--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer model-index: - name: dgo-tts-training-data-a-speecht5 results: [] --- # dgo-tts-training-data-a-speecht5 This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4943 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 4000 - training_steps: 40000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:--------:|:-----:|:---------------:| | 0.6491 | 5.3763 | 1000 | 0.6131 | | 0.5683 | 10.7527 | 2000 | 0.5488 | | 0.543 | 16.1290 | 3000 | 0.5120 | | 0.5203 | 21.5054 | 4000 | 0.5201 | | 0.5149 | 26.8817 | 5000 | 0.5136 | | 0.4962 | 32.2581 | 6000 | 0.4971 | | 0.488 | 37.6344 | 7000 | 0.4969 | | 0.4742 | 43.0108 | 8000 | 0.4880 | | 0.4746 | 48.3871 | 9000 | 0.4941 | | 0.4634 | 53.7634 | 10000 | 0.4886 | | 0.4491 | 59.1398 | 11000 | 0.4912 | | 0.4416 | 64.5161 | 12000 | 0.4854 | | 0.4388 | 69.8925 | 13000 | 0.4894 | | 0.4263 | 75.2688 | 14000 | 0.4911 | | 0.425 | 80.6452 | 15000 | 0.4853 | | 0.4179 | 86.0215 | 16000 | 0.4862 | | 0.4205 | 91.3978 | 17000 | 0.4882 | | 0.4087 | 96.7742 | 18000 | 0.4869 | | 0.4079 | 102.1505 | 19000 | 0.4898 | | 0.4142 | 107.5269 | 20000 | 0.4892 | | 0.4132 | 112.9032 | 21000 | 0.4937 | | 0.4126 | 118.2796 | 22000 | 0.4908 | | 0.4091 | 123.6559 | 23000 | 0.4901 | | 0.4078 | 129.0323 | 24000 | 0.4886 | | 0.4167 | 134.4086 | 25000 | 0.4926 | | 0.4052 | 139.7849 | 26000 | 0.4906 | | 0.4057 | 145.1613 | 27000 | 0.4905 | | 0.408 | 150.5376 | 28000 | 0.4919 | | 0.4054 | 155.9140 | 29000 | 0.4896 | | 0.4096 | 161.2903 | 30000 | 0.4920 | | 0.4087 | 166.6667 | 31000 | 0.4922 | | 0.3987 | 172.0430 | 32000 | 0.4911 | | 0.4006 | 177.4194 | 33000 | 0.4934 | | 0.4017 | 182.7957 | 34000 | 0.4936 | | 0.4 | 188.1720 | 35000 | 0.4923 | | 0.401 | 193.5484 | 36000 | 0.4941 | | 0.3984 | 198.9247 | 37000 | 0.4946 | | 0.401 | 204.3011 | 38000 | 0.4923 | | 0.4012 | 209.6774 | 39000 | 0.4945 | | 0.396 | 215.0538 | 40000 | 0.4943 | ### Framework versions - Transformers 4.57.0 - Pytorch 2.8.0+cu128 - Datasets 4.1.1 - Tokenizers 0.22.1