seliny2 commited on
Commit
5aefece
·
verified ·
1 Parent(s): 8856aa1

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: any-to-any
3
+ ---
4
+ This is the Chameleon-7b checkpoint, converted using the script [convert_chameleon_weights_to_hf.py](https://github.com/Alpha-VLLM/Lumina-mGPT/blob/main/lumina_mgpt/model/chameleon/convert_chameleon_weights_to_hf.py) from the [Lumina-mGPT](https://github.com/Alpha-VLLM/Lumina-mGPT) repository.
5
+
6
+ This release is intended to ease the initialization of Lumina-mGPT training. Before using this model, please ensure you have obtained permission to access the official Chameleon checkpoints available at [Hugging Face](https://huggingface.co/facebook/chameleon-7b). Usage of this model is at the user's own risk.
7
+
8
+
9
+ <h2 style="color:rosybrown">Differences from the official chameleon-7B release</h2>
10
+
11
+ *This model is **almost the same** as the official chameleon-7B release, with one important difference in the *qk-norm* implementation*:
12
+ Due to unknown reasons, for the 34B Chameleon
13
+ model, where 8-way model parallelism is employed during training, the weights in the qk-norm layers, which are expected to be the same across model-parallel ranks,
14
+ are found to be different (See [here](https://github.com/huggingface/transformers/pull/31534#issuecomment-2207354677) for details). More intuitively, this means that the attention heads can be divided into 1 group for 7B model and 8 groups for 34B model, where the qk-norm parameters
15
+ are the same within the groups but different among them. To mitigate this problem, `transformers` has developed the implementation to copy the qk-norm parameters to the shape `num_heads * head_dim`,
16
+ however, this means that if we want to further finetune the Chameleon model, like the case of Lumina-mGPT, the qk-norm parameters will further diverge to the extent that the parameters are different
17
+ between every two attention heads, which is not ideal. To solve this problem, we slightly change the implementation so that the qk-norm parameters are instead of shape `model_parallel_size x head_dim`,
18
+ where `model_parallel_size` is 1 for 7B model and 8 for 34B model, and they are expanded to `num_heads * head_dim` during forward time through `repeat_interleave`. This modification ensures
19
+ that the qk-norm parameters can always be consistent within existing groups.
config.json ADDED
The diff for this file is too large to render. See raw diff
 
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.43.3"
6
+ }
image_processing_chameleon.py ADDED
@@ -0,0 +1,371 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Meta Inc. and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Image processor class for Chameleon."""
16
+
17
+ from typing import Dict, List, Optional, Union
18
+
19
+ import numpy as np
20
+
21
+ from transformers.image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
22
+ from transformers.image_transforms import (
23
+ get_resize_output_image_size,
24
+ resize,
25
+ to_channel_dimension_format,
26
+ )
27
+ from transformers.image_utils import (
28
+ ChannelDimension,
29
+ ImageInput,
30
+ PILImageResampling,
31
+ infer_channel_dimension_format,
32
+ is_scaled_image,
33
+ make_list_of_images,
34
+ to_numpy_array,
35
+ valid_images,
36
+ validate_kwargs,
37
+ validate_preprocess_arguments,
38
+ )
39
+ from transformers.utils import TensorType, is_vision_available, logging
40
+
41
+
42
+ logger = logging.get_logger(__name__)
43
+
44
+ if is_vision_available():
45
+ import PIL
46
+
47
+
48
+ class ChameleonImageProcessor(BaseImageProcessor):
49
+ r"""
50
+ Constructs a Chameleon image processor.
51
+
52
+ Args:
53
+ do_resize (`bool`, *optional*, defaults to `True`):
54
+ Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
55
+ `do_resize` in the `preprocess` method.
56
+ size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
57
+ Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
58
+ the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
59
+ method.
60
+ resample (`PILImageResampling`, *optional*, defaults to 1):
61
+ Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
62
+ do_center_crop (`bool`, *optional*, defaults to `True`):
63
+ Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the
64
+ `preprocess` method.
65
+ crop_size (`Dict[str, int]` *optional*, defaults to 224):
66
+ Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess`
67
+ method.
68
+ do_rescale (`bool`, *optional*, defaults to `True`):
69
+ Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
70
+ the `preprocess` method.
71
+ rescale_factor (`int` or `float`, *optional*, defaults to 0.0078):
72
+ Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
73
+ method.
74
+ do_normalize (`bool`, *optional*, defaults to `True`):
75
+ Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
76
+ image_mean (`float` or `List[float]`, *optional*, defaults to `[1.0, 1.0, 1.0]`):
77
+ Mean to use if normalizing the image. This is a float or list of floats the length of the number of
78
+ channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
79
+ image_std (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
80
+ Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
81
+ number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
82
+ Can be overridden by the `image_std` parameter in the `preprocess` method.
83
+ do_convert_rgb (`bool`, *optional*, defaults to `True`):
84
+ Whether to convert the image to RGB.
85
+ """
86
+
87
+ model_input_names = ["pixel_values"]
88
+
89
+ def __init__(
90
+ self,
91
+ do_resize: bool = True,
92
+ size: Dict[str, int] = None,
93
+ resample: PILImageResampling = PIL.Image.LANCZOS,
94
+ do_center_crop: bool = True,
95
+ crop_size: Dict[str, int] = None,
96
+ do_rescale: bool = True,
97
+ rescale_factor: Union[int, float] = 0.0078,
98
+ do_normalize: bool = True,
99
+ image_mean: Optional[Union[float, List[float]]] = None,
100
+ image_std: Optional[Union[float, List[float]]] = None,
101
+ do_convert_rgb: bool = True,
102
+ **kwargs,
103
+ ) -> None:
104
+ super().__init__(**kwargs)
105
+ size = size if size is not None else {"shortest_edge": 512}
106
+ size = get_size_dict(size, default_to_square=False)
107
+ crop_size = crop_size if crop_size is not None else {"height": 512, "width": 512}
108
+ crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
109
+
110
+ self.do_resize = do_resize
111
+ self.size = size
112
+ self.resample = resample
113
+ self.do_center_crop = do_center_crop
114
+ self.crop_size = crop_size
115
+ self.do_rescale = do_rescale
116
+ self.rescale_factor = rescale_factor
117
+ self.do_normalize = do_normalize
118
+ self.image_mean = image_mean if image_mean is not None else [1.0, 1.0, 1.0]
119
+ self.image_std = image_std if image_std is not None else [1.0, 1.0, 1.0]
120
+ self.do_convert_rgb = do_convert_rgb
121
+ self._valid_processor_keys = [
122
+ "images",
123
+ "do_resize",
124
+ "size",
125
+ "resample",
126
+ "do_center_crop",
127
+ "crop_size",
128
+ "do_rescale",
129
+ "rescale_factor",
130
+ "do_normalize",
131
+ "image_mean",
132
+ "image_std",
133
+ "do_convert_rgb",
134
+ "return_tensors",
135
+ "data_format",
136
+ "input_data_format",
137
+ ]
138
+
139
+ def resize(
140
+ self,
141
+ image: np.ndarray,
142
+ size: Dict[str, int],
143
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
144
+ data_format: Optional[Union[str, ChannelDimension]] = None,
145
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
146
+ **kwargs,
147
+ ) -> np.ndarray:
148
+ """
149
+ Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
150
+ resized to keep the input aspect ratio.
151
+
152
+ Args:
153
+ image (`np.ndarray`):
154
+ Image to resize.
155
+ size (`Dict[str, int]`):
156
+ Size of the output image.
157
+ resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
158
+ Resampling filter to use when resiizing the image.
159
+ data_format (`str` or `ChannelDimension`, *optional*):
160
+ The channel dimension format of the image. If not provided, it will be the same as the input image.
161
+ input_data_format (`ChannelDimension` or `str`, *optional*):
162
+ The channel dimension format of the input image. If not provided, it will be inferred.
163
+ """
164
+ default_to_square = True
165
+ if "shortest_edge" in size:
166
+ size = size["shortest_edge"]
167
+ default_to_square = False
168
+ elif "height" in size and "width" in size:
169
+ size = (size["height"], size["width"])
170
+ else:
171
+ raise ValueError("Size must contain either 'shortest_edge' or 'height' and 'width'.")
172
+
173
+ output_size = get_resize_output_image_size(
174
+ image,
175
+ size=size,
176
+ default_to_square=default_to_square,
177
+ input_data_format=input_data_format,
178
+ )
179
+ return resize(
180
+ image,
181
+ size=output_size,
182
+ resample=resample,
183
+ data_format=data_format,
184
+ input_data_format=input_data_format,
185
+ **kwargs,
186
+ )
187
+
188
+ def preprocess(
189
+ self,
190
+ images: ImageInput,
191
+ do_resize: bool = None,
192
+ size: Dict[str, int] = None,
193
+ resample: PILImageResampling = None,
194
+ do_center_crop: bool = None,
195
+ crop_size: int = None,
196
+ do_rescale: bool = None,
197
+ rescale_factor: float = None,
198
+ do_normalize: bool = None,
199
+ image_mean: Optional[Union[float, List[float]]] = None,
200
+ image_std: Optional[Union[float, List[float]]] = None,
201
+ do_convert_rgb: bool = None,
202
+ return_tensors: Optional[Union[str, TensorType]] = None,
203
+ data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
204
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
205
+ **kwargs,
206
+ ) -> PIL.Image.Image:
207
+ """
208
+ Preprocess an image or batch of images.
209
+
210
+ Args:
211
+ images (`ImageInput`):
212
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
213
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
214
+ do_resize (`bool`, *optional*, defaults to `self.do_resize`):
215
+ Whether to resize the image.
216
+ size (`Dict[str, int]`, *optional*, defaults to `self.size`):
217
+ Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
218
+ the longest edge resized to keep the input aspect ratio.
219
+ resample (`int`, *optional*, defaults to `self.resample`):
220
+ Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
221
+ has an effect if `do_resize` is set to `True`.
222
+ do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
223
+ Whether to center crop the image.
224
+ crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
225
+ Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
226
+ do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
227
+ Whether to rescale the image.
228
+ rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
229
+ Rescale factor to rescale the image by if `do_rescale` is set to `True`.
230
+ do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
231
+ Whether to normalize the image.
232
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
233
+ Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
234
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
235
+ Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
236
+ `True`.
237
+ do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
238
+ Whether to convert the image to RGB.
239
+ return_tensors (`str` or `TensorType`, *optional*):
240
+ The type of tensors to return. Can be one of:
241
+ - Unset: Return a list of `np.ndarray`.
242
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
243
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
244
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
245
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
246
+ data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
247
+ The channel dimension format for the output image. Can be one of:
248
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
249
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
250
+ - Unset: Use the channel dimension format of the input image.
251
+ input_data_format (`ChannelDimension` or `str`, *optional*):
252
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
253
+ from the input image. Can be one of:
254
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
255
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
256
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
257
+ """
258
+ do_resize = do_resize if do_resize is not None else self.do_resize
259
+ size = size if size is not None else self.size
260
+ size = get_size_dict(size, param_name="size", default_to_square=False)
261
+ resample = resample if resample is not None else self.resample
262
+ do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
263
+ crop_size = crop_size if crop_size is not None else self.crop_size
264
+ crop_size = get_size_dict(crop_size, param_name="crop_size", default_to_square=True)
265
+ do_rescale = do_rescale if do_rescale is not None else self.do_rescale
266
+ rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
267
+ do_normalize = do_normalize if do_normalize is not None else self.do_normalize
268
+ image_mean = image_mean if image_mean is not None else self.image_mean
269
+ image_std = image_std if image_std is not None else self.image_std
270
+ do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
271
+
272
+ validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
273
+
274
+ images = make_list_of_images(images)
275
+
276
+ if not valid_images(images):
277
+ raise ValueError(
278
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
279
+ "torch.Tensor, tf.Tensor or jax.ndarray."
280
+ )
281
+
282
+ validate_preprocess_arguments(
283
+ do_rescale=do_rescale,
284
+ rescale_factor=rescale_factor,
285
+ do_normalize=do_normalize,
286
+ image_mean=image_mean,
287
+ image_std=image_std,
288
+ do_center_crop=do_center_crop,
289
+ crop_size=crop_size,
290
+ do_resize=do_resize,
291
+ size=size,
292
+ resample=resample,
293
+ )
294
+
295
+ if do_convert_rgb:
296
+ images = [self.blend_rgba(image) for image in images]
297
+
298
+ # All transformations expect numpy arrays.
299
+ images = [to_numpy_array(image) for image in images]
300
+
301
+ if is_scaled_image(images[0]) and do_rescale:
302
+ logger.warning_once(
303
+ "It looks like you are trying to rescale already rescaled images. If the input"
304
+ " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
305
+ )
306
+
307
+ if input_data_format is None:
308
+ # We assume that all images have the same channel dimension format.
309
+ input_data_format = infer_channel_dimension_format(images[0])
310
+
311
+ if do_resize:
312
+ images = [
313
+ self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
314
+ for image in images
315
+ ]
316
+
317
+ if do_center_crop:
318
+ images = [
319
+ self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
320
+ ]
321
+
322
+ if do_rescale:
323
+ images = [
324
+ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
325
+ for image in images
326
+ ]
327
+
328
+ if do_normalize:
329
+ images = [
330
+ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
331
+ for image in images
332
+ ]
333
+
334
+ images = [
335
+ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
336
+ ]
337
+
338
+ data = {"pixel_values": images}
339
+ return BatchFeature(data=data, tensor_type=return_tensors)
340
+
341
+ def blend_rgba(
342
+ self,
343
+ image: ImageInput,
344
+ ) -> ImageInput:
345
+ """
346
+ Convert image to RGB by blending the transparency layer if it's in RGBA format.
347
+
348
+ Args:
349
+ image (`ImageInput`):
350
+ Image to convert.
351
+ """
352
+
353
+ if not isinstance(image, PIL.Image.Image):
354
+ return image
355
+ elif image.mode == "RGB":
356
+ return image
357
+
358
+ img_rgba = np.array(image.convert("RGBA"))
359
+
360
+ # If there is no transparency layer, simple convert and return.
361
+ if not (img_rgba[:, :, 3] < 255).any():
362
+ return image.convert("RGB")
363
+
364
+ # There is a transparency layer, blend it with a white background.
365
+ # Calculate the alpha proportion for blending.
366
+ alpha = img_rgba[:, :, 3] / 255.0
367
+ img_rgb = (1 - alpha[:, :, np.newaxis]) * 255 + alpha[:, :, np.newaxis] * img_rgba[:, :, :3]
368
+ return PIL.Image.fromarray(img_rgb.astype("uint8"), "RGB")
369
+
370
+
371
+ ChameleonImageProcessor.register_for_auto_class()
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99c314199c4f6394ef70131da9995605c1e916117eca3a80a0d2b6c34bd4781a
3
+ size 9980783248
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1c0cfdbe4841333bb58e10ec56e03523760e97548d714a8830bf91f16a3119c
3
+ size 4163292328
model.safetensors.index.json ADDED
@@ -0,0 +1,555 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 14144012288
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
31
+ "model.layers.1.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.10.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
44
+ "model.layers.10.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.11.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
57
+ "model.layers.11.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.12.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
70
+ "model.layers.12.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
79
+ "model.layers.13.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.13.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
83
+ "model.layers.13.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.14.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
92
+ "model.layers.14.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.14.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
96
+ "model.layers.14.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.15.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
105
+ "model.layers.15.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.15.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
109
+ "model.layers.15.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.16.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
118
+ "model.layers.16.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.16.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
122
+ "model.layers.16.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.17.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
131
+ "model.layers.17.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
134
+ "model.layers.17.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
135
+ "model.layers.17.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
137
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
139
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.18.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
144
+ "model.layers.18.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
146
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.18.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
148
+ "model.layers.18.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
149
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
151
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.19.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
157
+ "model.layers.19.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
158
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.19.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
161
+ "model.layers.19.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
163
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.2.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
170
+ "model.layers.2.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
172
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
173
+ "model.layers.2.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
174
+ "model.layers.2.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
175
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
181
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
182
+ "model.layers.20.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
183
+ "model.layers.20.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
184
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
185
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
186
+ "model.layers.20.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
187
+ "model.layers.20.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
193
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
194
+ "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.21.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
196
+ "model.layers.21.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
197
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
199
+ "model.layers.21.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
200
+ "model.layers.21.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
206
+ "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.22.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
209
+ "model.layers.22.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
211
+ "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.22.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
213
+ "model.layers.22.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
217
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
218
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
219
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
220
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
221
+ "model.layers.23.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
222
+ "model.layers.23.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
223
+ "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.23.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
226
+ "model.layers.23.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
230
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
231
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
232
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
233
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
234
+ "model.layers.24.self_attn.k_norm.bias": "model-00002-of-00002.safetensors",
235
+ "model.layers.24.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
236
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
237
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
238
+ "model.layers.24.self_attn.q_norm.bias": "model-00002-of-00002.safetensors",
239
+ "model.layers.24.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
240
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
241
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
242
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
243
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
244
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
245
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
246
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
247
+ "model.layers.25.self_attn.k_norm.bias": "model-00002-of-00002.safetensors",
248
+ "model.layers.25.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
249
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
250
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
251
+ "model.layers.25.self_attn.q_norm.bias": "model-00002-of-00002.safetensors",
252
+ "model.layers.25.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
253
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
254
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
255
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
256
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
257
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
258
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
259
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
260
+ "model.layers.26.self_attn.k_norm.bias": "model-00002-of-00002.safetensors",
261
+ "model.layers.26.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.26.self_attn.q_norm.bias": "model-00002-of-00002.safetensors",
265
+ "model.layers.26.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
266
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
267
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
268
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
269
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
270
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
271
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
272
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.27.self_attn.k_norm.bias": "model-00002-of-00002.safetensors",
274
+ "model.layers.27.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
277
+ "model.layers.27.self_attn.q_norm.bias": "model-00002-of-00002.safetensors",
278
+ "model.layers.27.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
280
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
281
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
282
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
283
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
284
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
285
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
286
+ "model.layers.28.self_attn.k_norm.bias": "model-00002-of-00002.safetensors",
287
+ "model.layers.28.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
288
+ "model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
289
+ "model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
290
+ "model.layers.28.self_attn.q_norm.bias": "model-00002-of-00002.safetensors",
291
+ "model.layers.28.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
292
+ "model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
293
+ "model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
294
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
295
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
296
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.29.self_attn.k_norm.bias": "model-00002-of-00002.safetensors",
300
+ "model.layers.29.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
301
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
302
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.29.self_attn.q_norm.bias": "model-00002-of-00002.safetensors",
304
+ "model.layers.29.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
305
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
306
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
307
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
308
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
309
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
310
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
311
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
312
+ "model.layers.3.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
313
+ "model.layers.3.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
314
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
315
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
316
+ "model.layers.3.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
317
+ "model.layers.3.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
318
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
319
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
320
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
325
+ "model.layers.30.self_attn.k_norm.bias": "model-00002-of-00002.safetensors",
326
+ "model.layers.30.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
328
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
329
+ "model.layers.30.self_attn.q_norm.bias": "model-00002-of-00002.safetensors",
330
+ "model.layers.30.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
331
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
337
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
338
+ "model.layers.31.self_attn.k_norm.bias": "model-00002-of-00002.safetensors",
339
+ "model.layers.31.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
340
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
341
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
342
+ "model.layers.31.self_attn.q_norm.bias": "model-00002-of-00002.safetensors",
343
+ "model.layers.31.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
346
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
347
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
348
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
349
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
350
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
351
+ "model.layers.4.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
352
+ "model.layers.4.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
353
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
354
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
355
+ "model.layers.4.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
356
+ "model.layers.4.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
357
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
358
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
359
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
360
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
361
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
362
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
363
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
364
+ "model.layers.5.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
365
+ "model.layers.5.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
366
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
367
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
368
+ "model.layers.5.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
369
+ "model.layers.5.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
373
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
374
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
376
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
377
+ "model.layers.6.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
378
+ "model.layers.6.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
379
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.6.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
382
+ "model.layers.6.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
385
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
386
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
388
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
389
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
390
+ "model.layers.7.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
391
+ "model.layers.7.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.7.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
395
+ "model.layers.7.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
397
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
398
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
400
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
401
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
402
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
403
+ "model.layers.8.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
404
+ "model.layers.8.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
406
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.8.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
408
+ "model.layers.8.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
409
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
410
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
412
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
413
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
414
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
415
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
416
+ "model.layers.9.self_attn.k_norm.bias": "model-00001-of-00002.safetensors",
417
+ "model.layers.9.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.9.self_attn.q_norm.bias": "model-00001-of-00002.safetensors",
421
+ "model.layers.9.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
422
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
424
+ "model.norm.weight": "model-00002-of-00002.safetensors",
425
+ "model.vqmodel.encoder.conv_in.bias": "model-00002-of-00002.safetensors",
426
+ "model.vqmodel.encoder.conv_in.weight": "model-00002-of-00002.safetensors",
427
+ "model.vqmodel.encoder.conv_out.bias": "model-00002-of-00002.safetensors",
428
+ "model.vqmodel.encoder.conv_out.weight": "model-00002-of-00002.safetensors",
429
+ "model.vqmodel.encoder.down.0.block.0.conv1.bias": "model-00002-of-00002.safetensors",
430
+ "model.vqmodel.encoder.down.0.block.0.conv1.weight": "model-00002-of-00002.safetensors",
431
+ "model.vqmodel.encoder.down.0.block.0.conv2.bias": "model-00002-of-00002.safetensors",
432
+ "model.vqmodel.encoder.down.0.block.0.conv2.weight": "model-00002-of-00002.safetensors",
433
+ "model.vqmodel.encoder.down.0.block.0.norm1.bias": "model-00002-of-00002.safetensors",
434
+ "model.vqmodel.encoder.down.0.block.0.norm1.weight": "model-00002-of-00002.safetensors",
435
+ "model.vqmodel.encoder.down.0.block.0.norm2.bias": "model-00002-of-00002.safetensors",
436
+ "model.vqmodel.encoder.down.0.block.0.norm2.weight": "model-00002-of-00002.safetensors",
437
+ "model.vqmodel.encoder.down.0.block.1.conv1.bias": "model-00002-of-00002.safetensors",
438
+ "model.vqmodel.encoder.down.0.block.1.conv1.weight": "model-00002-of-00002.safetensors",
439
+ "model.vqmodel.encoder.down.0.block.1.conv2.bias": "model-00002-of-00002.safetensors",
440
+ "model.vqmodel.encoder.down.0.block.1.conv2.weight": "model-00002-of-00002.safetensors",
441
+ "model.vqmodel.encoder.down.0.block.1.norm1.bias": "model-00002-of-00002.safetensors",
442
+ "model.vqmodel.encoder.down.0.block.1.norm1.weight": "model-00002-of-00002.safetensors",
443
+ "model.vqmodel.encoder.down.0.block.1.norm2.bias": "model-00002-of-00002.safetensors",
444
+ "model.vqmodel.encoder.down.0.block.1.norm2.weight": "model-00002-of-00002.safetensors",
445
+ "model.vqmodel.encoder.down.0.downsample.conv.bias": "model-00002-of-00002.safetensors",
446
+ "model.vqmodel.encoder.down.0.downsample.conv.weight": "model-00002-of-00002.safetensors",
447
+ "model.vqmodel.encoder.down.1.block.0.conv1.bias": "model-00002-of-00002.safetensors",
448
+ "model.vqmodel.encoder.down.1.block.0.conv1.weight": "model-00002-of-00002.safetensors",
449
+ "model.vqmodel.encoder.down.1.block.0.conv2.bias": "model-00002-of-00002.safetensors",
450
+ "model.vqmodel.encoder.down.1.block.0.conv2.weight": "model-00002-of-00002.safetensors",
451
+ "model.vqmodel.encoder.down.1.block.0.norm1.bias": "model-00002-of-00002.safetensors",
452
+ "model.vqmodel.encoder.down.1.block.0.norm1.weight": "model-00002-of-00002.safetensors",
453
+ "model.vqmodel.encoder.down.1.block.0.norm2.bias": "model-00002-of-00002.safetensors",
454
+ "model.vqmodel.encoder.down.1.block.0.norm2.weight": "model-00002-of-00002.safetensors",
455
+ "model.vqmodel.encoder.down.1.block.1.conv1.bias": "model-00002-of-00002.safetensors",
456
+ "model.vqmodel.encoder.down.1.block.1.conv1.weight": "model-00002-of-00002.safetensors",
457
+ "model.vqmodel.encoder.down.1.block.1.conv2.bias": "model-00002-of-00002.safetensors",
458
+ "model.vqmodel.encoder.down.1.block.1.conv2.weight": "model-00002-of-00002.safetensors",
459
+ "model.vqmodel.encoder.down.1.block.1.norm1.bias": "model-00002-of-00002.safetensors",
460
+ "model.vqmodel.encoder.down.1.block.1.norm1.weight": "model-00002-of-00002.safetensors",
461
+ "model.vqmodel.encoder.down.1.block.1.norm2.bias": "model-00002-of-00002.safetensors",
462
+ "model.vqmodel.encoder.down.1.block.1.norm2.weight": "model-00002-of-00002.safetensors",
463
+ "model.vqmodel.encoder.down.1.downsample.conv.bias": "model-00002-of-00002.safetensors",
464
+ "model.vqmodel.encoder.down.1.downsample.conv.weight": "model-00002-of-00002.safetensors",
465
+ "model.vqmodel.encoder.down.2.block.0.conv1.bias": "model-00002-of-00002.safetensors",
466
+ "model.vqmodel.encoder.down.2.block.0.conv1.weight": "model-00002-of-00002.safetensors",
467
+ "model.vqmodel.encoder.down.2.block.0.conv2.bias": "model-00002-of-00002.safetensors",
468
+ "model.vqmodel.encoder.down.2.block.0.conv2.weight": "model-00002-of-00002.safetensors",
469
+ "model.vqmodel.encoder.down.2.block.0.nin_shortcut.bias": "model-00002-of-00002.safetensors",
470
+ "model.vqmodel.encoder.down.2.block.0.nin_shortcut.weight": "model-00002-of-00002.safetensors",
471
+ "model.vqmodel.encoder.down.2.block.0.norm1.bias": "model-00002-of-00002.safetensors",
472
+ "model.vqmodel.encoder.down.2.block.0.norm1.weight": "model-00002-of-00002.safetensors",
473
+ "model.vqmodel.encoder.down.2.block.0.norm2.bias": "model-00002-of-00002.safetensors",
474
+ "model.vqmodel.encoder.down.2.block.0.norm2.weight": "model-00002-of-00002.safetensors",
475
+ "model.vqmodel.encoder.down.2.block.1.conv1.bias": "model-00002-of-00002.safetensors",
476
+ "model.vqmodel.encoder.down.2.block.1.conv1.weight": "model-00002-of-00002.safetensors",
477
+ "model.vqmodel.encoder.down.2.block.1.conv2.bias": "model-00002-of-00002.safetensors",
478
+ "model.vqmodel.encoder.down.2.block.1.conv2.weight": "model-00002-of-00002.safetensors",
479
+ "model.vqmodel.encoder.down.2.block.1.norm1.bias": "model-00002-of-00002.safetensors",
480
+ "model.vqmodel.encoder.down.2.block.1.norm1.weight": "model-00002-of-00002.safetensors",
481
+ "model.vqmodel.encoder.down.2.block.1.norm2.bias": "model-00002-of-00002.safetensors",
482
+ "model.vqmodel.encoder.down.2.block.1.norm2.weight": "model-00002-of-00002.safetensors",
483
+ "model.vqmodel.encoder.down.2.downsample.conv.bias": "model-00002-of-00002.safetensors",
484
+ "model.vqmodel.encoder.down.2.downsample.conv.weight": "model-00002-of-00002.safetensors",
485
+ "model.vqmodel.encoder.down.3.block.0.conv1.bias": "model-00002-of-00002.safetensors",
486
+ "model.vqmodel.encoder.down.3.block.0.conv1.weight": "model-00002-of-00002.safetensors",
487
+ "model.vqmodel.encoder.down.3.block.0.conv2.bias": "model-00002-of-00002.safetensors",
488
+ "model.vqmodel.encoder.down.3.block.0.conv2.weight": "model-00002-of-00002.safetensors",
489
+ "model.vqmodel.encoder.down.3.block.0.norm1.bias": "model-00002-of-00002.safetensors",
490
+ "model.vqmodel.encoder.down.3.block.0.norm1.weight": "model-00002-of-00002.safetensors",
491
+ "model.vqmodel.encoder.down.3.block.0.norm2.bias": "model-00002-of-00002.safetensors",
492
+ "model.vqmodel.encoder.down.3.block.0.norm2.weight": "model-00002-of-00002.safetensors",
493
+ "model.vqmodel.encoder.down.3.block.1.conv1.bias": "model-00002-of-00002.safetensors",
494
+ "model.vqmodel.encoder.down.3.block.1.conv1.weight": "model-00002-of-00002.safetensors",
495
+ "model.vqmodel.encoder.down.3.block.1.conv2.bias": "model-00002-of-00002.safetensors",
496
+ "model.vqmodel.encoder.down.3.block.1.conv2.weight": "model-00002-of-00002.safetensors",
497
+ "model.vqmodel.encoder.down.3.block.1.norm1.bias": "model-00002-of-00002.safetensors",
498
+ "model.vqmodel.encoder.down.3.block.1.norm1.weight": "model-00002-of-00002.safetensors",
499
+ "model.vqmodel.encoder.down.3.block.1.norm2.bias": "model-00002-of-00002.safetensors",
500
+ "model.vqmodel.encoder.down.3.block.1.norm2.weight": "model-00002-of-00002.safetensors",
501
+ "model.vqmodel.encoder.down.3.downsample.conv.bias": "model-00002-of-00002.safetensors",
502
+ "model.vqmodel.encoder.down.3.downsample.conv.weight": "model-00002-of-00002.safetensors",
503
+ "model.vqmodel.encoder.down.4.block.0.conv1.bias": "model-00002-of-00002.safetensors",
504
+ "model.vqmodel.encoder.down.4.block.0.conv1.weight": "model-00002-of-00002.safetensors",
505
+ "model.vqmodel.encoder.down.4.block.0.conv2.bias": "model-00002-of-00002.safetensors",
506
+ "model.vqmodel.encoder.down.4.block.0.conv2.weight": "model-00002-of-00002.safetensors",
507
+ "model.vqmodel.encoder.down.4.block.0.nin_shortcut.bias": "model-00002-of-00002.safetensors",
508
+ "model.vqmodel.encoder.down.4.block.0.nin_shortcut.weight": "model-00002-of-00002.safetensors",
509
+ "model.vqmodel.encoder.down.4.block.0.norm1.bias": "model-00002-of-00002.safetensors",
510
+ "model.vqmodel.encoder.down.4.block.0.norm1.weight": "model-00002-of-00002.safetensors",
511
+ "model.vqmodel.encoder.down.4.block.0.norm2.bias": "model-00002-of-00002.safetensors",
512
+ "model.vqmodel.encoder.down.4.block.0.norm2.weight": "model-00002-of-00002.safetensors",
513
+ "model.vqmodel.encoder.down.4.block.1.conv1.bias": "model-00002-of-00002.safetensors",
514
+ "model.vqmodel.encoder.down.4.block.1.conv1.weight": "model-00002-of-00002.safetensors",
515
+ "model.vqmodel.encoder.down.4.block.1.conv2.bias": "model-00002-of-00002.safetensors",
516
+ "model.vqmodel.encoder.down.4.block.1.conv2.weight": "model-00002-of-00002.safetensors",
517
+ "model.vqmodel.encoder.down.4.block.1.norm1.bias": "model-00002-of-00002.safetensors",
518
+ "model.vqmodel.encoder.down.4.block.1.norm1.weight": "model-00002-of-00002.safetensors",
519
+ "model.vqmodel.encoder.down.4.block.1.norm2.bias": "model-00002-of-00002.safetensors",
520
+ "model.vqmodel.encoder.down.4.block.1.norm2.weight": "model-00002-of-00002.safetensors",
521
+ "model.vqmodel.encoder.mid.attn_1.k.bias": "model-00002-of-00002.safetensors",
522
+ "model.vqmodel.encoder.mid.attn_1.k.weight": "model-00002-of-00002.safetensors",
523
+ "model.vqmodel.encoder.mid.attn_1.norm.bias": "model-00002-of-00002.safetensors",
524
+ "model.vqmodel.encoder.mid.attn_1.norm.weight": "model-00002-of-00002.safetensors",
525
+ "model.vqmodel.encoder.mid.attn_1.proj_out.bias": "model-00002-of-00002.safetensors",
526
+ "model.vqmodel.encoder.mid.attn_1.proj_out.weight": "model-00002-of-00002.safetensors",
527
+ "model.vqmodel.encoder.mid.attn_1.q.bias": "model-00002-of-00002.safetensors",
528
+ "model.vqmodel.encoder.mid.attn_1.q.weight": "model-00002-of-00002.safetensors",
529
+ "model.vqmodel.encoder.mid.attn_1.v.bias": "model-00002-of-00002.safetensors",
530
+ "model.vqmodel.encoder.mid.attn_1.v.weight": "model-00002-of-00002.safetensors",
531
+ "model.vqmodel.encoder.mid.block_1.conv1.bias": "model-00002-of-00002.safetensors",
532
+ "model.vqmodel.encoder.mid.block_1.conv1.weight": "model-00002-of-00002.safetensors",
533
+ "model.vqmodel.encoder.mid.block_1.conv2.bias": "model-00002-of-00002.safetensors",
534
+ "model.vqmodel.encoder.mid.block_1.conv2.weight": "model-00002-of-00002.safetensors",
535
+ "model.vqmodel.encoder.mid.block_1.norm1.bias": "model-00002-of-00002.safetensors",
536
+ "model.vqmodel.encoder.mid.block_1.norm1.weight": "model-00002-of-00002.safetensors",
537
+ "model.vqmodel.encoder.mid.block_1.norm2.bias": "model-00002-of-00002.safetensors",
538
+ "model.vqmodel.encoder.mid.block_1.norm2.weight": "model-00002-of-00002.safetensors",
539
+ "model.vqmodel.encoder.mid.block_2.conv1.bias": "model-00002-of-00002.safetensors",
540
+ "model.vqmodel.encoder.mid.block_2.conv1.weight": "model-00002-of-00002.safetensors",
541
+ "model.vqmodel.encoder.mid.block_2.conv2.bias": "model-00002-of-00002.safetensors",
542
+ "model.vqmodel.encoder.mid.block_2.conv2.weight": "model-00002-of-00002.safetensors",
543
+ "model.vqmodel.encoder.mid.block_2.norm1.bias": "model-00002-of-00002.safetensors",
544
+ "model.vqmodel.encoder.mid.block_2.norm1.weight": "model-00002-of-00002.safetensors",
545
+ "model.vqmodel.encoder.mid.block_2.norm2.bias": "model-00002-of-00002.safetensors",
546
+ "model.vqmodel.encoder.mid.block_2.norm2.weight": "model-00002-of-00002.safetensors",
547
+ "model.vqmodel.encoder.norm_out.bias": "model-00002-of-00002.safetensors",
548
+ "model.vqmodel.encoder.norm_out.weight": "model-00002-of-00002.safetensors",
549
+ "model.vqmodel.post_quant_conv.bias": "model-00002-of-00002.safetensors",
550
+ "model.vqmodel.post_quant_conv.weight": "model-00002-of-00002.safetensors",
551
+ "model.vqmodel.quant_conv.bias": "model-00002-of-00002.safetensors",
552
+ "model.vqmodel.quant_conv.weight": "model-00002-of-00002.safetensors",
553
+ "model.vqmodel.quantize.embedding.weight": "model-00002-of-00002.safetensors"
554
+ }
555
+ }
original_tokenizers/checklist.chk ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ 170a932b687671a4e676f3bf69147295 text_tokenizer.json
2
+ 1a559fb5dab4d351d19496ae89da1db1 vqgan.ckpt
3
+ 25724c8110d6adabc9130a123b4b922e vqgan.yaml
original_tokenizers/text_tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
original_tokenizers/vqgan.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ede986bf6b171db3081ce171ad88e4ac970793cea14c180b3e5ac5105f4cb43
3
+ size 281270377
original_tokenizers/vqgan.yaml ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 4.5e-06
3
+ target: taming.models.vqgan.VQModel
4
+ params:
5
+ embed_dim: 256
6
+ n_embed: 8192
7
+ ddconfig:
8
+ double_z: false
9
+ z_channels: 256
10
+ resolution: 512
11
+ in_channels: 3
12
+ out_ch: 3
13
+ ch: 128
14
+ ch_mult:
15
+ - 1
16
+ - 1
17
+ - 2
18
+ - 2
19
+ - 4
20
+ num_res_blocks: 2
21
+ attn_resolutions: []
22
+ dropout: 0.0
23
+ lossconfig:
24
+ target: taming.modules.losses.vqperceptual_vit_vqgan.VQLPIPSWithDiscriminator
25
+ params:
26
+ disc_start: 100001
27
+ perceptual_weight: 1.0
28
+ adversarial_weight: 0.5
29
+ disc_params:
30
+ size: 512
31
+ ckpt_path: manifold://fair_onellm_checkpoints/tree/v2/tokenizer/vqgan_wm_0209.ckpt
32
+ data:
33
+ target: main.DataModuleFromConfig
34
+ params:
35
+ batch_size: 4
36
+ num_workers: 10
37
+ image_size: 512
38
+ filter_image_size: 512
39
+ dataset: coco
40
+ aesthetics_th: 0
41
+ clipsim_th: 0
42
+ --distributed-world-size: null
43
+ '32': null
44
+ --distributed-port: null
45
+ '17338': null
46
+ --save-dir: null
47
+ /checkpoint/shellysheynin/shutterstock/512x512_1024tokens_4node_shutterstock_laion_no_attn_styleGAN:
48
+ log_every-500:
49
+ ngpu32: null
50
+ --tensorboard-logdir: null
51
+ /checkpoint/shellysheynin/tensorboard_logs/2023-03-30/512x512_1024tokens_4node_shutterstock_laion_no_attn_styleGAN:
52
+ log_every-500:
53
+ ngpu32: null
54
+ '14561': null
55
+ /checkpoint/shellysheynin/tensorboard_logs/2023-04-02/512x512_1024tokens_4node_shutterstock_laion_no_attn_styleGAN:
56
+ log_every-500:
57
+ ngpu32: null
preprocessor_config.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_valid_processor_keys": [
3
+ "images",
4
+ "do_resize",
5
+ "size",
6
+ "resample",
7
+ "do_center_crop",
8
+ "crop_size",
9
+ "do_rescale",
10
+ "rescale_factor",
11
+ "do_normalize",
12
+ "image_mean",
13
+ "image_std",
14
+ "do_convert_rgb",
15
+ "return_tensors",
16
+ "data_format",
17
+ "input_data_format"
18
+ ],
19
+ "auto_map": {
20
+ "AutoImageProcessor": "image_processing_chameleon.ChameleonImageProcessor"
21
+ },
22
+ "crop_size": {
23
+ "height": 512,
24
+ "width": 512
25
+ },
26
+ "do_center_crop": true,
27
+ "do_convert_rgb": true,
28
+ "do_normalize": true,
29
+ "do_rescale": true,
30
+ "do_resize": true,
31
+ "image_mean": [
32
+ 1.0,
33
+ 1.0,
34
+ 1.0
35
+ ],
36
+ "image_processor_type": "ChameleonImageProcessor",
37
+ "image_std": [
38
+ 1.0,
39
+ 1.0,
40
+ 1.0
41
+ ],
42
+ "processor_class": "ChameleonProcessor",
43
+ "resample": 1,
44
+ "rescale_factor": 0.0078,
45
+ "size": {
46
+ "shortest_edge": 512
47
+ }
48
+ }
processor_config.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "image_seq_length": 1024,
3
+ "image_token": "<image>",
4
+ "processor_class": "ChameleonProcessor"
5
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "eos_token": "</s>",
4
+ "pad_token": "<pad>",
5
+ "sep_token": "<reserved08706>",
6
+ "unk_token": "<unk>"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff