File size: 1,997 Bytes
8719aec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
library_name: transformers
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
model-index:
- name: NOT-SCALLING-finetuned-roBERTa-tweet-virality-predictor-classifcation-head-step
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/scg2178-columbia-university/COMS4705-roberta-tweet-virality-head-only-rid-10/runs/kcutomux)
# NOT-SCALLING-finetuned-roBERTa-tweet-virality-predictor-classifcation-head-step
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3192
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.3505 | 1.0 | 730 | 0.3343 |
| 0.3243 | 2.0 | 1460 | 0.3249 |
| 0.3223 | 3.0 | 2190 | 0.3207 |
| 0.3201 | 4.0 | 2920 | 0.3197 |
| 0.324 | 5.0 | 3650 | 0.3192 |
### Framework versions
- Transformers 4.57.1
- Pytorch 2.9.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
|