Upload deepseek_tinystories/modeling_deepseek.py
Browse files
deepseek_tinystories/modeling_deepseek.py
ADDED
|
@@ -0,0 +1,691 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
from torch import nn
|
| 3 |
+
import torch
|
| 4 |
+
from typing import Optional
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
@dataclass
|
| 9 |
+
class DeepSeekModelConfig:
|
| 10 |
+
num_attention_heads: int = 8
|
| 11 |
+
input_dim: int = 1024
|
| 12 |
+
embed_dim: int = 1024
|
| 13 |
+
bias: bool = False
|
| 14 |
+
dropout: float = 0.1
|
| 15 |
+
|
| 16 |
+
kv_heads: int = 4 # number of key-value heads for grouped query attention
|
| 17 |
+
|
| 18 |
+
# configs needed for MLA
|
| 19 |
+
mla_kv_heads: int = (
|
| 20 |
+
4 # number of groups of attention heads that share the same K and V matrices
|
| 21 |
+
)
|
| 22 |
+
use_mla: bool = False
|
| 23 |
+
num_gpus: int = 1 # number of gpus
|
| 24 |
+
# n_local_heads
|
| 25 |
+
# this is maybe for cases where computation is distributed across gpus, will have to read more
|
| 26 |
+
|
| 27 |
+
q_latent_dim: int = 4 # dimension of latent used to build queries
|
| 28 |
+
kv_latent_dim: int = 4 # dimension of latent used to build keys and values
|
| 29 |
+
|
| 30 |
+
# in official implementation, there are configs for
|
| 31 |
+
# rope and no-rope attention head dimensions, I am keeping it same as head dim
|
| 32 |
+
# since we concatenate the no-rope and rope queries and keys, they add these dimnensions
|
| 33 |
+
# to be later used to scaling attention scores
|
| 34 |
+
|
| 35 |
+
max_batch_size: int = 8
|
| 36 |
+
max_token_len: int = 1024
|
| 37 |
+
|
| 38 |
+
num_shared_experts: int = 8
|
| 39 |
+
num_routed_experts: int = 16
|
| 40 |
+
moe_top_k: int = 2
|
| 41 |
+
expert_intermediate_dim: int = 8192
|
| 42 |
+
eta: float = 0.05
|
| 43 |
+
|
| 44 |
+
num_dense_ffn: int = 2
|
| 45 |
+
num_moe_ffn: int = 4
|
| 46 |
+
|
| 47 |
+
mtp_depth: int = 3
|
| 48 |
+
vocab_size: int = 50257
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class Expert(nn.Module):
|
| 52 |
+
|
| 53 |
+
def __init__(self, input_dim: int, intermediate_dim: int, dropout: float):
|
| 54 |
+
super().__init__()
|
| 55 |
+
self.w1 = nn.Linear(input_dim, intermediate_dim)
|
| 56 |
+
self.w11 = nn.Linear(input_dim, intermediate_dim)
|
| 57 |
+
self.w2 = nn.Linear(intermediate_dim, input_dim)
|
| 58 |
+
self.dropout = nn.Dropout(dropout)
|
| 59 |
+
|
| 60 |
+
def forward(self, x):
|
| 61 |
+
return self.dropout(self.w2(F.silu(self.w1(x)) * self.w11(x)))
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class MoE(nn.Module):
|
| 65 |
+
def __init__(self, config: DeepSeekModelConfig):
|
| 66 |
+
super().__init__()
|
| 67 |
+
self.num_shared_experts = config.num_shared_experts
|
| 68 |
+
self.num_routed_experts = config.num_routed_experts
|
| 69 |
+
self.num_local_experts = config.num_routed_experts // config.num_gpus
|
| 70 |
+
self.top_k = config.moe_top_k
|
| 71 |
+
|
| 72 |
+
self.expert_selector = nn.Linear(
|
| 73 |
+
config.input_dim, self.num_routed_experts, bias=False
|
| 74 |
+
)
|
| 75 |
+
self.routed_experts = nn.ModuleList(
|
| 76 |
+
[
|
| 77 |
+
Expert(config.input_dim, config.expert_intermediate_dim, config.dropout)
|
| 78 |
+
for _ in range(self.num_routed_experts)
|
| 79 |
+
]
|
| 80 |
+
)
|
| 81 |
+
self.shared_experts = Expert(
|
| 82 |
+
config.input_dim,
|
| 83 |
+
config.expert_intermediate_dim * self.num_shared_experts,
|
| 84 |
+
config.dropout,
|
| 85 |
+
)
|
| 86 |
+
self.eta = config.eta
|
| 87 |
+
self.register_buffer("expert_bias", torch.zeros(self.num_routed_experts))
|
| 88 |
+
|
| 89 |
+
def forward(self, x):
|
| 90 |
+
batch_size, num_tokens, input_dim = x.shape
|
| 91 |
+
gate_output, topk_indices = self.topk_routing(x, self.expert_bias)
|
| 92 |
+
x = x.view(
|
| 93 |
+
batch_size * num_tokens, input_dim
|
| 94 |
+
) # so now it is like a list of tokens
|
| 95 |
+
gate_output = gate_output.view(batch_size * num_tokens, -1)
|
| 96 |
+
|
| 97 |
+
topk_indices = topk_indices.view(batch_size * num_tokens, -1)
|
| 98 |
+
|
| 99 |
+
# --- cache routing info for interpretability ---
|
| 100 |
+
self.last_topk_indices = (
|
| 101 |
+
topk_indices.view(batch_size, num_tokens, -1).detach().cpu()
|
| 102 |
+
)
|
| 103 |
+
self.last_gate_output = (
|
| 104 |
+
gate_output.view(batch_size, num_tokens, -1).detach().cpu()
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
expert_counts = torch.bincount(
|
| 108 |
+
topk_indices.flatten(), minlength=self.num_routed_experts
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
with torch.no_grad():
|
| 112 |
+
avg = expert_counts.float().mean()
|
| 113 |
+
err = expert_counts.float() - avg
|
| 114 |
+
self.expert_bias += -self.eta * err.sign()
|
| 115 |
+
|
| 116 |
+
# Save for logging
|
| 117 |
+
if hasattr(self, "expert_usage"):
|
| 118 |
+
self.expert_usage.append(expert_counts.detach().cpu())
|
| 119 |
+
else:
|
| 120 |
+
self.expert_usage = [expert_counts.detach().cpu()]
|
| 121 |
+
|
| 122 |
+
y = torch.zeros_like(x)
|
| 123 |
+
# counts = torch.bincount(
|
| 124 |
+
# topk_indices.flatten(), minlength=self.num_routed_experts
|
| 125 |
+
# ).tolist()
|
| 126 |
+
counts = expert_counts.tolist()
|
| 127 |
+
for i in range(self.num_routed_experts):
|
| 128 |
+
if counts[i] == 0:
|
| 129 |
+
continue
|
| 130 |
+
expert = self.routed_experts[i]
|
| 131 |
+
|
| 132 |
+
idx, expert_rank = torch.where(topk_indices == i)
|
| 133 |
+
y[idx] += expert(x[idx]) * gate_output[idx, expert_rank, None]
|
| 134 |
+
|
| 135 |
+
z = self.shared_experts(x)
|
| 136 |
+
return (y + z).view(batch_size, num_tokens, input_dim)
|
| 137 |
+
|
| 138 |
+
def topk_routing(self, x, bias=None):
|
| 139 |
+
batch_size, num_tokens, input_dim = x.shape
|
| 140 |
+
|
| 141 |
+
expert_logits = self.expert_selector(x) # B, T, num_experts
|
| 142 |
+
if bias is not None:
|
| 143 |
+
expert_logits = expert_logits + bias
|
| 144 |
+
topk_logits, topk_indices = torch.topk(expert_logits, k=self.top_k, dim=-1)
|
| 145 |
+
zeros = torch.full_like(expert_logits, float("-inf"))
|
| 146 |
+
sparse_logits = zeros.scatter(dim=-1, index=topk_indices, src=topk_logits)
|
| 147 |
+
gate_output = sparse_logits.softmax(dim=-1)
|
| 148 |
+
return gate_output, topk_indices
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
class RoPE(nn.Module):
|
| 152 |
+
|
| 153 |
+
def __init__(self, dim: int, max_seq_len: int = 2048, base: float = 10000.0):
|
| 154 |
+
super().__init__()
|
| 155 |
+
self.dim = dim
|
| 156 |
+
self.max_seq_len = max_seq_len
|
| 157 |
+
self.base = base
|
| 158 |
+
|
| 159 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
|
| 160 |
+
self.register_buffer("inv_freq", inv_freq)
|
| 161 |
+
|
| 162 |
+
self._cached_cos = None
|
| 163 |
+
self._cached_sin = None
|
| 164 |
+
self._cached_seq_len = 0
|
| 165 |
+
|
| 166 |
+
def _compute_cos_sin(self, seq_len: int, device: torch.device):
|
| 167 |
+
if seq_len > self._cached_seq_len or self._cached_cos is None:
|
| 168 |
+
|
| 169 |
+
t = torch.arange(seq_len, device=device, dtype=self.inv_freq.dtype)
|
| 170 |
+
|
| 171 |
+
freqs = torch.outer(t, self.inv_freq)
|
| 172 |
+
|
| 173 |
+
cos_vals = torch.cos(freqs)
|
| 174 |
+
sin_vals = torch.sin(freqs)
|
| 175 |
+
|
| 176 |
+
self._cached_cos = cos_vals
|
| 177 |
+
self._cached_sin = sin_vals
|
| 178 |
+
self._cached_seq_len = seq_len
|
| 179 |
+
|
| 180 |
+
return self._cached_cos[:seq_len], self._cached_sin[:seq_len]
|
| 181 |
+
|
| 182 |
+
def apply_rope(self, x: torch.Tensor, position_ids: Optional[torch.Tensor] = None):
|
| 183 |
+
"""Apply RoPE to input tensor"""
|
| 184 |
+
batch_size, num_tokens, n_heads, head_dim = x.shape
|
| 185 |
+
|
| 186 |
+
cos, sin = self._compute_cos_sin(num_tokens, x.device)
|
| 187 |
+
|
| 188 |
+
if position_ids is not None:
|
| 189 |
+
cos = cos[position_ids]
|
| 190 |
+
sin = sin[position_ids]
|
| 191 |
+
|
| 192 |
+
cos = cos.unsqueeze(0).unsqueeze(2) # [1, seq_len, 1, head_dim//2]
|
| 193 |
+
sin = sin.unsqueeze(0).unsqueeze(2)
|
| 194 |
+
|
| 195 |
+
x1 = x[..., ::2] # Even indices
|
| 196 |
+
x2 = x[..., 1::2] # Odd indices
|
| 197 |
+
|
| 198 |
+
rotated_x1 = x1 * cos - x2 * sin
|
| 199 |
+
rotated_x2 = x1 * sin + x2 * cos
|
| 200 |
+
|
| 201 |
+
rotated_x = torch.stack([rotated_x1, rotated_x2], dim=-1).flatten(-2)
|
| 202 |
+
|
| 203 |
+
return rotated_x
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
class MultiHeadAttention(nn.Module):
|
| 207 |
+
def __init__(self, config: DeepSeekModelConfig):
|
| 208 |
+
super().__init__()
|
| 209 |
+
self.num_heads = config.num_attention_heads
|
| 210 |
+
self.input_dim = config.input_dim
|
| 211 |
+
self.embed_dim = config.embed_dim
|
| 212 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 213 |
+
|
| 214 |
+
self.Wq = nn.Linear(self.input_dim, self.embed_dim, bias=False)
|
| 215 |
+
self.Wk = nn.Linear(self.input_dim, self.embed_dim, bias=False)
|
| 216 |
+
self.Wv = nn.Linear(self.input_dim, self.embed_dim, bias=False)
|
| 217 |
+
self.out_proj = nn.Linear(self.embed_dim, self.input_dim, bias=config.bias)
|
| 218 |
+
|
| 219 |
+
def forward(self, x):
|
| 220 |
+
# x is B, T, input_dim
|
| 221 |
+
batch_size, num_tokens, input_dim = x.shape
|
| 222 |
+
Q = (
|
| 223 |
+
self.Wq(x)
|
| 224 |
+
.view(batch_size, num_tokens, self.num_heads, self.head_dim)
|
| 225 |
+
.transpose(1, 2)
|
| 226 |
+
) # becomes B, num_heads, T, head_dim
|
| 227 |
+
K = (
|
| 228 |
+
self.Wk(x)
|
| 229 |
+
.view(batch_size, num_tokens, self.num_heads, self.head_dim)
|
| 230 |
+
.transpose(1, 2)
|
| 231 |
+
) # becomes B, num_heads, T, head_dim
|
| 232 |
+
V = (
|
| 233 |
+
self.Wv(x)
|
| 234 |
+
.view(batch_size, num_tokens, self.num_heads, self.head_dim)
|
| 235 |
+
.transpose(1, 2)
|
| 236 |
+
) # becomes B, num_heads, T, head_dim
|
| 237 |
+
|
| 238 |
+
attention_scores = Q @ K.transpose(2, 3)
|
| 239 |
+
attention_scores = attention_scores / (self.head_dim**0.5)
|
| 240 |
+
|
| 241 |
+
causal_mask = torch.triu(torch.ones(num_tokens, num_tokens), diagonal=1)
|
| 242 |
+
|
| 243 |
+
attention_scores = attention_scores.masked_fill(
|
| 244 |
+
causal_mask.bool(), float("-inf")
|
| 245 |
+
)
|
| 246 |
+
attention_weights = torch.softmax(
|
| 247 |
+
attention_scores, dim=-1
|
| 248 |
+
) # B, num_heads, T, T
|
| 249 |
+
|
| 250 |
+
context = attention_weights @ V # B, num_heads, T, head_dim
|
| 251 |
+
context = attention_weights.transpose(1, 2) # B, T, num_heads, head_dim
|
| 252 |
+
context = attention_weights.view(batch_size, num_tokens, self.embed_dim)
|
| 253 |
+
out = self.out_proj(context) # B, T, input_dim
|
| 254 |
+
return out
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
class MultiQueryAttention(nn.Module):
|
| 258 |
+
def __init__(self, config: DeepSeekModelConfig):
|
| 259 |
+
super().__init__()
|
| 260 |
+
self.num_heads = config.num_attention_heads
|
| 261 |
+
self.input_dim = config.input_dim
|
| 262 |
+
self.embed_dim = config.embed_dim
|
| 263 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 264 |
+
|
| 265 |
+
self.Wq = nn.Linear(self.input_dim, self.embed_dim, bias=False)
|
| 266 |
+
self.Wk = nn.Linear(self.input_dim, self.head_dim, bias=False)
|
| 267 |
+
self.Wv = nn.Linear(self.input_dim, self.head_dim, bias=False)
|
| 268 |
+
self.out_proj = nn.Linear(self.embed_dim, self.input_dim, bias=config.bias)
|
| 269 |
+
|
| 270 |
+
def forward(self, x):
|
| 271 |
+
# x is B, T, input_dim
|
| 272 |
+
batch_size, num_tokens, input_dim = x.shape
|
| 273 |
+
Q = (
|
| 274 |
+
self.Wq(x)
|
| 275 |
+
.view(batch_size, num_tokens, self.num_heads, self.head_dim)
|
| 276 |
+
.transpose(1, 2)
|
| 277 |
+
) # becomes B, num_heads, T, head_dim
|
| 278 |
+
K = self.Wk(x) # B, T, head_dim
|
| 279 |
+
V = self.Wv(x) # B, T, head_dim
|
| 280 |
+
|
| 281 |
+
# create copies for all heads
|
| 282 |
+
K = K.expand(-1, self.num_heads, -1, -1)
|
| 283 |
+
V = V.expand(-1, self.num_heads, -1, -1)
|
| 284 |
+
|
| 285 |
+
attention_scores = Q @ K.transpose(2, 3)
|
| 286 |
+
attention_scores = attention_scores / (self.head_dim**0.5)
|
| 287 |
+
|
| 288 |
+
causal_mask = torch.triu(torch.ones(num_tokens, num_tokens), diagonal=1)
|
| 289 |
+
|
| 290 |
+
attention_scores = attention_scores.masked_fill(
|
| 291 |
+
causal_mask.bool(), float("-inf")
|
| 292 |
+
)
|
| 293 |
+
attention_weights = torch.softmax(
|
| 294 |
+
attention_scores, dim=-1
|
| 295 |
+
) # B, num_heads, T, T
|
| 296 |
+
|
| 297 |
+
context = attention_weights @ V # B, num_heads, T, head_dim
|
| 298 |
+
context = attention_weights.transpose(1, 2) # B, T, num_heads, head_dim
|
| 299 |
+
context = attention_weights.view(batch_size, num_tokens, self.embed_dim)
|
| 300 |
+
out = self.out_proj(context) # B, T, input_dim
|
| 301 |
+
return out
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
class GroupedQueryAttention(nn.Module):
|
| 305 |
+
def __init__(self, config):
|
| 306 |
+
super().__init__()
|
| 307 |
+
self.num_heads = config.num_attention_heads
|
| 308 |
+
self.input_dim = config.input_dim
|
| 309 |
+
self.embed_dim = config.embed_dim
|
| 310 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 311 |
+
self.kv_heads = config.kv_heads
|
| 312 |
+
|
| 313 |
+
self.Wq = nn.Linear(self.input_dim, self.embed_dim, bias=False)
|
| 314 |
+
self.Wk = nn.Linear(self.input_dim, self.head_dim * config.kv_heads, bias=False)
|
| 315 |
+
self.Wv = nn.Linear(self.input_dim, self.head_dim * config.kv_heads, bias=False)
|
| 316 |
+
self.out_proj = nn.Linear(self.embed_dim, self.input_dim, bias=config.bias)
|
| 317 |
+
|
| 318 |
+
def forward(self, x):
|
| 319 |
+
batch_size, num_tokens, input_dim = x.shape
|
| 320 |
+
Q = (
|
| 321 |
+
self.Wq(x)
|
| 322 |
+
.view(batch_size, num_tokens, self.num_heads, self.head_dim)
|
| 323 |
+
.transpose(1, 2)
|
| 324 |
+
) # becomes B, num_heads, T, head_dim
|
| 325 |
+
|
| 326 |
+
K = self.Wk(x) # B, T, head_dim*kv_heads
|
| 327 |
+
V = self.Wv(x) # B, T, head_dim*kv_heads
|
| 328 |
+
|
| 329 |
+
K = K.view(batch_size, num_tokens, self.kv_heads, self.head_dim)
|
| 330 |
+
V = V.view(batch_size, num_tokens, self.kv_heads, self.head_dim)
|
| 331 |
+
|
| 332 |
+
# now i need this
|
| 333 |
+
# if kv_heads is 3 and num_heads is 6
|
| 334 |
+
# I want k = [k1, k1, k2, k2, k3, k3] and same for v
|
| 335 |
+
K = K.repeat_interleave(
|
| 336 |
+
self.num_heads // self.kv_heads, dim=2
|
| 337 |
+
) # B, T, num_heads, head_dim
|
| 338 |
+
V = V.repeat_interleave(
|
| 339 |
+
self.num_heads // self.kv_heads, dim=2
|
| 340 |
+
) # B, T, num_heads, head_dim
|
| 341 |
+
|
| 342 |
+
attention_scores = Q @ K.transpose(2, 3)
|
| 343 |
+
attention_scores = attention_scores / (self.head_dim**0.5)
|
| 344 |
+
|
| 345 |
+
causal_mask = torch.triu(torch.ones(num_tokens, num_tokens), diagonal=1)
|
| 346 |
+
|
| 347 |
+
attention_scores = attention_scores.masked_fill(
|
| 348 |
+
causal_mask.bool(), float("-inf")
|
| 349 |
+
)
|
| 350 |
+
attention_weights = torch.softmax(
|
| 351 |
+
attention_scores, dim=-1
|
| 352 |
+
) # B, num_heads, T, T
|
| 353 |
+
|
| 354 |
+
context = attention_weights @ V # B, num_heads, T, head_dim
|
| 355 |
+
context = attention_weights.transpose(1, 2) # B, T, num_heads, head_dim
|
| 356 |
+
context = attention_weights.view(batch_size, num_tokens, self.embed_dim)
|
| 357 |
+
out = self.out_proj(context) # B, T, input_dim
|
| 358 |
+
return out
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
# I have copied RMSNorm directly from Deepseek-V3 repo
|
| 362 |
+
class RMSNorm(nn.Module):
|
| 363 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
| 364 |
+
super().__init__()
|
| 365 |
+
self.dim = dim
|
| 366 |
+
self.eps = eps
|
| 367 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
| 368 |
+
|
| 369 |
+
def forward(self, x: torch.Tensor):
|
| 370 |
+
return F.rms_norm(x, (self.dim,), self.weight, self.eps)
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
# TODO:
|
| 374 |
+
# 1. Try out grouped query attention styled MLA, where each kv head has its own latent cache
|
| 375 |
+
# 2.Try out sliding window attention, I read about this in gemma paper
|
| 376 |
+
class MultiHeadLatentAttention(nn.Module):
|
| 377 |
+
|
| 378 |
+
def __init__(self, config: DeepSeekModelConfig):
|
| 379 |
+
super().__init__()
|
| 380 |
+
self.num_heads = config.num_attention_heads
|
| 381 |
+
self.input_dim = config.input_dim
|
| 382 |
+
self.embed_dim = config.embed_dim
|
| 383 |
+
self.n_local_heads = config.num_attention_heads // config.num_gpus
|
| 384 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 385 |
+
self.mla_kv_heads = config.mla_kv_heads
|
| 386 |
+
self.kv_latent_dim = config.kv_latent_dim
|
| 387 |
+
self.q_latent_dim = config.q_latent_dim
|
| 388 |
+
self.dropout = nn.Dropout(config.dropout)
|
| 389 |
+
|
| 390 |
+
self.rope = RoPE(dim=self.head_dim)
|
| 391 |
+
self.out_proj = nn.Linear(
|
| 392 |
+
self.num_heads * self.head_dim, self.input_dim, bias=False
|
| 393 |
+
)
|
| 394 |
+
|
| 395 |
+
if self.q_latent_dim == 0:
|
| 396 |
+
self.Wq = nn.Linear(
|
| 397 |
+
self.input_dim, self.num_heads * self.head_dim, bias=False
|
| 398 |
+
)
|
| 399 |
+
else:
|
| 400 |
+
# -------------------(decoupled from RoPE)-----------------------------
|
| 401 |
+
# Query path - This feels to me like LoRa on Q
|
| 402 |
+
# because instead of Wq (input_dim, input_dim) we now have
|
| 403 |
+
# Wdq(input_dim, q_latent_dim) and Wuq(q_latent_dim, input_dim)
|
| 404 |
+
self.Wdq = nn.Linear(self.input_dim, self.q_latent_dim, bias=False)
|
| 405 |
+
self.q_norm = RMSNorm(self.q_latent_dim)
|
| 406 |
+
self.Wuq = nn.Linear(
|
| 407 |
+
self.q_latent_dim, self.num_heads * self.head_dim, bias=False
|
| 408 |
+
)
|
| 409 |
+
|
| 410 |
+
# this will build KV latent and also construct K and V from it
|
| 411 |
+
self.Wdkv = nn.Linear(self.input_dim, self.kv_latent_dim, bias=False)
|
| 412 |
+
self.kv_norm = RMSNorm(self.kv_latent_dim)
|
| 413 |
+
self.Wuk = nn.Linear(
|
| 414 |
+
self.kv_latent_dim, self.head_dim, bias=False
|
| 415 |
+
) # here I am not using num_heads because we will use kv heads (grouped query attention)
|
| 416 |
+
self.Wuv = nn.Linear(
|
| 417 |
+
self.kv_latent_dim, self.mla_kv_heads * self.head_dim, bias=False
|
| 418 |
+
)
|
| 419 |
+
|
| 420 |
+
# cache the kv latent and the roped keys
|
| 421 |
+
self.register_buffer(
|
| 422 |
+
"kv_latent_cache",
|
| 423 |
+
torch.zeros(
|
| 424 |
+
config.max_batch_size, config.max_token_len, self.kv_latent_dim
|
| 425 |
+
),
|
| 426 |
+
persistent=False, # I won't store on disk
|
| 427 |
+
)
|
| 428 |
+
self.register_buffer(
|
| 429 |
+
"keys_roped",
|
| 430 |
+
torch.zeros(
|
| 431 |
+
config.max_batch_size,
|
| 432 |
+
config.max_token_len,
|
| 433 |
+
self.mla_kv_heads,
|
| 434 |
+
# I could have not used these heads, then we have same keys for each head,4
|
| 435 |
+
# here it is same for a group of attention heads which come under one kv head
|
| 436 |
+
self.head_dim,
|
| 437 |
+
),
|
| 438 |
+
persistent=False,
|
| 439 |
+
)
|
| 440 |
+
# --------------------------------------------------------------------
|
| 441 |
+
|
| 442 |
+
# -------------RoPE path----------------------------------------------
|
| 443 |
+
self.Wkr = nn.Linear(
|
| 444 |
+
self.input_dim, self.mla_kv_heads * self.head_dim, bias=False
|
| 445 |
+
)
|
| 446 |
+
self.Wqr = nn.Linear(self.q_latent_dim, self.embed_dim, bias=False)
|
| 447 |
+
|
| 448 |
+
def forward(self, x, start_pos=0):
|
| 449 |
+
batch_size, num_tokens, input_dim = x.shape
|
| 450 |
+
end_pos = start_pos + num_tokens
|
| 451 |
+
S = end_pos # total cached sequence length
|
| 452 |
+
|
| 453 |
+
# ----- Queries -----
|
| 454 |
+
if self.q_latent_dim == 0:
|
| 455 |
+
Q = (
|
| 456 |
+
self.Wq(x)
|
| 457 |
+
.view(batch_size, num_tokens, self.num_heads, self.head_dim)
|
| 458 |
+
.transpose(1, 2)
|
| 459 |
+
) # [B, num_heads, T, head_dim]
|
| 460 |
+
else:
|
| 461 |
+
query_latent = self.Wdq(x)
|
| 462 |
+
query_latent = self.q_norm(query_latent)
|
| 463 |
+
Q = (
|
| 464 |
+
self.Wuq(query_latent)
|
| 465 |
+
.view(batch_size, num_tokens, self.num_heads, self.head_dim)
|
| 466 |
+
.transpose(1, 2) # [B, num_heads, T, head_dim]
|
| 467 |
+
)
|
| 468 |
+
# ----- RoPE path -----
|
| 469 |
+
if self.q_latent_dim == 0:
|
| 470 |
+
Qr = self.rope.apply_rope(
|
| 471 |
+
Q.view(batch_size, num_tokens, self.num_heads, self.head_dim)
|
| 472 |
+
).transpose(1, 2)
|
| 473 |
+
else:
|
| 474 |
+
Qr = self.rope.apply_rope(
|
| 475 |
+
self.Wqr(query_latent).view(
|
| 476 |
+
batch_size, num_tokens, self.num_heads, self.head_dim
|
| 477 |
+
)
|
| 478 |
+
).transpose(1, 2)
|
| 479 |
+
# ---------------------
|
| 480 |
+
|
| 481 |
+
# ----- KV latent -----
|
| 482 |
+
kv_latent = self.Wdkv(x) # [B, T, kv_latent_dim]
|
| 483 |
+
# update cache
|
| 484 |
+
self.kv_latent_cache[:batch_size, start_pos:end_pos] = self.kv_norm(
|
| 485 |
+
kv_latent
|
| 486 |
+
).detach()
|
| 487 |
+
|
| 488 |
+
kv_latent_all = self.kv_latent_cache[
|
| 489 |
+
:batch_size, :end_pos
|
| 490 |
+
] # [B, T, kv_latent_dim]
|
| 491 |
+
|
| 492 |
+
# [B, num_heads, T, head_dim] x [head_dim, kv_latent_dim]
|
| 493 |
+
Q_absorbed = Q @ self.Wuk.weight # B, num_heads, T, kv_latent_dim
|
| 494 |
+
|
| 495 |
+
V = self.Wuv(kv_latent_all).view(
|
| 496 |
+
batch_size, S, self.mla_kv_heads, self.head_dim
|
| 497 |
+
) # [B, S, mla_kv_heads, head_dim]
|
| 498 |
+
# expand V to match n_heads
|
| 499 |
+
V = V.repeat_interleave(
|
| 500 |
+
self.num_heads // self.mla_kv_heads, dim=2
|
| 501 |
+
) # [B, T, num_heads, head_dim]
|
| 502 |
+
|
| 503 |
+
V = V.transpose(1, 2) # [B, H, S, D]
|
| 504 |
+
|
| 505 |
+
# ----- RoPE path -----
|
| 506 |
+
K_pos_encoding = self.rope.apply_rope(
|
| 507 |
+
self.Wkr(x)
|
| 508 |
+
.view(batch_size, num_tokens, self.mla_kv_heads, self.head_dim)
|
| 509 |
+
.transpose(1, 2)
|
| 510 |
+
).transpose(
|
| 511 |
+
1, 2
|
| 512 |
+
) # B, T, mla_kv_heads head_dim
|
| 513 |
+
self.keys_roped[:batch_size, start_pos:end_pos] = K_pos_encoding.detach()
|
| 514 |
+
keys_roped_all = self.keys_roped[:batch_size, :end_pos]
|
| 515 |
+
Kr = (
|
| 516 |
+
keys_roped_all.repeat_interleave(self.num_heads // self.mla_kv_heads, dim=2)
|
| 517 |
+
.view(batch_size, S, self.num_heads, self.head_dim)
|
| 518 |
+
.transpose(1, 2) # [B, S, T, head_dim]
|
| 519 |
+
)
|
| 520 |
+
|
| 521 |
+
# ----- Attention scores -----
|
| 522 |
+
# doing unsqueeze to account for heads, since kv cache is only one, not per head
|
| 523 |
+
attention_scores_1 = Q_absorbed @ kv_latent_all.unsqueeze(1).transpose(2, 3)
|
| 524 |
+
|
| 525 |
+
attention_scores_2 = Qr @ Kr.transpose(-2, -1) # [B, num_heads, T, T]
|
| 526 |
+
attention_scores = (attention_scores_1 + attention_scores_2) / (
|
| 527 |
+
2 * self.head_dim
|
| 528 |
+
) ** 0.5
|
| 529 |
+
|
| 530 |
+
# causal mask
|
| 531 |
+
causal_mask = torch.triu(
|
| 532 |
+
torch.ones(end_pos, end_pos, device=x.device), diagonal=1
|
| 533 |
+
)
|
| 534 |
+
attention_scores = attention_scores.masked_fill(
|
| 535 |
+
causal_mask.bool()[:, -num_tokens:], float("-inf")
|
| 536 |
+
)
|
| 537 |
+
|
| 538 |
+
attention_weights = torch.softmax(attention_scores, dim=-1)
|
| 539 |
+
self.last_attention = attention_weights.detach()
|
| 540 |
+
attention_weights = self.dropout(attention_weights)
|
| 541 |
+
|
| 542 |
+
# ----- Context -----
|
| 543 |
+
context = attention_weights @ V # [B, H, T, D]
|
| 544 |
+
context = (
|
| 545 |
+
context.transpose(1, 2)
|
| 546 |
+
.contiguous()
|
| 547 |
+
.view(batch_size, num_tokens, self.embed_dim)
|
| 548 |
+
)
|
| 549 |
+
out = self.out_proj(context)
|
| 550 |
+
return out
|
| 551 |
+
|
| 552 |
+
|
| 553 |
+
# Note: I might not use this in training, will do normal single token prediction only
|
| 554 |
+
class BasicMultiTokenPrediction(nn.Module):
|
| 555 |
+
|
| 556 |
+
def __init__(self, config: DeepSeekModelConfig):
|
| 557 |
+
super().__init__()
|
| 558 |
+
|
| 559 |
+
# If k is mtp_depth, and current token position is i
|
| 560 |
+
# this module predicts next k tokens, so from
|
| 561 |
+
# (i+1) to (i+k)
|
| 562 |
+
self.k = config.mtp_depth
|
| 563 |
+
self.vocab_size = config.vocab_size
|
| 564 |
+
self.rms_norm = RMSNorm(config.input_dim)
|
| 565 |
+
self.embed = nn.Embedding(self.vocab_size, config.input_dim)
|
| 566 |
+
self.unembed = nn.Linear(config.input_dim, self.vocab_size, bias=False)
|
| 567 |
+
self.unembed.weight = self.embed.weight
|
| 568 |
+
|
| 569 |
+
self.projections = nn.ModuleList(
|
| 570 |
+
[nn.Linear(2 * config.input_dim, config.input_dim) for _ in range(self.k)]
|
| 571 |
+
)
|
| 572 |
+
|
| 573 |
+
self.transformers = nn.ModuleList(
|
| 574 |
+
[
|
| 575 |
+
nn.TransformerEncoderLayer(config.input_dim, config.num_attention_heads)
|
| 576 |
+
for _ in range(self.k)
|
| 577 |
+
]
|
| 578 |
+
)
|
| 579 |
+
|
| 580 |
+
def forward(self, x):
|
| 581 |
+
# x is the final hidden states for all tokens that we get after all transformer blocks,
|
| 582 |
+
# so it is just before the final un-ebedding layer
|
| 583 |
+
batch_size, num_tokens, input_size = x.shape
|
| 584 |
+
# if num_tokens is 6
|
| 585 |
+
# i = 0, 1, 2, 3, 4, 5
|
| 586 |
+
# k=3
|
| 587 |
+
# i can predict till 2+3 = 5
|
| 588 |
+
# so i have to iterate i from 0 to 2 only
|
| 589 |
+
# 2 = 6(num_tokens)-3(k)-1
|
| 590 |
+
# so I have to go till x[:,num_tokens-k, :]
|
| 591 |
+
|
| 592 |
+
logits = []
|
| 593 |
+
|
| 594 |
+
for ith_token_pos in range(0, num_tokens - self.k):
|
| 595 |
+
hidden_state_ith_token = x[:, ith_token_pos, :]
|
| 596 |
+
|
| 597 |
+
logits_k = []
|
| 598 |
+
for k in range(self.k):
|
| 599 |
+
|
| 600 |
+
future_position = ith_token_pos + k + 1
|
| 601 |
+
token_embedding = x[
|
| 602 |
+
:, future_position, :
|
| 603 |
+
] # considering x as the final hidden state after all blocks
|
| 604 |
+
|
| 605 |
+
_h = self.rms_norm(hidden_state_ith_token)
|
| 606 |
+
_e = self.rms_norm(token_embedding)
|
| 607 |
+
merged = torch.cat([_h, _e], dim=1)
|
| 608 |
+
|
| 609 |
+
proj = self.projections[k](merged).unsqueeze(0)
|
| 610 |
+
out = self.transformers[k](proj)
|
| 611 |
+
hidden_state_current = out.squeeze(0)
|
| 612 |
+
_logits = self.unembed(hidden_state_current)
|
| 613 |
+
logits_k.append(_logits)
|
| 614 |
+
|
| 615 |
+
hidden_state_ith_token = hidden_state_current
|
| 616 |
+
|
| 617 |
+
logits_k = torch.stack(logits_k, dim=1)
|
| 618 |
+
logits.append(logits_k)
|
| 619 |
+
|
| 620 |
+
logits = torch.stack(logits, dim=0)
|
| 621 |
+
logits = logits.permute(1, 0, 2, 3).contiguous()
|
| 622 |
+
return logits
|
| 623 |
+
|
| 624 |
+
|
| 625 |
+
class TransformerBlock(nn.Module):
|
| 626 |
+
|
| 627 |
+
def __init__(self, config: DeepSeekModelConfig, moe: bool = True):
|
| 628 |
+
super().__init__()
|
| 629 |
+
self.rms_norm_1 = RMSNorm(config.input_dim)
|
| 630 |
+
self.mhla = MultiHeadLatentAttention(config)
|
| 631 |
+
self.rms_norm_2 = RMSNorm(config.input_dim)
|
| 632 |
+
|
| 633 |
+
if moe:
|
| 634 |
+
self.ffn = MoE(config)
|
| 635 |
+
else:
|
| 636 |
+
self.ffn = Expert(
|
| 637 |
+
config.input_dim, config.expert_intermediate_dim, config.dropout
|
| 638 |
+
)
|
| 639 |
+
|
| 640 |
+
def forward(self, x):
|
| 641 |
+
x = x + self.mhla(self.rms_norm_1(x))
|
| 642 |
+
x = x + self.ffn(self.rms_norm_2(x))
|
| 643 |
+
return x
|
| 644 |
+
|
| 645 |
+
|
| 646 |
+
class DeepseekInspiredModel(nn.Module):
|
| 647 |
+
def __init__(self, config: DeepSeekModelConfig):
|
| 648 |
+
super().__init__()
|
| 649 |
+
self.config = config
|
| 650 |
+
self.token_embedding = nn.Embedding(config.vocab_size, config.input_dim)
|
| 651 |
+
self.position_embedding = nn.Embedding(config.max_token_len, config.input_dim)
|
| 652 |
+
|
| 653 |
+
_blocks = [
|
| 654 |
+
TransformerBlock(config, moe=False) for _ in range(config.num_dense_ffn)
|
| 655 |
+
]
|
| 656 |
+
_blocks.extend(
|
| 657 |
+
[TransformerBlock(config, moe=True) for _ in range(config.num_moe_ffn)]
|
| 658 |
+
)
|
| 659 |
+
self.transformer_blocks = nn.ModuleList(_blocks)
|
| 660 |
+
|
| 661 |
+
self.ln_f = RMSNorm(config.input_dim)
|
| 662 |
+
self.head = nn.Linear(config.input_dim, config.vocab_size, bias=False)
|
| 663 |
+
self.head.weight = self.token_embedding.weight
|
| 664 |
+
|
| 665 |
+
def forward(self, x):
|
| 666 |
+
batch_size, num_tokens = x.shape
|
| 667 |
+
|
| 668 |
+
token_embeddings = self.token_embedding(x)
|
| 669 |
+
position_ids = torch.arange(0, num_tokens, device=x.device).unsqueeze(0)
|
| 670 |
+
position_embeddings = self.position_embedding(position_ids)
|
| 671 |
+
h = token_embeddings + position_embeddings
|
| 672 |
+
|
| 673 |
+
for block in self.transformer_blocks:
|
| 674 |
+
h = block(h)
|
| 675 |
+
h = self.ln_f(h)
|
| 676 |
+
logits = self.head(h)
|
| 677 |
+
return logits
|
| 678 |
+
|
| 679 |
+
|
| 680 |
+
if __name__ == "__main__":
|
| 681 |
+
config = DeepSeekModelConfig()
|
| 682 |
+
x = torch.rand(1, 10)
|
| 683 |
+
|
| 684 |
+
dim = DeepseekInspiredModel(config)
|
| 685 |
+
|
| 686 |
+
print(
|
| 687 |
+
f"Number of parameters (in millions): {sum(p.numel() for p in dim.parameters()) / 1_000_000}"
|
| 688 |
+
)
|
| 689 |
+
print(
|
| 690 |
+
f"Number of parameters (in GB): {sum(p.numel() for p in dim.parameters())*4/1024**3:.2f} GB"
|
| 691 |
+
)
|