Upload utils.py
Browse files
utils.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from typing import Optional
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def load_model(checkpoint_path, model):
|
| 7 |
+
checkpoint = torch.load(checkpoint_path, map_location="cpu")
|
| 8 |
+
model.load_state_dict(checkpoint["model"])
|
| 9 |
+
model.eval()
|
| 10 |
+
return model
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def generate_text(
|
| 14 |
+
model,
|
| 15 |
+
data_processor,
|
| 16 |
+
prompt: str,
|
| 17 |
+
max_new_tokens: int,
|
| 18 |
+
temperature: float = 1.0,
|
| 19 |
+
top_k: Optional[int] = None,
|
| 20 |
+
device: str = "cpu",
|
| 21 |
+
):
|
| 22 |
+
model.eval()
|
| 23 |
+
tokens = data_processor.tokenize(prompt)
|
| 24 |
+
input_ids = torch.tensor(tokens, dtype=torch.long, device=device).unsqueeze(0)
|
| 25 |
+
|
| 26 |
+
with torch.no_grad():
|
| 27 |
+
for _ in range(max_new_tokens):
|
| 28 |
+
# crop input_ids if it exceeds the context size
|
| 29 |
+
if input_ids.size(1) > model.config.max_token_len:
|
| 30 |
+
input_ids = input_ids[:, -model.config.max_token_len :]
|
| 31 |
+
|
| 32 |
+
logits = model(input_ids)
|
| 33 |
+
logits = logits[:, -1, :] / temperature # get the logits for the last token
|
| 34 |
+
|
| 35 |
+
if top_k is not None:
|
| 36 |
+
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
| 37 |
+
logits[logits < v[:, [-1]]] = -float("inf")
|
| 38 |
+
|
| 39 |
+
probs = F.softmax(logits, dim=-1)
|
| 40 |
+
next_token = torch.multinomial(probs, num_samples=1)
|
| 41 |
+
input_ids = torch.cat((input_ids, next_token), dim=1)
|
| 42 |
+
|
| 43 |
+
output_tokens = input_ids[0].tolist()
|
| 44 |
+
generated_text = data_processor.detokenize(output_tokens)
|
| 45 |
+
return generated_text
|