selmamalak's picture
Training complete for fold 8. Best accuracy: 0.9763
f2bb93f verified
metadata
library_name: peft
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - medmnist-v2
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: vit-base-patch16-224-in21k-bloodmnist-fold-8
    results: []

vit-base-patch16-224-in21k-bloodmnist-fold-8

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the medmnist-v2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0810
  • Accuracy: 0.9763
  • Precision: 0.9753
  • Recall: 0.9758
  • F1: 0.9754

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.005
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.478 1.0 196 0.2420 0.9140 0.9007 0.9087 0.8994
0.3796 2.0 392 0.2008 0.9271 0.9211 0.9354 0.9225
0.2443 3.0 588 0.1970 0.9359 0.9236 0.9235 0.9216
0.3441 4.0 784 0.2070 0.9359 0.9267 0.9406 0.9320
0.2523 5.0 980 0.1415 0.9517 0.9453 0.9502 0.9471
0.2062 6.0 1176 0.1345 0.9561 0.9510 0.9495 0.9492
0.2034 7.0 1372 0.1323 0.9535 0.9575 0.9420 0.9473
0.1798 8.0 1568 0.0902 0.9675 0.9629 0.9652 0.9639
0.1539 9.0 1764 0.0943 0.9684 0.9640 0.9705 0.9669
0.1262 10.0 1960 0.0810 0.9763 0.9753 0.9758 0.9754

Framework versions

  • PEFT 0.15.2
  • Transformers 4.52.4
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.2