SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'superconductivity',
'We highlight the reproducibility and level of control over the electrical\nproperties of YBa$_2$Cu$_3$O$_7$ Josephson junctions fabricated with\nirradiation from a focused helium ion beam. Specifically, we show the results\nof electrical transport properties for several junctions fabricated using a\nlarge range of irradiation doses. At the lower end of this range, junctions\nexhibit superconductor-normal metal-superconductor (SNS) Josephson junction\nproperties. However, as dose increases there is a transition to electrical\ncharacteristics consistent with superconductor-insulator-superconductor (SIS)\njunctions. To investigate the uniformity of large numbers of helium ion\nJosephson junctions we fabricate arrays of both SNS and SIS Josephson junctions\ncontaining 20 connected in series. Electrical transport properties for these\narrays reveal very uniform junctions with no appreciable spread in critical\ncurrent or resistance.',
'Non-invasive magnetic field sensing using optically - detected magnetic\nresonance of nitrogen-vacancy (NV) centers in diamond was used to study spatial\ndistribution of the magnetic induction upon penetration and expulsion of weak\nmagnetic fields in several representative superconductors. Vector magnetic\nfields were measured on the surface of conventional, Pb and Nb, and\nunconventional, LuNi$_2$B$_2$C, Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$,\nBa(Fe$_{0.93}$Co$_{0.07}$)$_2$As$_2$, and CaKFe$_4$As$_4$, superconductors,\nwith diffraction - limited spatial resolution using variable - temperature\nconfocal system. Magnetic induction profiles across the crystal edges were\nmeasured in zero-field-cooled (ZFC) and field-cooled (FC) conditions. While all\nsuperconductors show nearly perfect screening of magnetic fields applied after\ncooling to temperatures well below the superconducting transition, $T_c$, a\nrange of very different behaviors was observed for Meissner expulsion upon\ncooling in static magnetic field from above $T_c$. Substantial conventional\nMeissner expulsion is found in LuNi$_2$B$_2$C, paramagnetic Meissner effect\n(PME) is found in Nb, and virtually no expulsion is observed in iron-based\nsuperconductors. In all cases, good correlation with macroscopic measurements\nof total magnetic moment is found. Our measurements of the spatial distribution\nof magnetic induction provide insight into microscopic physics of the Meissner\neffect.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.3505, 0.3544],
# [0.3505, 1.0000, 0.6777],
# [0.3544, 0.6777, 1.0000]])
Evaluation
Metrics
Information Retrieval
- Dataset:
superconductor-eval - Evaluated with
InformationRetrievalEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.7 |
| cosine_accuracy@3 | 0.8 |
| cosine_accuracy@5 | 0.9 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.7 |
| cosine_precision@3 | 0.3667 |
| cosine_precision@5 | 0.24 |
| cosine_precision@10 | 0.13 |
| cosine_recall@1 | 0.5 |
| cosine_recall@3 | 0.7 |
| cosine_recall@5 | 0.8 |
| cosine_recall@10 | 0.9 |
| cosine_ndcg@10 | 0.7651 |
| cosine_mrr@10 | 0.7861 |
| cosine_map@100 | 0.7098 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 4,091 training samples
- Columns:
sentence_0andsentence_1 - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 3 tokens
- mean: 7.98 tokens
- max: 41 tokens
- min: 8 tokens
- mean: 160.85 tokens
- max: 256 tokens
- Samples:
sentence_0 sentence_1 codimension two lump solutions in string field theory and taWe present some solutions for lumps in two dimensions in level-expanded
string field theory, as well as in two tachyonic theories: pure tachyonic
string field theory and pure $\phi^3$ theory. Much easier to handle, these
theories might be used to help understanding solitonic features of string field
theory. We compare lump solutions between these theories and we discuss some
convergence issues.superconductivity explainedWe review the current understanding of superconductivity in the
quasi-one-dimensional organic conductors of the Bechgaard and Fabre salt
families. We discuss the interplay between superconductivity,
antiferromagnetism, and charge-density-wave fluctuations. The connection to
recent experimental observations supporting unconventional pairing and the
possibility of a triplet-spin order parameter for the superconducting phase is
also presented.erez bergErez Berg- Theory of Strange Metals | Understanding "strange metal" phenomena - metallic behavior that deviates from that expected of an ordinary Fermi liquid down to the lowest measurable temperatures - is among the most puzzling open problems in condensed matter physics. Such phenomena are observed across many different strongly correlated materials. They seem tied to other interesting phenomena, such as quantum criticality and unconventional superconductivity. I will describe theoretical advances in understanding the possible or - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 4multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 4max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthproject: huggingfacetrackio_space_id: trackioddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: noneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Trueprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robinrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | superconductor-eval_cosine_ndcg@10 |
|---|---|---|
| 1.0 | 256 | 0.7651 |
Framework Versions
- Python: 3.9.6
- Sentence Transformers: 5.1.2
- Transformers: 4.57.1
- PyTorch: 2.8.0
- Accelerate: 1.10.1
- Datasets: 4.3.0
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 18
Model tree for shreyaspullehf/superconductor-search-v2
Base model
sentence-transformers/all-MiniLM-L6-v2Evaluation results
- Cosine Accuracy@1 on superconductor evalself-reported0.700
- Cosine Accuracy@3 on superconductor evalself-reported0.800
- Cosine Accuracy@5 on superconductor evalself-reported0.900
- Cosine Accuracy@10 on superconductor evalself-reported1.000
- Cosine Precision@1 on superconductor evalself-reported0.700
- Cosine Precision@3 on superconductor evalself-reported0.367
- Cosine Precision@5 on superconductor evalself-reported0.240
- Cosine Precision@10 on superconductor evalself-reported0.130
- Cosine Recall@1 on superconductor evalself-reported0.500
- Cosine Recall@3 on superconductor evalself-reported0.700