Upload folder using huggingface_hub
Browse files- README.md +19 -0
- config.json +0 -0
- generation_config.json +6 -0
- image_processing_chameleon.py +371 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +555 -0
- original_tokenizers/checklist.chk +3 -0
- original_tokenizers/text_tokenizer.json +0 -0
- original_tokenizers/vqgan.ckpt +3 -0
- original_tokenizers/vqgan.yaml +57 -0
- preprocessor_config.json +48 -0
- processor_config.json +5 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +0 -0
README.md
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
pipeline_tag: any-to-any
|
| 3 |
+
---
|
| 4 |
+
This is the Chameleon-7b checkpoint, converted using the script [convert_chameleon_weights_to_hf.py](https://github.com/Alpha-VLLM/Lumina-mGPT/blob/main/lumina_mgpt/model/chameleon/convert_chameleon_weights_to_hf.py) from the [Lumina-mGPT](https://github.com/Alpha-VLLM/Lumina-mGPT) repository.
|
| 5 |
+
|
| 6 |
+
This release is intended to ease the initialization of Lumina-mGPT training. Before using this model, please ensure you have obtained permission to access the official Chameleon checkpoints available at [Hugging Face](https://huggingface.co/facebook/chameleon-7b). Usage of this model is at the user's own risk.
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
<h2 style="color:rosybrown">Differences from the official chameleon-7B release</h2>
|
| 10 |
+
|
| 11 |
+
*This model is **almost the same** as the official chameleon-7B release, with one important difference in the *qk-norm* implementation*:
|
| 12 |
+
Due to unknown reasons, for the 34B Chameleon
|
| 13 |
+
model, where 8-way model parallelism is employed during training, the weights in the qk-norm layers, which are expected to be the same across model-parallel ranks,
|
| 14 |
+
are found to be different (See [here](https://github.com/huggingface/transformers/pull/31534#issuecomment-2207354677) for details). More intuitively, this means that the attention heads can be divided into 1 group for 7B model and 8 groups for 34B model, where the qk-norm parameters
|
| 15 |
+
are the same within the groups but different among them. To mitigate this problem, `transformers` has developed the implementation to copy the qk-norm parameters to the shape `num_heads * head_dim`,
|
| 16 |
+
however, this means that if we want to further finetune the Chameleon model, like the case of Lumina-mGPT, the qk-norm parameters will further diverge to the extent that the parameters are different
|
| 17 |
+
between every two attention heads, which is not ideal. To solve this problem, we slightly change the implementation so that the qk-norm parameters are instead of shape `model_parallel_size x head_dim`,
|
| 18 |
+
where `model_parallel_size` is 1 for 7B model and 8 for 34B model, and they are expanded to `num_heads * head_dim` during forward time through `repeat_interleave`. This modification ensures
|
| 19 |
+
that the qk-norm parameters can always be consistent within existing groups.
|
config.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
generation_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"transformers_version": "4.43.3"
|
| 6 |
+
}
|
image_processing_chameleon.py
ADDED
|
@@ -0,0 +1,371 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 Meta Inc. and The HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""Image processor class for Chameleon."""
|
| 16 |
+
|
| 17 |
+
from typing import Dict, List, Optional, Union
|
| 18 |
+
|
| 19 |
+
import numpy as np
|
| 20 |
+
|
| 21 |
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
| 22 |
+
from transformers.image_transforms import (
|
| 23 |
+
get_resize_output_image_size,
|
| 24 |
+
resize,
|
| 25 |
+
to_channel_dimension_format,
|
| 26 |
+
)
|
| 27 |
+
from transformers.image_utils import (
|
| 28 |
+
ChannelDimension,
|
| 29 |
+
ImageInput,
|
| 30 |
+
PILImageResampling,
|
| 31 |
+
infer_channel_dimension_format,
|
| 32 |
+
is_scaled_image,
|
| 33 |
+
make_list_of_images,
|
| 34 |
+
to_numpy_array,
|
| 35 |
+
valid_images,
|
| 36 |
+
validate_kwargs,
|
| 37 |
+
validate_preprocess_arguments,
|
| 38 |
+
)
|
| 39 |
+
from transformers.utils import TensorType, is_vision_available, logging
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
logger = logging.get_logger(__name__)
|
| 43 |
+
|
| 44 |
+
if is_vision_available():
|
| 45 |
+
import PIL
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
class ChameleonImageProcessor(BaseImageProcessor):
|
| 49 |
+
r"""
|
| 50 |
+
Constructs a Chameleon image processor.
|
| 51 |
+
|
| 52 |
+
Args:
|
| 53 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
| 54 |
+
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
|
| 55 |
+
`do_resize` in the `preprocess` method.
|
| 56 |
+
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
|
| 57 |
+
Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
|
| 58 |
+
the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
|
| 59 |
+
method.
|
| 60 |
+
resample (`PILImageResampling`, *optional*, defaults to 1):
|
| 61 |
+
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
|
| 62 |
+
do_center_crop (`bool`, *optional*, defaults to `True`):
|
| 63 |
+
Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the
|
| 64 |
+
`preprocess` method.
|
| 65 |
+
crop_size (`Dict[str, int]` *optional*, defaults to 224):
|
| 66 |
+
Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess`
|
| 67 |
+
method.
|
| 68 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
| 69 |
+
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
|
| 70 |
+
the `preprocess` method.
|
| 71 |
+
rescale_factor (`int` or `float`, *optional*, defaults to 0.0078):
|
| 72 |
+
Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
|
| 73 |
+
method.
|
| 74 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
| 75 |
+
Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
|
| 76 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `[1.0, 1.0, 1.0]`):
|
| 77 |
+
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
| 78 |
+
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
| 79 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
|
| 80 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
| 81 |
+
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
| 82 |
+
Can be overridden by the `image_std` parameter in the `preprocess` method.
|
| 83 |
+
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
| 84 |
+
Whether to convert the image to RGB.
|
| 85 |
+
"""
|
| 86 |
+
|
| 87 |
+
model_input_names = ["pixel_values"]
|
| 88 |
+
|
| 89 |
+
def __init__(
|
| 90 |
+
self,
|
| 91 |
+
do_resize: bool = True,
|
| 92 |
+
size: Dict[str, int] = None,
|
| 93 |
+
resample: PILImageResampling = PIL.Image.LANCZOS,
|
| 94 |
+
do_center_crop: bool = True,
|
| 95 |
+
crop_size: Dict[str, int] = None,
|
| 96 |
+
do_rescale: bool = True,
|
| 97 |
+
rescale_factor: Union[int, float] = 0.0078,
|
| 98 |
+
do_normalize: bool = True,
|
| 99 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 100 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 101 |
+
do_convert_rgb: bool = True,
|
| 102 |
+
**kwargs,
|
| 103 |
+
) -> None:
|
| 104 |
+
super().__init__(**kwargs)
|
| 105 |
+
size = size if size is not None else {"shortest_edge": 512}
|
| 106 |
+
size = get_size_dict(size, default_to_square=False)
|
| 107 |
+
crop_size = crop_size if crop_size is not None else {"height": 512, "width": 512}
|
| 108 |
+
crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
|
| 109 |
+
|
| 110 |
+
self.do_resize = do_resize
|
| 111 |
+
self.size = size
|
| 112 |
+
self.resample = resample
|
| 113 |
+
self.do_center_crop = do_center_crop
|
| 114 |
+
self.crop_size = crop_size
|
| 115 |
+
self.do_rescale = do_rescale
|
| 116 |
+
self.rescale_factor = rescale_factor
|
| 117 |
+
self.do_normalize = do_normalize
|
| 118 |
+
self.image_mean = image_mean if image_mean is not None else [1.0, 1.0, 1.0]
|
| 119 |
+
self.image_std = image_std if image_std is not None else [1.0, 1.0, 1.0]
|
| 120 |
+
self.do_convert_rgb = do_convert_rgb
|
| 121 |
+
self._valid_processor_keys = [
|
| 122 |
+
"images",
|
| 123 |
+
"do_resize",
|
| 124 |
+
"size",
|
| 125 |
+
"resample",
|
| 126 |
+
"do_center_crop",
|
| 127 |
+
"crop_size",
|
| 128 |
+
"do_rescale",
|
| 129 |
+
"rescale_factor",
|
| 130 |
+
"do_normalize",
|
| 131 |
+
"image_mean",
|
| 132 |
+
"image_std",
|
| 133 |
+
"do_convert_rgb",
|
| 134 |
+
"return_tensors",
|
| 135 |
+
"data_format",
|
| 136 |
+
"input_data_format",
|
| 137 |
+
]
|
| 138 |
+
|
| 139 |
+
def resize(
|
| 140 |
+
self,
|
| 141 |
+
image: np.ndarray,
|
| 142 |
+
size: Dict[str, int],
|
| 143 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
| 144 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 145 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 146 |
+
**kwargs,
|
| 147 |
+
) -> np.ndarray:
|
| 148 |
+
"""
|
| 149 |
+
Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
|
| 150 |
+
resized to keep the input aspect ratio.
|
| 151 |
+
|
| 152 |
+
Args:
|
| 153 |
+
image (`np.ndarray`):
|
| 154 |
+
Image to resize.
|
| 155 |
+
size (`Dict[str, int]`):
|
| 156 |
+
Size of the output image.
|
| 157 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
|
| 158 |
+
Resampling filter to use when resiizing the image.
|
| 159 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
| 160 |
+
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
| 161 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
| 162 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
| 163 |
+
"""
|
| 164 |
+
default_to_square = True
|
| 165 |
+
if "shortest_edge" in size:
|
| 166 |
+
size = size["shortest_edge"]
|
| 167 |
+
default_to_square = False
|
| 168 |
+
elif "height" in size and "width" in size:
|
| 169 |
+
size = (size["height"], size["width"])
|
| 170 |
+
else:
|
| 171 |
+
raise ValueError("Size must contain either 'shortest_edge' or 'height' and 'width'.")
|
| 172 |
+
|
| 173 |
+
output_size = get_resize_output_image_size(
|
| 174 |
+
image,
|
| 175 |
+
size=size,
|
| 176 |
+
default_to_square=default_to_square,
|
| 177 |
+
input_data_format=input_data_format,
|
| 178 |
+
)
|
| 179 |
+
return resize(
|
| 180 |
+
image,
|
| 181 |
+
size=output_size,
|
| 182 |
+
resample=resample,
|
| 183 |
+
data_format=data_format,
|
| 184 |
+
input_data_format=input_data_format,
|
| 185 |
+
**kwargs,
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
def preprocess(
|
| 189 |
+
self,
|
| 190 |
+
images: ImageInput,
|
| 191 |
+
do_resize: bool = None,
|
| 192 |
+
size: Dict[str, int] = None,
|
| 193 |
+
resample: PILImageResampling = None,
|
| 194 |
+
do_center_crop: bool = None,
|
| 195 |
+
crop_size: int = None,
|
| 196 |
+
do_rescale: bool = None,
|
| 197 |
+
rescale_factor: float = None,
|
| 198 |
+
do_normalize: bool = None,
|
| 199 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 200 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 201 |
+
do_convert_rgb: bool = None,
|
| 202 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
| 203 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
| 204 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 205 |
+
**kwargs,
|
| 206 |
+
) -> PIL.Image.Image:
|
| 207 |
+
"""
|
| 208 |
+
Preprocess an image or batch of images.
|
| 209 |
+
|
| 210 |
+
Args:
|
| 211 |
+
images (`ImageInput`):
|
| 212 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
| 213 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
| 214 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
| 215 |
+
Whether to resize the image.
|
| 216 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
| 217 |
+
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
|
| 218 |
+
the longest edge resized to keep the input aspect ratio.
|
| 219 |
+
resample (`int`, *optional*, defaults to `self.resample`):
|
| 220 |
+
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
|
| 221 |
+
has an effect if `do_resize` is set to `True`.
|
| 222 |
+
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
|
| 223 |
+
Whether to center crop the image.
|
| 224 |
+
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
|
| 225 |
+
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
|
| 226 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
| 227 |
+
Whether to rescale the image.
|
| 228 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
| 229 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
| 230 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
| 231 |
+
Whether to normalize the image.
|
| 232 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
| 233 |
+
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
| 234 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
| 235 |
+
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
| 236 |
+
`True`.
|
| 237 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
| 238 |
+
Whether to convert the image to RGB.
|
| 239 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
| 240 |
+
The type of tensors to return. Can be one of:
|
| 241 |
+
- Unset: Return a list of `np.ndarray`.
|
| 242 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
| 243 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
| 244 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
| 245 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
| 246 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
| 247 |
+
The channel dimension format for the output image. Can be one of:
|
| 248 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 249 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 250 |
+
- Unset: Use the channel dimension format of the input image.
|
| 251 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
| 252 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
| 253 |
+
from the input image. Can be one of:
|
| 254 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 255 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 256 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
| 257 |
+
"""
|
| 258 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
| 259 |
+
size = size if size is not None else self.size
|
| 260 |
+
size = get_size_dict(size, param_name="size", default_to_square=False)
|
| 261 |
+
resample = resample if resample is not None else self.resample
|
| 262 |
+
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
|
| 263 |
+
crop_size = crop_size if crop_size is not None else self.crop_size
|
| 264 |
+
crop_size = get_size_dict(crop_size, param_name="crop_size", default_to_square=True)
|
| 265 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
| 266 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
| 267 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
| 268 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
| 269 |
+
image_std = image_std if image_std is not None else self.image_std
|
| 270 |
+
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
| 271 |
+
|
| 272 |
+
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
| 273 |
+
|
| 274 |
+
images = make_list_of_images(images)
|
| 275 |
+
|
| 276 |
+
if not valid_images(images):
|
| 277 |
+
raise ValueError(
|
| 278 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
| 279 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
validate_preprocess_arguments(
|
| 283 |
+
do_rescale=do_rescale,
|
| 284 |
+
rescale_factor=rescale_factor,
|
| 285 |
+
do_normalize=do_normalize,
|
| 286 |
+
image_mean=image_mean,
|
| 287 |
+
image_std=image_std,
|
| 288 |
+
do_center_crop=do_center_crop,
|
| 289 |
+
crop_size=crop_size,
|
| 290 |
+
do_resize=do_resize,
|
| 291 |
+
size=size,
|
| 292 |
+
resample=resample,
|
| 293 |
+
)
|
| 294 |
+
|
| 295 |
+
if do_convert_rgb:
|
| 296 |
+
images = [self.blend_rgba(image) for image in images]
|
| 297 |
+
|
| 298 |
+
# All transformations expect numpy arrays.
|
| 299 |
+
images = [to_numpy_array(image) for image in images]
|
| 300 |
+
|
| 301 |
+
if is_scaled_image(images[0]) and do_rescale:
|
| 302 |
+
logger.warning_once(
|
| 303 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
| 304 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
if input_data_format is None:
|
| 308 |
+
# We assume that all images have the same channel dimension format.
|
| 309 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
| 310 |
+
|
| 311 |
+
if do_resize:
|
| 312 |
+
images = [
|
| 313 |
+
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
|
| 314 |
+
for image in images
|
| 315 |
+
]
|
| 316 |
+
|
| 317 |
+
if do_center_crop:
|
| 318 |
+
images = [
|
| 319 |
+
self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
|
| 320 |
+
]
|
| 321 |
+
|
| 322 |
+
if do_rescale:
|
| 323 |
+
images = [
|
| 324 |
+
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
|
| 325 |
+
for image in images
|
| 326 |
+
]
|
| 327 |
+
|
| 328 |
+
if do_normalize:
|
| 329 |
+
images = [
|
| 330 |
+
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
|
| 331 |
+
for image in images
|
| 332 |
+
]
|
| 333 |
+
|
| 334 |
+
images = [
|
| 335 |
+
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
|
| 336 |
+
]
|
| 337 |
+
|
| 338 |
+
data = {"pixel_values": images}
|
| 339 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
| 340 |
+
|
| 341 |
+
def blend_rgba(
|
| 342 |
+
self,
|
| 343 |
+
image: ImageInput,
|
| 344 |
+
) -> ImageInput:
|
| 345 |
+
"""
|
| 346 |
+
Convert image to RGB by blending the transparency layer if it's in RGBA format.
|
| 347 |
+
|
| 348 |
+
Args:
|
| 349 |
+
image (`ImageInput`):
|
| 350 |
+
Image to convert.
|
| 351 |
+
"""
|
| 352 |
+
|
| 353 |
+
if not isinstance(image, PIL.Image.Image):
|
| 354 |
+
return image
|
| 355 |
+
elif image.mode == "RGB":
|
| 356 |
+
return image
|
| 357 |
+
|
| 358 |
+
img_rgba = np.array(image.convert("RGBA"))
|
| 359 |
+
|
| 360 |
+
# If there is no transparency layer, simple convert and return.
|
| 361 |
+
if not (img_rgba[:, :, 3] < 255).any():
|
| 362 |
+
return image.convert("RGB")
|
| 363 |
+
|
| 364 |
+
# There is a transparency layer, blend it with a white background.
|
| 365 |
+
# Calculate the alpha proportion for blending.
|
| 366 |
+
alpha = img_rgba[:, :, 3] / 255.0
|
| 367 |
+
img_rgb = (1 - alpha[:, :, np.newaxis]) * 255 + alpha[:, :, np.newaxis] * img_rgba[:, :, :3]
|
| 368 |
+
return PIL.Image.fromarray(img_rgb.astype("uint8"), "RGB")
|
| 369 |
+
|
| 370 |
+
|
| 371 |
+
ChameleonImageProcessor.register_for_auto_class()
|
model-00001-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:99c314199c4f6394ef70131da9995605c1e916117eca3a80a0d2b6c34bd4781a
|
| 3 |
+
size 9980783248
|
model-00002-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f1c0cfdbe4841333bb58e10ec56e03523760e97548d714a8830bf91f16a3119c
|
| 3 |
+
size 4163292328
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,555 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 14144012288
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
| 7 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 17 |
+
"model.layers.0.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
|
| 18 |
+
"model.layers.0.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 19 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 20 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 21 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 22 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 23 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 24 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 25 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 26 |
+
"model.layers.1.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
|
| 27 |
+
"model.layers.1.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 28 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 29 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 30 |
+
"model.layers.1.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
|
| 31 |
+
"model.layers.1.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 32 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 33 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 34 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 35 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 36 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 37 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 38 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 39 |
+
"model.layers.10.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
|
| 40 |
+
"model.layers.10.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 41 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 42 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 43 |
+
"model.layers.10.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
|
| 44 |
+
"model.layers.10.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 45 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 46 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 47 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 48 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 49 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 50 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 51 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 52 |
+
"model.layers.11.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
|
| 53 |
+
"model.layers.11.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 54 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 55 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 56 |
+
"model.layers.11.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
|
| 57 |
+
"model.layers.11.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 58 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 59 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 60 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 61 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 62 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 63 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 64 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 65 |
+
"model.layers.12.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
|
| 66 |
+
"model.layers.12.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 67 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 68 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 69 |
+
"model.layers.12.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
|
| 70 |
+
"model.layers.12.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 71 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 72 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 73 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 74 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 75 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 76 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 77 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 78 |
+
"model.layers.13.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
|
| 79 |
+
"model.layers.13.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 80 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 81 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 82 |
+
"model.layers.13.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
|
| 83 |
+
"model.layers.13.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 84 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 85 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 86 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 87 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 88 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 89 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 90 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 91 |
+
"model.layers.14.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
|
| 92 |
+
"model.layers.14.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 93 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 94 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 95 |
+
"model.layers.14.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
|
| 96 |
+
"model.layers.14.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 97 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 98 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 99 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 100 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 101 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 102 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 103 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 104 |
+
"model.layers.15.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
|
| 105 |
+
"model.layers.15.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 106 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 107 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 108 |
+
"model.layers.15.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
|
| 109 |
+
"model.layers.15.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 110 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 111 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 112 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 113 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 114 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 115 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 116 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 117 |
+
"model.layers.16.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
|
| 118 |
+
"model.layers.16.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 119 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 120 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 121 |
+
"model.layers.16.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
|
| 122 |
+
"model.layers.16.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 123 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 124 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 125 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 126 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 127 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 128 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 129 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 130 |
+
"model.layers.17.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
|
| 131 |
+
"model.layers.17.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 132 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 133 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 134 |
+
"model.layers.17.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
|
| 135 |
+
"model.layers.17.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 136 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 137 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 138 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 139 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 140 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 141 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 142 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 143 |
+
"model.layers.18.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
|
| 144 |
+
"model.layers.18.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 145 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 146 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 147 |
+
"model.layers.18.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
|
| 148 |
+
"model.layers.18.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 149 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 150 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 151 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 152 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 153 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 154 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 155 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 156 |
+
"model.layers.19.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
|
| 157 |
+
"model.layers.19.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 158 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 159 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 160 |
+
"model.layers.19.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
|
| 161 |
+
"model.layers.19.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 162 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 163 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 164 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 165 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 166 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 167 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 168 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 169 |
+
"model.layers.2.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
|
| 170 |
+
"model.layers.2.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 171 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 172 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 173 |
+
"model.layers.2.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
|
| 174 |
+
"model.layers.2.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 175 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 176 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 177 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 178 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 179 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 180 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 181 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 182 |
+
"model.layers.20.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
|
| 183 |
+
"model.layers.20.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 184 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 185 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 186 |
+
"model.layers.20.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
|
| 187 |
+
"model.layers.20.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 188 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 189 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 190 |
+
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 191 |
+
"model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 192 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 193 |
+
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 194 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 195 |
+
"model.layers.21.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
|
| 196 |
+
"model.layers.21.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 197 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 198 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 199 |
+
"model.layers.21.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
|
| 200 |
+
"model.layers.21.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 201 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 202 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 203 |
+
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 204 |
+
"model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 205 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 206 |
+
"model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 207 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 208 |
+
"model.layers.22.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
|
| 209 |
+
"model.layers.22.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 210 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 211 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 212 |
+
"model.layers.22.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
|
| 213 |
+
"model.layers.22.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 214 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 215 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 216 |
+
"model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 217 |
+
"model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 218 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 219 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 220 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 221 |
+
"model.layers.23.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
|
| 222 |
+
"model.layers.23.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 223 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 224 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 225 |
+
"model.layers.23.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
|
| 226 |
+
"model.layers.23.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 227 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 228 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 229 |
+
"model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 230 |
+
"model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 231 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 232 |
+
"model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 233 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 234 |
+
"model.layers.24.self_attn.k_norm.bias": "model-00002-of-00002.safetensors",
|
| 235 |
+
"model.layers.24.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 236 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 237 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 238 |
+
"model.layers.24.self_attn.q_norm.bias": "model-00002-of-00002.safetensors",
|
| 239 |
+
"model.layers.24.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 240 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 241 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 242 |
+
"model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 243 |
+
"model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 244 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 245 |
+
"model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 246 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 247 |
+
"model.layers.25.self_attn.k_norm.bias": "model-00002-of-00002.safetensors",
|
| 248 |
+
"model.layers.25.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 249 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 250 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 251 |
+
"model.layers.25.self_attn.q_norm.bias": "model-00002-of-00002.safetensors",
|
| 252 |
+
"model.layers.25.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 253 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 254 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 255 |
+
"model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 256 |
+
"model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 257 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 258 |
+
"model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 259 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 260 |
+
"model.layers.26.self_attn.k_norm.bias": "model-00002-of-00002.safetensors",
|
| 261 |
+
"model.layers.26.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 262 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 263 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 264 |
+
"model.layers.26.self_attn.q_norm.bias": "model-00002-of-00002.safetensors",
|
| 265 |
+
"model.layers.26.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 266 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 267 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 268 |
+
"model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 269 |
+
"model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 270 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 271 |
+
"model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 272 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 273 |
+
"model.layers.27.self_attn.k_norm.bias": "model-00002-of-00002.safetensors",
|
| 274 |
+
"model.layers.27.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 275 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 276 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 277 |
+
"model.layers.27.self_attn.q_norm.bias": "model-00002-of-00002.safetensors",
|
| 278 |
+
"model.layers.27.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 279 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 280 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 281 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 282 |
+
"model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 283 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 284 |
+
"model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 285 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 286 |
+
"model.layers.28.self_attn.k_norm.bias": "model-00002-of-00002.safetensors",
|
| 287 |
+
"model.layers.28.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 288 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 289 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 290 |
+
"model.layers.28.self_attn.q_norm.bias": "model-00002-of-00002.safetensors",
|
| 291 |
+
"model.layers.28.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 292 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 293 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 294 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 295 |
+
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 296 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 297 |
+
"model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 298 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 299 |
+
"model.layers.29.self_attn.k_norm.bias": "model-00002-of-00002.safetensors",
|
| 300 |
+
"model.layers.29.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 301 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 302 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 303 |
+
"model.layers.29.self_attn.q_norm.bias": "model-00002-of-00002.safetensors",
|
| 304 |
+
"model.layers.29.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 305 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 306 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 307 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 308 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 309 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 310 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 311 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 312 |
+
"model.layers.3.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
|
| 313 |
+
"model.layers.3.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 314 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 315 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 316 |
+
"model.layers.3.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
|
| 317 |
+
"model.layers.3.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 318 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 319 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 320 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 321 |
+
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 322 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 323 |
+
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 324 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 325 |
+
"model.layers.30.self_attn.k_norm.bias": "model-00002-of-00002.safetensors",
|
| 326 |
+
"model.layers.30.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 327 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 328 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 329 |
+
"model.layers.30.self_attn.q_norm.bias": "model-00002-of-00002.safetensors",
|
| 330 |
+
"model.layers.30.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 331 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 332 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 333 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 334 |
+
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 335 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 336 |
+
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 337 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 338 |
+
"model.layers.31.self_attn.k_norm.bias": "model-00002-of-00002.safetensors",
|
| 339 |
+
"model.layers.31.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 340 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 341 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 342 |
+
"model.layers.31.self_attn.q_norm.bias": "model-00002-of-00002.safetensors",
|
| 343 |
+
"model.layers.31.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 344 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 345 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 346 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 347 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 348 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 349 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 350 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 351 |
+
"model.layers.4.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
|
| 352 |
+
"model.layers.4.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 353 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 354 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 355 |
+
"model.layers.4.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
|
| 356 |
+
"model.layers.4.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 357 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 358 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 359 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 360 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 361 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 362 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 363 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 364 |
+
"model.layers.5.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
|
| 365 |
+
"model.layers.5.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 366 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 367 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 368 |
+
"model.layers.5.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
|
| 369 |
+
"model.layers.5.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 370 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 371 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 372 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 373 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 374 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 375 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 376 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 377 |
+
"model.layers.6.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
|
| 378 |
+
"model.layers.6.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 379 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 380 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 381 |
+
"model.layers.6.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
|
| 382 |
+
"model.layers.6.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 383 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 384 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 385 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 386 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 387 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 388 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 389 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 390 |
+
"model.layers.7.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
|
| 391 |
+
"model.layers.7.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 392 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 393 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 394 |
+
"model.layers.7.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
|
| 395 |
+
"model.layers.7.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 396 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 397 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 398 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 399 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 400 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 401 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 402 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 403 |
+
"model.layers.8.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
|
| 404 |
+
"model.layers.8.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 405 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 406 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 407 |
+
"model.layers.8.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
|
| 408 |
+
"model.layers.8.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 409 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 410 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 411 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 412 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 413 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 414 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 415 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 416 |
+
"model.layers.9.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
|
| 417 |
+
"model.layers.9.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 418 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 419 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 420 |
+
"model.layers.9.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
|
| 421 |
+
"model.layers.9.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 422 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 423 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 424 |
+
"model.norm.weight": "model-00002-of-00002.safetensors",
|
| 425 |
+
"model.vqmodel.encoder.conv_in.bias": "model-00002-of-00002.safetensors",
|
| 426 |
+
"model.vqmodel.encoder.conv_in.weight": "model-00002-of-00002.safetensors",
|
| 427 |
+
"model.vqmodel.encoder.conv_out.bias": "model-00002-of-00002.safetensors",
|
| 428 |
+
"model.vqmodel.encoder.conv_out.weight": "model-00002-of-00002.safetensors",
|
| 429 |
+
"model.vqmodel.encoder.down.0.block.0.conv1.bias": "model-00002-of-00002.safetensors",
|
| 430 |
+
"model.vqmodel.encoder.down.0.block.0.conv1.weight": "model-00002-of-00002.safetensors",
|
| 431 |
+
"model.vqmodel.encoder.down.0.block.0.conv2.bias": "model-00002-of-00002.safetensors",
|
| 432 |
+
"model.vqmodel.encoder.down.0.block.0.conv2.weight": "model-00002-of-00002.safetensors",
|
| 433 |
+
"model.vqmodel.encoder.down.0.block.0.norm1.bias": "model-00002-of-00002.safetensors",
|
| 434 |
+
"model.vqmodel.encoder.down.0.block.0.norm1.weight": "model-00002-of-00002.safetensors",
|
| 435 |
+
"model.vqmodel.encoder.down.0.block.0.norm2.bias": "model-00002-of-00002.safetensors",
|
| 436 |
+
"model.vqmodel.encoder.down.0.block.0.norm2.weight": "model-00002-of-00002.safetensors",
|
| 437 |
+
"model.vqmodel.encoder.down.0.block.1.conv1.bias": "model-00002-of-00002.safetensors",
|
| 438 |
+
"model.vqmodel.encoder.down.0.block.1.conv1.weight": "model-00002-of-00002.safetensors",
|
| 439 |
+
"model.vqmodel.encoder.down.0.block.1.conv2.bias": "model-00002-of-00002.safetensors",
|
| 440 |
+
"model.vqmodel.encoder.down.0.block.1.conv2.weight": "model-00002-of-00002.safetensors",
|
| 441 |
+
"model.vqmodel.encoder.down.0.block.1.norm1.bias": "model-00002-of-00002.safetensors",
|
| 442 |
+
"model.vqmodel.encoder.down.0.block.1.norm1.weight": "model-00002-of-00002.safetensors",
|
| 443 |
+
"model.vqmodel.encoder.down.0.block.1.norm2.bias": "model-00002-of-00002.safetensors",
|
| 444 |
+
"model.vqmodel.encoder.down.0.block.1.norm2.weight": "model-00002-of-00002.safetensors",
|
| 445 |
+
"model.vqmodel.encoder.down.0.downsample.conv.bias": "model-00002-of-00002.safetensors",
|
| 446 |
+
"model.vqmodel.encoder.down.0.downsample.conv.weight": "model-00002-of-00002.safetensors",
|
| 447 |
+
"model.vqmodel.encoder.down.1.block.0.conv1.bias": "model-00002-of-00002.safetensors",
|
| 448 |
+
"model.vqmodel.encoder.down.1.block.0.conv1.weight": "model-00002-of-00002.safetensors",
|
| 449 |
+
"model.vqmodel.encoder.down.1.block.0.conv2.bias": "model-00002-of-00002.safetensors",
|
| 450 |
+
"model.vqmodel.encoder.down.1.block.0.conv2.weight": "model-00002-of-00002.safetensors",
|
| 451 |
+
"model.vqmodel.encoder.down.1.block.0.norm1.bias": "model-00002-of-00002.safetensors",
|
| 452 |
+
"model.vqmodel.encoder.down.1.block.0.norm1.weight": "model-00002-of-00002.safetensors",
|
| 453 |
+
"model.vqmodel.encoder.down.1.block.0.norm2.bias": "model-00002-of-00002.safetensors",
|
| 454 |
+
"model.vqmodel.encoder.down.1.block.0.norm2.weight": "model-00002-of-00002.safetensors",
|
| 455 |
+
"model.vqmodel.encoder.down.1.block.1.conv1.bias": "model-00002-of-00002.safetensors",
|
| 456 |
+
"model.vqmodel.encoder.down.1.block.1.conv1.weight": "model-00002-of-00002.safetensors",
|
| 457 |
+
"model.vqmodel.encoder.down.1.block.1.conv2.bias": "model-00002-of-00002.safetensors",
|
| 458 |
+
"model.vqmodel.encoder.down.1.block.1.conv2.weight": "model-00002-of-00002.safetensors",
|
| 459 |
+
"model.vqmodel.encoder.down.1.block.1.norm1.bias": "model-00002-of-00002.safetensors",
|
| 460 |
+
"model.vqmodel.encoder.down.1.block.1.norm1.weight": "model-00002-of-00002.safetensors",
|
| 461 |
+
"model.vqmodel.encoder.down.1.block.1.norm2.bias": "model-00002-of-00002.safetensors",
|
| 462 |
+
"model.vqmodel.encoder.down.1.block.1.norm2.weight": "model-00002-of-00002.safetensors",
|
| 463 |
+
"model.vqmodel.encoder.down.1.downsample.conv.bias": "model-00002-of-00002.safetensors",
|
| 464 |
+
"model.vqmodel.encoder.down.1.downsample.conv.weight": "model-00002-of-00002.safetensors",
|
| 465 |
+
"model.vqmodel.encoder.down.2.block.0.conv1.bias": "model-00002-of-00002.safetensors",
|
| 466 |
+
"model.vqmodel.encoder.down.2.block.0.conv1.weight": "model-00002-of-00002.safetensors",
|
| 467 |
+
"model.vqmodel.encoder.down.2.block.0.conv2.bias": "model-00002-of-00002.safetensors",
|
| 468 |
+
"model.vqmodel.encoder.down.2.block.0.conv2.weight": "model-00002-of-00002.safetensors",
|
| 469 |
+
"model.vqmodel.encoder.down.2.block.0.nin_shortcut.bias": "model-00002-of-00002.safetensors",
|
| 470 |
+
"model.vqmodel.encoder.down.2.block.0.nin_shortcut.weight": "model-00002-of-00002.safetensors",
|
| 471 |
+
"model.vqmodel.encoder.down.2.block.0.norm1.bias": "model-00002-of-00002.safetensors",
|
| 472 |
+
"model.vqmodel.encoder.down.2.block.0.norm1.weight": "model-00002-of-00002.safetensors",
|
| 473 |
+
"model.vqmodel.encoder.down.2.block.0.norm2.bias": "model-00002-of-00002.safetensors",
|
| 474 |
+
"model.vqmodel.encoder.down.2.block.0.norm2.weight": "model-00002-of-00002.safetensors",
|
| 475 |
+
"model.vqmodel.encoder.down.2.block.1.conv1.bias": "model-00002-of-00002.safetensors",
|
| 476 |
+
"model.vqmodel.encoder.down.2.block.1.conv1.weight": "model-00002-of-00002.safetensors",
|
| 477 |
+
"model.vqmodel.encoder.down.2.block.1.conv2.bias": "model-00002-of-00002.safetensors",
|
| 478 |
+
"model.vqmodel.encoder.down.2.block.1.conv2.weight": "model-00002-of-00002.safetensors",
|
| 479 |
+
"model.vqmodel.encoder.down.2.block.1.norm1.bias": "model-00002-of-00002.safetensors",
|
| 480 |
+
"model.vqmodel.encoder.down.2.block.1.norm1.weight": "model-00002-of-00002.safetensors",
|
| 481 |
+
"model.vqmodel.encoder.down.2.block.1.norm2.bias": "model-00002-of-00002.safetensors",
|
| 482 |
+
"model.vqmodel.encoder.down.2.block.1.norm2.weight": "model-00002-of-00002.safetensors",
|
| 483 |
+
"model.vqmodel.encoder.down.2.downsample.conv.bias": "model-00002-of-00002.safetensors",
|
| 484 |
+
"model.vqmodel.encoder.down.2.downsample.conv.weight": "model-00002-of-00002.safetensors",
|
| 485 |
+
"model.vqmodel.encoder.down.3.block.0.conv1.bias": "model-00002-of-00002.safetensors",
|
| 486 |
+
"model.vqmodel.encoder.down.3.block.0.conv1.weight": "model-00002-of-00002.safetensors",
|
| 487 |
+
"model.vqmodel.encoder.down.3.block.0.conv2.bias": "model-00002-of-00002.safetensors",
|
| 488 |
+
"model.vqmodel.encoder.down.3.block.0.conv2.weight": "model-00002-of-00002.safetensors",
|
| 489 |
+
"model.vqmodel.encoder.down.3.block.0.norm1.bias": "model-00002-of-00002.safetensors",
|
| 490 |
+
"model.vqmodel.encoder.down.3.block.0.norm1.weight": "model-00002-of-00002.safetensors",
|
| 491 |
+
"model.vqmodel.encoder.down.3.block.0.norm2.bias": "model-00002-of-00002.safetensors",
|
| 492 |
+
"model.vqmodel.encoder.down.3.block.0.norm2.weight": "model-00002-of-00002.safetensors",
|
| 493 |
+
"model.vqmodel.encoder.down.3.block.1.conv1.bias": "model-00002-of-00002.safetensors",
|
| 494 |
+
"model.vqmodel.encoder.down.3.block.1.conv1.weight": "model-00002-of-00002.safetensors",
|
| 495 |
+
"model.vqmodel.encoder.down.3.block.1.conv2.bias": "model-00002-of-00002.safetensors",
|
| 496 |
+
"model.vqmodel.encoder.down.3.block.1.conv2.weight": "model-00002-of-00002.safetensors",
|
| 497 |
+
"model.vqmodel.encoder.down.3.block.1.norm1.bias": "model-00002-of-00002.safetensors",
|
| 498 |
+
"model.vqmodel.encoder.down.3.block.1.norm1.weight": "model-00002-of-00002.safetensors",
|
| 499 |
+
"model.vqmodel.encoder.down.3.block.1.norm2.bias": "model-00002-of-00002.safetensors",
|
| 500 |
+
"model.vqmodel.encoder.down.3.block.1.norm2.weight": "model-00002-of-00002.safetensors",
|
| 501 |
+
"model.vqmodel.encoder.down.3.downsample.conv.bias": "model-00002-of-00002.safetensors",
|
| 502 |
+
"model.vqmodel.encoder.down.3.downsample.conv.weight": "model-00002-of-00002.safetensors",
|
| 503 |
+
"model.vqmodel.encoder.down.4.block.0.conv1.bias": "model-00002-of-00002.safetensors",
|
| 504 |
+
"model.vqmodel.encoder.down.4.block.0.conv1.weight": "model-00002-of-00002.safetensors",
|
| 505 |
+
"model.vqmodel.encoder.down.4.block.0.conv2.bias": "model-00002-of-00002.safetensors",
|
| 506 |
+
"model.vqmodel.encoder.down.4.block.0.conv2.weight": "model-00002-of-00002.safetensors",
|
| 507 |
+
"model.vqmodel.encoder.down.4.block.0.nin_shortcut.bias": "model-00002-of-00002.safetensors",
|
| 508 |
+
"model.vqmodel.encoder.down.4.block.0.nin_shortcut.weight": "model-00002-of-00002.safetensors",
|
| 509 |
+
"model.vqmodel.encoder.down.4.block.0.norm1.bias": "model-00002-of-00002.safetensors",
|
| 510 |
+
"model.vqmodel.encoder.down.4.block.0.norm1.weight": "model-00002-of-00002.safetensors",
|
| 511 |
+
"model.vqmodel.encoder.down.4.block.0.norm2.bias": "model-00002-of-00002.safetensors",
|
| 512 |
+
"model.vqmodel.encoder.down.4.block.0.norm2.weight": "model-00002-of-00002.safetensors",
|
| 513 |
+
"model.vqmodel.encoder.down.4.block.1.conv1.bias": "model-00002-of-00002.safetensors",
|
| 514 |
+
"model.vqmodel.encoder.down.4.block.1.conv1.weight": "model-00002-of-00002.safetensors",
|
| 515 |
+
"model.vqmodel.encoder.down.4.block.1.conv2.bias": "model-00002-of-00002.safetensors",
|
| 516 |
+
"model.vqmodel.encoder.down.4.block.1.conv2.weight": "model-00002-of-00002.safetensors",
|
| 517 |
+
"model.vqmodel.encoder.down.4.block.1.norm1.bias": "model-00002-of-00002.safetensors",
|
| 518 |
+
"model.vqmodel.encoder.down.4.block.1.norm1.weight": "model-00002-of-00002.safetensors",
|
| 519 |
+
"model.vqmodel.encoder.down.4.block.1.norm2.bias": "model-00002-of-00002.safetensors",
|
| 520 |
+
"model.vqmodel.encoder.down.4.block.1.norm2.weight": "model-00002-of-00002.safetensors",
|
| 521 |
+
"model.vqmodel.encoder.mid.attn_1.k.bias": "model-00002-of-00002.safetensors",
|
| 522 |
+
"model.vqmodel.encoder.mid.attn_1.k.weight": "model-00002-of-00002.safetensors",
|
| 523 |
+
"model.vqmodel.encoder.mid.attn_1.norm.bias": "model-00002-of-00002.safetensors",
|
| 524 |
+
"model.vqmodel.encoder.mid.attn_1.norm.weight": "model-00002-of-00002.safetensors",
|
| 525 |
+
"model.vqmodel.encoder.mid.attn_1.proj_out.bias": "model-00002-of-00002.safetensors",
|
| 526 |
+
"model.vqmodel.encoder.mid.attn_1.proj_out.weight": "model-00002-of-00002.safetensors",
|
| 527 |
+
"model.vqmodel.encoder.mid.attn_1.q.bias": "model-00002-of-00002.safetensors",
|
| 528 |
+
"model.vqmodel.encoder.mid.attn_1.q.weight": "model-00002-of-00002.safetensors",
|
| 529 |
+
"model.vqmodel.encoder.mid.attn_1.v.bias": "model-00002-of-00002.safetensors",
|
| 530 |
+
"model.vqmodel.encoder.mid.attn_1.v.weight": "model-00002-of-00002.safetensors",
|
| 531 |
+
"model.vqmodel.encoder.mid.block_1.conv1.bias": "model-00002-of-00002.safetensors",
|
| 532 |
+
"model.vqmodel.encoder.mid.block_1.conv1.weight": "model-00002-of-00002.safetensors",
|
| 533 |
+
"model.vqmodel.encoder.mid.block_1.conv2.bias": "model-00002-of-00002.safetensors",
|
| 534 |
+
"model.vqmodel.encoder.mid.block_1.conv2.weight": "model-00002-of-00002.safetensors",
|
| 535 |
+
"model.vqmodel.encoder.mid.block_1.norm1.bias": "model-00002-of-00002.safetensors",
|
| 536 |
+
"model.vqmodel.encoder.mid.block_1.norm1.weight": "model-00002-of-00002.safetensors",
|
| 537 |
+
"model.vqmodel.encoder.mid.block_1.norm2.bias": "model-00002-of-00002.safetensors",
|
| 538 |
+
"model.vqmodel.encoder.mid.block_1.norm2.weight": "model-00002-of-00002.safetensors",
|
| 539 |
+
"model.vqmodel.encoder.mid.block_2.conv1.bias": "model-00002-of-00002.safetensors",
|
| 540 |
+
"model.vqmodel.encoder.mid.block_2.conv1.weight": "model-00002-of-00002.safetensors",
|
| 541 |
+
"model.vqmodel.encoder.mid.block_2.conv2.bias": "model-00002-of-00002.safetensors",
|
| 542 |
+
"model.vqmodel.encoder.mid.block_2.conv2.weight": "model-00002-of-00002.safetensors",
|
| 543 |
+
"model.vqmodel.encoder.mid.block_2.norm1.bias": "model-00002-of-00002.safetensors",
|
| 544 |
+
"model.vqmodel.encoder.mid.block_2.norm1.weight": "model-00002-of-00002.safetensors",
|
| 545 |
+
"model.vqmodel.encoder.mid.block_2.norm2.bias": "model-00002-of-00002.safetensors",
|
| 546 |
+
"model.vqmodel.encoder.mid.block_2.norm2.weight": "model-00002-of-00002.safetensors",
|
| 547 |
+
"model.vqmodel.encoder.norm_out.bias": "model-00002-of-00002.safetensors",
|
| 548 |
+
"model.vqmodel.encoder.norm_out.weight": "model-00002-of-00002.safetensors",
|
| 549 |
+
"model.vqmodel.post_quant_conv.bias": "model-00002-of-00002.safetensors",
|
| 550 |
+
"model.vqmodel.post_quant_conv.weight": "model-00002-of-00002.safetensors",
|
| 551 |
+
"model.vqmodel.quant_conv.bias": "model-00002-of-00002.safetensors",
|
| 552 |
+
"model.vqmodel.quant_conv.weight": "model-00002-of-00002.safetensors",
|
| 553 |
+
"model.vqmodel.quantize.embedding.weight": "model-00002-of-00002.safetensors"
|
| 554 |
+
}
|
| 555 |
+
}
|
original_tokenizers/checklist.chk
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
170a932b687671a4e676f3bf69147295 text_tokenizer.json
|
| 2 |
+
1a559fb5dab4d351d19496ae89da1db1 vqgan.ckpt
|
| 3 |
+
25724c8110d6adabc9130a123b4b922e vqgan.yaml
|
original_tokenizers/text_tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
original_tokenizers/vqgan.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4ede986bf6b171db3081ce171ad88e4ac970793cea14c180b3e5ac5105f4cb43
|
| 3 |
+
size 281270377
|
original_tokenizers/vqgan.yaml
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
base_learning_rate: 4.5e-06
|
| 3 |
+
target: taming.models.vqgan.VQModel
|
| 4 |
+
params:
|
| 5 |
+
embed_dim: 256
|
| 6 |
+
n_embed: 8192
|
| 7 |
+
ddconfig:
|
| 8 |
+
double_z: false
|
| 9 |
+
z_channels: 256
|
| 10 |
+
resolution: 512
|
| 11 |
+
in_channels: 3
|
| 12 |
+
out_ch: 3
|
| 13 |
+
ch: 128
|
| 14 |
+
ch_mult:
|
| 15 |
+
- 1
|
| 16 |
+
- 1
|
| 17 |
+
- 2
|
| 18 |
+
- 2
|
| 19 |
+
- 4
|
| 20 |
+
num_res_blocks: 2
|
| 21 |
+
attn_resolutions: []
|
| 22 |
+
dropout: 0.0
|
| 23 |
+
lossconfig:
|
| 24 |
+
target: taming.modules.losses.vqperceptual_vit_vqgan.VQLPIPSWithDiscriminator
|
| 25 |
+
params:
|
| 26 |
+
disc_start: 100001
|
| 27 |
+
perceptual_weight: 1.0
|
| 28 |
+
adversarial_weight: 0.5
|
| 29 |
+
disc_params:
|
| 30 |
+
size: 512
|
| 31 |
+
ckpt_path: manifold://fair_onellm_checkpoints/tree/v2/tokenizer/vqgan_wm_0209.ckpt
|
| 32 |
+
data:
|
| 33 |
+
target: main.DataModuleFromConfig
|
| 34 |
+
params:
|
| 35 |
+
batch_size: 4
|
| 36 |
+
num_workers: 10
|
| 37 |
+
image_size: 512
|
| 38 |
+
filter_image_size: 512
|
| 39 |
+
dataset: coco
|
| 40 |
+
aesthetics_th: 0
|
| 41 |
+
clipsim_th: 0
|
| 42 |
+
--distributed-world-size: null
|
| 43 |
+
'32': null
|
| 44 |
+
--distributed-port: null
|
| 45 |
+
'17338': null
|
| 46 |
+
--save-dir: null
|
| 47 |
+
/checkpoint/shellysheynin/shutterstock/512x512_1024tokens_4node_shutterstock_laion_no_attn_styleGAN:
|
| 48 |
+
log_every-500:
|
| 49 |
+
ngpu32: null
|
| 50 |
+
--tensorboard-logdir: null
|
| 51 |
+
/checkpoint/shellysheynin/tensorboard_logs/2023-03-30/512x512_1024tokens_4node_shutterstock_laion_no_attn_styleGAN:
|
| 52 |
+
log_every-500:
|
| 53 |
+
ngpu32: null
|
| 54 |
+
'14561': null
|
| 55 |
+
/checkpoint/shellysheynin/tensorboard_logs/2023-04-02/512x512_1024tokens_4node_shutterstock_laion_no_attn_styleGAN:
|
| 56 |
+
log_every-500:
|
| 57 |
+
ngpu32: null
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_valid_processor_keys": [
|
| 3 |
+
"images",
|
| 4 |
+
"do_resize",
|
| 5 |
+
"size",
|
| 6 |
+
"resample",
|
| 7 |
+
"do_center_crop",
|
| 8 |
+
"crop_size",
|
| 9 |
+
"do_rescale",
|
| 10 |
+
"rescale_factor",
|
| 11 |
+
"do_normalize",
|
| 12 |
+
"image_mean",
|
| 13 |
+
"image_std",
|
| 14 |
+
"do_convert_rgb",
|
| 15 |
+
"return_tensors",
|
| 16 |
+
"data_format",
|
| 17 |
+
"input_data_format"
|
| 18 |
+
],
|
| 19 |
+
"auto_map": {
|
| 20 |
+
"AutoImageProcessor": "image_processing_chameleon.ChameleonImageProcessor"
|
| 21 |
+
},
|
| 22 |
+
"crop_size": {
|
| 23 |
+
"height": 512,
|
| 24 |
+
"width": 512
|
| 25 |
+
},
|
| 26 |
+
"do_center_crop": true,
|
| 27 |
+
"do_convert_rgb": true,
|
| 28 |
+
"do_normalize": true,
|
| 29 |
+
"do_rescale": true,
|
| 30 |
+
"do_resize": true,
|
| 31 |
+
"image_mean": [
|
| 32 |
+
1.0,
|
| 33 |
+
1.0,
|
| 34 |
+
1.0
|
| 35 |
+
],
|
| 36 |
+
"image_processor_type": "ChameleonImageProcessor",
|
| 37 |
+
"image_std": [
|
| 38 |
+
1.0,
|
| 39 |
+
1.0,
|
| 40 |
+
1.0
|
| 41 |
+
],
|
| 42 |
+
"processor_class": "ChameleonProcessor",
|
| 43 |
+
"resample": 1,
|
| 44 |
+
"rescale_factor": 0.0078,
|
| 45 |
+
"size": {
|
| 46 |
+
"shortest_edge": 512
|
| 47 |
+
}
|
| 48 |
+
}
|
processor_config.json
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"image_seq_length": 1024,
|
| 3 |
+
"image_token": "<image>",
|
| 4 |
+
"processor_class": "ChameleonProcessor"
|
| 5 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "<s>",
|
| 3 |
+
"eos_token": "</s>",
|
| 4 |
+
"pad_token": "<pad>",
|
| 5 |
+
"sep_token": "<reserved08706>",
|
| 6 |
+
"unk_token": "<unk>"
|
| 7 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|