--- library_name: transformers license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: NOT-SCALLING-finetuned-roBERTa-tweet-virality-predictor-classifcation-head-step results: [] --- [Visualize in Weights & Biases](https://wandb.ai/scg2178-columbia-university/COMS4705-roberta-tweet-virality-head-only-rid-10/runs/kcutomux) # NOT-SCALLING-finetuned-roBERTa-tweet-virality-predictor-classifcation-head-step This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3192 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.3505 | 1.0 | 730 | 0.3343 | | 0.3243 | 2.0 | 1460 | 0.3249 | | 0.3223 | 3.0 | 2190 | 0.3207 | | 0.3201 | 4.0 | 2920 | 0.3197 | | 0.324 | 5.0 | 3650 | 0.3192 | ### Framework versions - Transformers 4.57.1 - Pytorch 2.9.0+cu126 - Datasets 4.0.0 - Tokenizers 0.22.1