--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer model-index: - name: iou-chapter-audio-dataset-force-aligned-speecht5 results: [] --- # iou-chapter-audio-dataset-force-aligned-speecht5 This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4800 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 3407 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 4000 - training_steps: 40000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:--------:|:-----:|:---------------:| | 0.5387 | 5.2918 | 1000 | 0.5152 | | 0.493 | 10.5836 | 2000 | 0.4955 | | 0.4935 | 15.8753 | 3000 | 0.4885 | | 0.4846 | 21.1645 | 4000 | 0.4863 | | 0.4717 | 26.4562 | 5000 | 0.4825 | | 0.4532 | 31.7480 | 6000 | 0.4804 | | 0.4841 | 37.0371 | 7000 | 0.4802 | | 0.458 | 42.3289 | 8000 | 0.4791 | | 0.4454 | 47.6207 | 9000 | 0.4822 | | 0.4461 | 52.9125 | 10000 | 0.4790 | | 0.4362 | 58.2016 | 11000 | 0.4789 | | 0.4301 | 63.4934 | 12000 | 0.4789 | | 0.43 | 68.7851 | 13000 | 0.4806 | | 0.4392 | 74.0743 | 14000 | 0.4796 | | 0.4355 | 79.3660 | 15000 | 0.4797 | | 0.4273 | 84.6578 | 16000 | 0.4778 | | 0.4324 | 89.9496 | 17000 | 0.4808 | | 0.4239 | 95.2387 | 18000 | 0.4792 | | 0.4174 | 100.5305 | 19000 | 0.4786 | | 0.4206 | 105.8223 | 20000 | 0.4777 | | 0.4104 | 111.1114 | 21000 | 0.4784 | | 0.4121 | 116.4032 | 22000 | 0.4797 | | 0.4087 | 121.6950 | 23000 | 0.4800 | | 0.4115 | 126.9867 | 24000 | 0.4788 | | 0.405 | 132.2759 | 25000 | 0.4799 | | 0.4091 | 137.5676 | 26000 | 0.4795 | | 0.4165 | 142.8594 | 27000 | 0.4799 | | 0.4059 | 148.1485 | 28000 | 0.4792 | | 0.4092 | 153.4403 | 29000 | 0.4797 | | 0.4006 | 158.7321 | 30000 | 0.4791 | | 0.4033 | 164.0212 | 31000 | 0.4789 | | 0.3929 | 169.3130 | 32000 | 0.4796 | | 0.4024 | 174.6048 | 33000 | 0.4803 | | 0.3988 | 179.8966 | 34000 | 0.4785 | | 0.3965 | 185.1857 | 35000 | 0.4792 | | 0.3914 | 190.4775 | 36000 | 0.4795 | | 0.3967 | 195.7692 | 37000 | 0.4811 | | 0.3994 | 201.0584 | 38000 | 0.4800 | | 0.4019 | 206.3501 | 39000 | 0.4805 | | 0.4005 | 211.6419 | 40000 | 0.4800 | ### Framework versions - Transformers 4.57.1 - Pytorch 2.8.0+cu128 - Datasets 4.2.0 - Tokenizers 0.22.1