singleheart commited on
Commit
770e75f
·
verified ·
1 Parent(s): a809ab8

Upload configuration_axk1.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. configuration_axk1.py +209 -0
configuration_axk1.py ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+ from transformers.utils import logging
3
+
4
+ logger = logging.get_logger(__name__)
5
+
6
+ AXK1_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
7
+ class AXK1Config(PretrainedConfig):
8
+ r"""
9
+ This is the configuration class to store the configuration of a [`AXK1Model`]. It is used to instantiate an A.X
10
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
11
+ defaults will yield a similar configuration to that of the A.X K1.
12
+
13
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
14
+ documentation from [`PretrainedConfig`] for more information.
15
+
16
+ Args:
17
+ vocab_size (`int`, *optional*, defaults to 129280):
18
+ Vocabulary size of the A.X K1 model. Defines the number of different tokens that can be represented by the
19
+ `inputs_ids` passed when calling [`AXK1Model`]
20
+ hidden_size (`int`, *optional*, defaults to 4096):
21
+ Dimension of the hidden representations.
22
+ intermediate_size (`int`, *optional*, defaults to 11008):
23
+ Dimension of the MLP representations.
24
+ moe_intermediate_size (`int`, *optional*, defaults to 1407):
25
+ Dimension of the MoE representations.
26
+ num_hidden_layers (`int`, *optional*, defaults to 32):
27
+ Number of hidden layers in the Transformer decoder.
28
+ num_nextn_predict_layers (`int`, *optional*, defaults to 1):
29
+ Number of nextn predict layers in the AXK1 Model.
30
+ num_attention_heads (`int`, *optional*, defaults to 32):
31
+ Number of attention heads for each attention layer in the Transformer decoder.
32
+ n_shared_experts (`int`, *optional*, defaults to None):
33
+ Number of shared experts, None means dense model.
34
+ n_routed_experts (`int`, *optional*, defaults to None):
35
+ Number of routed experts, None means dense model.
36
+ routed_scaling_factor (`float`, *optional*, defaults to 1.0):
37
+ Scaling factor or routed experts.
38
+ topk_method (`str`, *optional*, defaults to `gready`):
39
+ Topk method used in routed gate.
40
+ n_group (`int`, *optional*, defaults to None):
41
+ Number of groups for routed experts.
42
+ topk_group (`int`, *optional*, defaults to None):
43
+ Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
44
+ num_experts_per_tok (`int`, *optional*, defaults to None):
45
+ Number of selected experts, None means dense model.
46
+ moe_layer_freq (`int`, *optional*, defaults to 1):
47
+ The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
48
+ first_k_dense_replace (`int`, *optional*, defaults to 0):
49
+ Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
50
+ \--k dense layers--/
51
+ norm_topk_prob (`bool`, *optional*, defaults to False):
52
+ Whether to normalize the weights of the routed experts.
53
+ scoring_func (`str`, *optional*, defaults to 'softmax'):
54
+ Method of computing expert weights.
55
+ aux_loss_alpha (`float`, *optional*, defaults to 0.001):
56
+ Auxiliary loss weight coefficient.
57
+ seq_aux = (`bool`, *optional*, defaults to True):
58
+ Whether to compute the auxiliary loss for each individual sample.
59
+ num_key_value_heads (`int`, *optional*):
60
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
61
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
62
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
63
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
64
+ by meanpooling all the original heads within that group. For more details checkout [this
65
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
66
+ `num_attention_heads`.
67
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
68
+ The non-linear activation function (function or string) in the decoder.
69
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
70
+ The maximum sequence length that this model might ever be used with.
71
+ initializer_range (`float`, *optional*, defaults to 0.02):
72
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
73
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
74
+ The epsilon used by the rms normalization layers.
75
+ use_cache (`bool`, *optional*, defaults to `True`):
76
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
77
+ relevant if `config.is_decoder=True`.
78
+ pad_token_id (`int`, *optional*):
79
+ Padding token id.
80
+ bos_token_id (`int`, *optional*, defaults to 1):
81
+ Beginning of stream token id.
82
+ eos_token_id (`int`, *optional*, defaults to 2):
83
+ End of stream token id.
84
+ pretraining_tp (`int`, *optional*, defaults to 1):
85
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
86
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
87
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
88
+ issue](https://github.com/pytorch/pytorch/issues/76232).
89
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
90
+ Whether to tie weight embeddings
91
+ rope_theta (`float`, *optional*, defaults to 10000.0):
92
+ The base period of the RoPE embeddings.
93
+ rope_scaling (`Dict`, *optional*):
94
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
95
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
96
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
97
+ `max_position_embeddings` to the expected new maximum.
98
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
99
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
100
+ attention_dropout (`float`, *optional*, defaults to 0.0):
101
+ The dropout ratio for the attention probabilities.
102
+
103
+ ```python
104
+ >>> from transformers import AXK1Model, AXK1Config
105
+
106
+ >>> # Initializing a A.X K1 style configuration
107
+ >>> configuration = AXK1Config()
108
+
109
+ >>> # Accessing the model configuration
110
+ >>> configuration = model.config
111
+ ```"""
112
+
113
+ model_type = "AXK1"
114
+ keys_to_ignore_at_inference = ["past_key_values"]
115
+
116
+ def __init__(
117
+ self,
118
+ vocab_size=163840,
119
+ hidden_size=7168,
120
+ intermediate_size=18432,
121
+ moe_intermediate_size = 2048,
122
+ num_hidden_layers=61,
123
+ num_nextn_predict_layers=1,
124
+ num_attention_heads=64,
125
+ num_key_value_heads=64,
126
+ n_shared_experts = 1,
127
+ n_routed_experts = 192,
128
+ ep_size = 8,
129
+ routed_scaling_factor = 2.5,
130
+ kv_lora_rank = 512,
131
+ q_lora_rank = 1536,
132
+ qk_rope_head_dim = 64,
133
+ v_head_dim = 128,
134
+ qk_nope_head_dim = 128,
135
+ topk_method = 'noaux_tc',
136
+ n_group = 8,
137
+ topk_group = 4,
138
+ num_experts_per_tok = 8,
139
+ moe_layer_freq = 1,
140
+ first_k_dense_replace = 1,
141
+ norm_topk_prob = True,
142
+ scoring_func = 'sigmoid',
143
+ aux_loss_alpha = 0.001,
144
+ seq_aux = True,
145
+ hidden_act="silu",
146
+ max_position_embeddings=131072,
147
+ initializer_range=0.02,
148
+ rms_norm_eps=1e-6,
149
+ use_cache=True,
150
+ pad_token_id=None,
151
+ bos_token_id=0,
152
+ eos_token_id=1,
153
+ pretraining_tp=1,
154
+ tie_word_embeddings=False,
155
+ rope_theta=10000.0,
156
+ rope_scaling=None,
157
+ attention_bias=False,
158
+ attention_dropout=0.0,
159
+ **kwargs,
160
+ ):
161
+ self.vocab_size = vocab_size
162
+ self.max_position_embeddings = max_position_embeddings
163
+ self.hidden_size = hidden_size
164
+ self.intermediate_size = intermediate_size
165
+ self.moe_intermediate_size = moe_intermediate_size
166
+ self.num_hidden_layers = num_hidden_layers
167
+ self.num_nextn_predict_layers = num_nextn_predict_layers
168
+ self.num_attention_heads = num_attention_heads
169
+ self.n_shared_experts = n_shared_experts
170
+ self.n_routed_experts = n_routed_experts
171
+ self.ep_size = ep_size
172
+ self.routed_scaling_factor = routed_scaling_factor
173
+ self.kv_lora_rank = kv_lora_rank
174
+ self.q_lora_rank = q_lora_rank
175
+ self.qk_rope_head_dim = qk_rope_head_dim
176
+ self.v_head_dim = v_head_dim
177
+ self.qk_nope_head_dim = qk_nope_head_dim
178
+ self.topk_method = topk_method
179
+ self.n_group = n_group
180
+ self.topk_group = topk_group
181
+ self.num_experts_per_tok = num_experts_per_tok
182
+ self.moe_layer_freq = moe_layer_freq
183
+ self.first_k_dense_replace = first_k_dense_replace
184
+ self.norm_topk_prob = norm_topk_prob
185
+ self.scoring_func = scoring_func
186
+ self.aux_loss_alpha = aux_loss_alpha
187
+ self.seq_aux = seq_aux
188
+ # for backward compatibility
189
+ if num_key_value_heads is None:
190
+ num_key_value_heads = num_attention_heads
191
+
192
+ self.num_key_value_heads = num_key_value_heads
193
+ self.hidden_act = hidden_act
194
+ self.initializer_range = initializer_range
195
+ self.rms_norm_eps = rms_norm_eps
196
+ self.pretraining_tp = pretraining_tp
197
+ self.use_cache = use_cache
198
+ self.rope_theta = rope_theta
199
+ self.rope_scaling = rope_scaling
200
+ self.attention_bias = attention_bias
201
+ self.attention_dropout = attention_dropout
202
+
203
+ super().__init__(
204
+ pad_token_id=pad_token_id,
205
+ bos_token_id=bos_token_id,
206
+ eos_token_id=eos_token_id,
207
+ tie_word_embeddings=tie_word_embeddings,
208
+ **kwargs,
209
+ )