metadata
library_name: peft
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- medmnist-v2
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: vit-base-patch16-224-in21k-bloodmnist-fold-8
results: []
vit-base-patch16-224-in21k-bloodmnist-fold-8
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the medmnist-v2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0810
- Accuracy: 0.9763
- Precision: 0.9753
- Recall: 0.9758
- F1: 0.9754
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| 0.478 | 1.0 | 196 | 0.2420 | 0.9140 | 0.9007 | 0.9087 | 0.8994 |
| 0.3796 | 2.0 | 392 | 0.2008 | 0.9271 | 0.9211 | 0.9354 | 0.9225 |
| 0.2443 | 3.0 | 588 | 0.1970 | 0.9359 | 0.9236 | 0.9235 | 0.9216 |
| 0.3441 | 4.0 | 784 | 0.2070 | 0.9359 | 0.9267 | 0.9406 | 0.9320 |
| 0.2523 | 5.0 | 980 | 0.1415 | 0.9517 | 0.9453 | 0.9502 | 0.9471 |
| 0.2062 | 6.0 | 1176 | 0.1345 | 0.9561 | 0.9510 | 0.9495 | 0.9492 |
| 0.2034 | 7.0 | 1372 | 0.1323 | 0.9535 | 0.9575 | 0.9420 | 0.9473 |
| 0.1798 | 8.0 | 1568 | 0.0902 | 0.9675 | 0.9629 | 0.9652 | 0.9639 |
| 0.1539 | 9.0 | 1764 | 0.0943 | 0.9684 | 0.9640 | 0.9705 | 0.9669 |
| 0.1262 | 10.0 | 1960 | 0.0810 | 0.9763 | 0.9753 | 0.9758 | 0.9754 |
Framework versions
- PEFT 0.15.2
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.2