor.from_pretrained("LiheYoung/depth-anything-large-hf")
|
| 67 |
+
model = AutoModelForDepthEstimation.from_pretrained("LiheYoung/depth-anything-large-hf")
|
| 68 |
+
|
| 69 |
+
# prepare image for the model
|
| 70 |
+
inputs = image_processor(images=image, return_tensors="pt")
|
| 71 |
+
|
| 72 |
+
with torch.no_grad():
|
| 73 |
+
outputs = model(**inputs)
|
| 74 |
+
predicted_depth = outputs.predicted_depth
|
| 75 |
+
|
| 76 |
+
# interpolate to original size
|
| 77 |
+
prediction = torch.nn.functional.interpolate(
|
| 78 |
+
predicted_depth.unsqueeze(1),
|
| 79 |
+
size=image.size[::-1],
|
| 80 |
+
mode="bicubic",
|
| 81 |
+
align_corners=False,
|
| 82 |
+
)
|
| 83 |
+
```
|
| 84 |
+
|
| 85 |
+
For more code examples, we refer to the [documentation](https://huggingface.co/transformers/main/model_doc/depth_anything.html#).
|
| 86 |
+
|
| 87 |
+
### BibTeX entry and citation info
|
| 88 |
+
|
| 89 |
+
```bibtex
|
| 90 |
+
@misc{yang2024depth,
|
| 91 |
+
title={Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data},
|
| 92 |
+
author={Lihe Yang and Bingyi Kang and Zilong Huang and Xiaogang Xu and Jiashi Feng and Hengshuang Zhao},
|
| 93 |
+
year={2024},
|
| 94 |
+
eprint={2401.10891},
|
| 95 |
+
archivePrefix={arXiv},
|
| 96 |
+
primaryClass={cs.CV}
|
| 97 |
+
}
|
| 98 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_commit_hash": null,
|
| 3 |
+
"architectures": ["DepthAnythingForDepthEstimation"],
|
| 4 |
+
"backbone": null,
|
| 5 |
+
"backbone_config": {
|
| 6 |
+
"architectures": ["Dinov2Model"],
|
| 7 |
+
"hidden_size": 1024,
|
| 8 |
+
"image_size": 518,
|
| 9 |
+
"model_type": "dinov2",
|
| 10 |
+
"num_attention_heads": 16,
|
| 11 |
+
"num_hidden_layers": 24,
|
| 12 |
+
"out_features": ["stage21", "stage22", "stage23", "stage24"],
|
| 13 |
+
"out_indices": [21, 22, 23, 24],
|
| 14 |
+
"patch_size": 14,
|
| 15 |
+
"reshape_hidden_states": false,
|
| 16 |
+
"stage_names": [
|
| 17 |
+
"stem",
|
| 18 |
+
"stage1",
|
| 19 |
+
"stage2",
|
| 20 |
+
"stage3",
|
| 21 |
+
"stage4",
|
| 22 |
+
"stage5",
|
| 23 |
+
"stage6",
|
| 24 |
+
"stage7",
|
| 25 |
+
"stage8",
|
| 26 |
+
"stage9",
|
| 27 |
+
"stage10",
|
| 28 |
+
"stage11",
|
| 29 |
+
"stage12",
|
| 30 |
+
"stage13",
|
| 31 |
+
"stage14",
|
| 32 |
+
"stage15",
|
| 33 |
+
"stage16",
|
| 34 |
+
"stage17",
|
| 35 |
+
"stage18",
|
| 36 |
+
"stage19",
|
| 37 |
+
"stage20",
|
| 38 |
+
"stage21",
|
| 39 |
+
"stage22",
|
| 40 |
+
"stage23",
|
| 41 |
+
"stage24"
|
| 42 |
+
],
|
| 43 |
+
"torch_dtype": "float32"
|
| 44 |
+
},
|
| 45 |
+
"fusion_hidden_size": 256,
|
| 46 |
+
"head_hidden_size": 32,
|
| 47 |
+
"head_in_index": -1,
|
| 48 |
+
"initializer_range": 0.02,
|
| 49 |
+
"model_type": "depth_anything",
|
| 50 |
+
"neck_hidden_sizes": [256, 512, 1024, 1024],
|
| 51 |
+
"patch_size": 14,
|
| 52 |
+
"reassemble_factors": [4, 2, 1, 0.5],
|
| 53 |
+
"reassemble_hidden_size": 1024,
|
| 54 |
+
"torch_dtype": "float32",
|
| 55 |
+
"transformers_version": null,
|
| 56 |
+
"use_pretrained_backbone": false
|
| 57 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bc27360a3e6906e5ddd8f618e2dcde11362327361918b8f76793e42e25de31b3
|
| 3 |
+
size 1341322868
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"do_normalize": true,
|
| 3 |
+
"do_pad": false,
|
| 4 |
+
"do_rescale": true,
|
| 5 |
+
"do_resize": true,
|
| 6 |
+
"ensure_multiple_of": 14,
|
| 7 |
+
"image_mean": [0.485, 0.456, 0.406],
|
| 8 |
+
"image_processor_type": "DPTImageProcessor",
|
| 9 |
+
"image_std": [0.229, 0.224, 0.225],
|
| 10 |
+
"keep_aspect_ratio": true,
|
| 11 |
+
"resample": 3,
|
| 12 |
+
"rescale_factor": 0.00392156862745098,
|
| 13 |
+
"size": {
|
| 14 |
+
"height": 518,
|
| 15 |
+
"width": 518
|
| 16 |
+
},
|
| 17 |
+
"size_divisor": null
|
| 18 |
+
}
|