siddharthgowda's picture
siddharthgowda/NOT-SCALLING-finetuned-roBERTa-tweet-virality-predictor-classifcation-head-step
8719aec verified
metadata
library_name: transformers
license: mit
base_model: roberta-base
tags:
  - generated_from_trainer
model-index:
  - name: >-
      NOT-SCALLING-finetuned-roBERTa-tweet-virality-predictor-classifcation-head-step
    results: []

Visualize in Weights & Biases

NOT-SCALLING-finetuned-roBERTa-tweet-virality-predictor-classifcation-head-step

This model is a fine-tuned version of roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3192

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 128
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss
0.3505 1.0 730 0.3343
0.3243 2.0 1460 0.3249
0.3223 3.0 2190 0.3207
0.3201 4.0 2920 0.3197
0.324 5.0 3650 0.3192

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.9.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.1