Upload RavenForCausalLM
Browse files- config.json +65 -0
- generation_config.json +7 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +96 -0
- raven_config_minimal.py +99 -0
- raven_modeling_minimal.py +1572 -0
config.json
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"activation_checkpoint_impl": "per-iteration",
|
| 3 |
+
"architecture_class_name": "RecurrentGPT",
|
| 4 |
+
"architectures": [
|
| 5 |
+
"RavenForCausalLM"
|
| 6 |
+
],
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "raven_config_minimal.RavenConfig",
|
| 9 |
+
"AutoModelForCausalLM": "raven_modeling_minimal.RavenForCausalLM"
|
| 10 |
+
},
|
| 11 |
+
"bias": false,
|
| 12 |
+
"block_class_name": "SandwichBlock",
|
| 13 |
+
"block_size": 1024,
|
| 14 |
+
"bos_token_id": 65504,
|
| 15 |
+
"effective_expected_depth": 56,
|
| 16 |
+
"eos_token_id": 65505,
|
| 17 |
+
"head_dim": 64,
|
| 18 |
+
"init_orthogonal": false,
|
| 19 |
+
"init_strategy": "takase",
|
| 20 |
+
"init_values": {
|
| 21 |
+
"embed_scale": 1.0,
|
| 22 |
+
"embedding": 0.008703882797784892,
|
| 23 |
+
"out_proj": 0.0005356869554443541,
|
| 24 |
+
"std": 0.008703882797784892
|
| 25 |
+
},
|
| 26 |
+
"injection_type": "linear",
|
| 27 |
+
"intermediate_size": 8192,
|
| 28 |
+
"max_position_embeddings": 131072,
|
| 29 |
+
"mean_backprop_depth": 8,
|
| 30 |
+
"mean_recurrence": 8,
|
| 31 |
+
"mlp_class_name": "GatedMLP",
|
| 32 |
+
"model_type": "huginn_raven",
|
| 33 |
+
"n_embd": 2048,
|
| 34 |
+
"n_heads": 32,
|
| 35 |
+
"n_layers": 14,
|
| 36 |
+
"n_layers_in_coda": 4,
|
| 37 |
+
"n_layers_in_prelude": 4,
|
| 38 |
+
"n_layers_in_recurrent_block": 6,
|
| 39 |
+
"nonlin_name": "SiLU",
|
| 40 |
+
"norm_class_name": "RMSNorm_llama",
|
| 41 |
+
"norm_eps": 1e-05,
|
| 42 |
+
"num_key_value_heads": 8,
|
| 43 |
+
"pad_token_id": 65509,
|
| 44 |
+
"padded_vocab_size": 128256,
|
| 45 |
+
"padding_multiple": 4096,
|
| 46 |
+
"qk_bias": false,
|
| 47 |
+
"rope_base": 500000.0,
|
| 48 |
+
"rope_scaling": {
|
| 49 |
+
"factor": 32.0,
|
| 50 |
+
"high_freq_factor": 4.0,
|
| 51 |
+
"low_freq_factor": 1.0,
|
| 52 |
+
"original_max_position_embeddings": 8192,
|
| 53 |
+
"rope_type": "llama3"
|
| 54 |
+
},
|
| 55 |
+
"rope_theta": 500000.0,
|
| 56 |
+
"sampling_scheme": "poisson-lognormal-filling",
|
| 57 |
+
"state_init": "like-init",
|
| 58 |
+
"test_time_noise": 0,
|
| 59 |
+
"test_time_noise_type": "fixed",
|
| 60 |
+
"tie_embeddings": false,
|
| 61 |
+
"tie_word_embeddings": false,
|
| 62 |
+
"torch_dtype": "float32",
|
| 63 |
+
"transformers_version": "4.53.1",
|
| 64 |
+
"vocab_size": 128256
|
| 65 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 65504,
|
| 4 |
+
"eos_token_id": 65505,
|
| 5 |
+
"pad_token_id": 65509,
|
| 6 |
+
"transformers_version": "4.53.1"
|
| 7 |
+
}
|
model-00001-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:86e5f63b6525276ec1086a9911688514cedf352e083f37ab5404ab906fe909f4
|
| 3 |
+
size 4490249800
|
model-00002-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d3af08a58f6006152d03f9d61b282cf651ac601e4c84eae73afd7994a9829ed3
|
| 3 |
+
size 1050673280
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_parameters": 1385228288,
|
| 4 |
+
"total_size": 5540913152
|
| 5 |
+
},
|
| 6 |
+
"weight_map": {
|
| 7 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
| 8 |
+
"transformer.adapter.weight": "model-00001-of-00002.safetensors",
|
| 9 |
+
"transformer.coda.0.attn.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 10 |
+
"transformer.coda.0.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 11 |
+
"transformer.coda.0.mlp.fc.weight": "model-00001-of-00002.safetensors",
|
| 12 |
+
"transformer.coda.0.mlp.proj.weight": "model-00001-of-00002.safetensors",
|
| 13 |
+
"transformer.coda.0.norm_1.weight": "model-00001-of-00002.safetensors",
|
| 14 |
+
"transformer.coda.0.norm_2.weight": "model-00001-of-00002.safetensors",
|
| 15 |
+
"transformer.coda.1.attn.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 16 |
+
"transformer.coda.1.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 17 |
+
"transformer.coda.1.mlp.fc.weight": "model-00001-of-00002.safetensors",
|
| 18 |
+
"transformer.coda.1.mlp.proj.weight": "model-00001-of-00002.safetensors",
|
| 19 |
+
"transformer.coda.1.norm_1.weight": "model-00001-of-00002.safetensors",
|
| 20 |
+
"transformer.coda.1.norm_2.weight": "model-00001-of-00002.safetensors",
|
| 21 |
+
"transformer.coda.2.attn.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 22 |
+
"transformer.coda.2.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 23 |
+
"transformer.coda.2.mlp.fc.weight": "model-00001-of-00002.safetensors",
|
| 24 |
+
"transformer.coda.2.mlp.proj.weight": "model-00001-of-00002.safetensors",
|
| 25 |
+
"transformer.coda.2.norm_1.weight": "model-00001-of-00002.safetensors",
|
| 26 |
+
"transformer.coda.2.norm_2.weight": "model-00001-of-00002.safetensors",
|
| 27 |
+
"transformer.coda.3.attn.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 28 |
+
"transformer.coda.3.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 29 |
+
"transformer.coda.3.mlp.fc.weight": "model-00001-of-00002.safetensors",
|
| 30 |
+
"transformer.coda.3.mlp.proj.weight": "model-00001-of-00002.safetensors",
|
| 31 |
+
"transformer.coda.3.norm_1.weight": "model-00001-of-00002.safetensors",
|
| 32 |
+
"transformer.coda.3.norm_2.weight": "model-00001-of-00002.safetensors",
|
| 33 |
+
"transformer.core_block.0.attn.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 34 |
+
"transformer.core_block.0.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 35 |
+
"transformer.core_block.0.mlp.fc.weight": "model-00001-of-00002.safetensors",
|
| 36 |
+
"transformer.core_block.0.mlp.proj.weight": "model-00001-of-00002.safetensors",
|
| 37 |
+
"transformer.core_block.0.norm_1.weight": "model-00001-of-00002.safetensors",
|
| 38 |
+
"transformer.core_block.0.norm_2.weight": "model-00001-of-00002.safetensors",
|
| 39 |
+
"transformer.core_block.1.attn.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 40 |
+
"transformer.core_block.1.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 41 |
+
"transformer.core_block.1.mlp.fc.weight": "model-00001-of-00002.safetensors",
|
| 42 |
+
"transformer.core_block.1.mlp.proj.weight": "model-00001-of-00002.safetensors",
|
| 43 |
+
"transformer.core_block.1.norm_1.weight": "model-00001-of-00002.safetensors",
|
| 44 |
+
"transformer.core_block.1.norm_2.weight": "model-00001-of-00002.safetensors",
|
| 45 |
+
"transformer.core_block.2.attn.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 46 |
+
"transformer.core_block.2.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 47 |
+
"transformer.core_block.2.mlp.fc.weight": "model-00001-of-00002.safetensors",
|
| 48 |
+
"transformer.core_block.2.mlp.proj.weight": "model-00001-of-00002.safetensors",
|
| 49 |
+
"transformer.core_block.2.norm_1.weight": "model-00001-of-00002.safetensors",
|
| 50 |
+
"transformer.core_block.2.norm_2.weight": "model-00001-of-00002.safetensors",
|
| 51 |
+
"transformer.core_block.3.attn.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 52 |
+
"transformer.core_block.3.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 53 |
+
"transformer.core_block.3.mlp.fc.weight": "model-00001-of-00002.safetensors",
|
| 54 |
+
"transformer.core_block.3.mlp.proj.weight": "model-00001-of-00002.safetensors",
|
| 55 |
+
"transformer.core_block.3.norm_1.weight": "model-00001-of-00002.safetensors",
|
| 56 |
+
"transformer.core_block.3.norm_2.weight": "model-00001-of-00002.safetensors",
|
| 57 |
+
"transformer.core_block.4.attn.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 58 |
+
"transformer.core_block.4.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 59 |
+
"transformer.core_block.4.mlp.fc.weight": "model-00001-of-00002.safetensors",
|
| 60 |
+
"transformer.core_block.4.mlp.proj.weight": "model-00001-of-00002.safetensors",
|
| 61 |
+
"transformer.core_block.4.norm_1.weight": "model-00001-of-00002.safetensors",
|
| 62 |
+
"transformer.core_block.4.norm_2.weight": "model-00001-of-00002.safetensors",
|
| 63 |
+
"transformer.core_block.5.attn.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 64 |
+
"transformer.core_block.5.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 65 |
+
"transformer.core_block.5.mlp.fc.weight": "model-00001-of-00002.safetensors",
|
| 66 |
+
"transformer.core_block.5.mlp.proj.weight": "model-00001-of-00002.safetensors",
|
| 67 |
+
"transformer.core_block.5.norm_1.weight": "model-00001-of-00002.safetensors",
|
| 68 |
+
"transformer.core_block.5.norm_2.weight": "model-00001-of-00002.safetensors",
|
| 69 |
+
"transformer.ln_f.weight": "model-00001-of-00002.safetensors",
|
| 70 |
+
"transformer.prelude.0.attn.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 71 |
+
"transformer.prelude.0.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 72 |
+
"transformer.prelude.0.mlp.fc.weight": "model-00001-of-00002.safetensors",
|
| 73 |
+
"transformer.prelude.0.mlp.proj.weight": "model-00001-of-00002.safetensors",
|
| 74 |
+
"transformer.prelude.0.norm_1.weight": "model-00001-of-00002.safetensors",
|
| 75 |
+
"transformer.prelude.0.norm_2.weight": "model-00001-of-00002.safetensors",
|
| 76 |
+
"transformer.prelude.1.attn.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 77 |
+
"transformer.prelude.1.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 78 |
+
"transformer.prelude.1.mlp.fc.weight": "model-00001-of-00002.safetensors",
|
| 79 |
+
"transformer.prelude.1.mlp.proj.weight": "model-00001-of-00002.safetensors",
|
| 80 |
+
"transformer.prelude.1.norm_1.weight": "model-00001-of-00002.safetensors",
|
| 81 |
+
"transformer.prelude.1.norm_2.weight": "model-00001-of-00002.safetensors",
|
| 82 |
+
"transformer.prelude.2.attn.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 83 |
+
"transformer.prelude.2.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 84 |
+
"transformer.prelude.2.mlp.fc.weight": "model-00001-of-00002.safetensors",
|
| 85 |
+
"transformer.prelude.2.mlp.proj.weight": "model-00001-of-00002.safetensors",
|
| 86 |
+
"transformer.prelude.2.norm_1.weight": "model-00001-of-00002.safetensors",
|
| 87 |
+
"transformer.prelude.2.norm_2.weight": "model-00001-of-00002.safetensors",
|
| 88 |
+
"transformer.prelude.3.attn.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 89 |
+
"transformer.prelude.3.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 90 |
+
"transformer.prelude.3.mlp.fc.weight": "model-00001-of-00002.safetensors",
|
| 91 |
+
"transformer.prelude.3.mlp.proj.weight": "model-00001-of-00002.safetensors",
|
| 92 |
+
"transformer.prelude.3.norm_1.weight": "model-00001-of-00002.safetensors",
|
| 93 |
+
"transformer.prelude.3.norm_2.weight": "model-00001-of-00002.safetensors",
|
| 94 |
+
"transformer.wte.weight": "model-00001-of-00002.safetensors"
|
| 95 |
+
}
|
| 96 |
+
}
|
raven_config_minimal.py
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""A HuggingFace-style model configuration."""
|
| 2 |
+
|
| 3 |
+
from transformers import PretrainedConfig
|
| 4 |
+
from math import sqrt
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class RavenConfig(PretrainedConfig):
|
| 8 |
+
model_type = "huginn_raven"
|
| 9 |
+
keys_to_ignore_at_inference = [""]
|
| 10 |
+
attribute_map = {"num_attention_heads": "n_heads", "hidden_size": "n_embd", "num_hidden_layers": "n_layers"}
|
| 11 |
+
|
| 12 |
+
def __init__(
|
| 13 |
+
self,
|
| 14 |
+
n_embd: int = 5280,
|
| 15 |
+
n_heads: int = 55,
|
| 16 |
+
n_layers: int = 8, # total of prelude + recurrent + coda
|
| 17 |
+
block_size: int = 4096,
|
| 18 |
+
vocab_size: int = 65536,
|
| 19 |
+
padding_multiple: int = 4096,
|
| 20 |
+
tie_embeddings: bool = True,
|
| 21 |
+
intermediate_size: int = 17920,
|
| 22 |
+
bias: bool = False,
|
| 23 |
+
architecture_class_name: str = "RecurrentGPT",
|
| 24 |
+
block_class_name: str = "SandwichBlock",
|
| 25 |
+
norm_class_name: str = "RMSNorm_llama",
|
| 26 |
+
norm_eps: float = 0.000001,
|
| 27 |
+
mlp_class_name: str = "GatedMLP",
|
| 28 |
+
nonlin_name: str = "SiLU",
|
| 29 |
+
init_strategy: str = "takase",
|
| 30 |
+
init_orthogonal: bool = False,
|
| 31 |
+
state_init: str = "like-init",
|
| 32 |
+
injection_type: str = "linear",
|
| 33 |
+
n_layers_in_recurrent_block: int = 4,
|
| 34 |
+
mean_recurrence: int = 32,
|
| 35 |
+
sampling_scheme: str = "poisson-lognormal-filling",
|
| 36 |
+
mean_backprop_depth: int = 8,
|
| 37 |
+
n_layers_in_prelude: int = 2,
|
| 38 |
+
n_layers_in_coda: int = 2,
|
| 39 |
+
qk_bias: bool = True,
|
| 40 |
+
activation_checkpoint_impl: str = "per-iteration",
|
| 41 |
+
rope_base: float = 50_000,
|
| 42 |
+
torch_dtype: str = "bfloat16",
|
| 43 |
+
transformers_version: str = "4.47.1",
|
| 44 |
+
**kwargs,
|
| 45 |
+
):
|
| 46 |
+
self.n_embd = n_embd
|
| 47 |
+
self.n_heads = n_heads
|
| 48 |
+
self.n_layers = n_layers
|
| 49 |
+
self.block_size = block_size
|
| 50 |
+
self.vocab_size = self.padded_vocab_size = vocab_size
|
| 51 |
+
self.padding_multiple = padding_multiple
|
| 52 |
+
self.tie_embeddings = tie_embeddings
|
| 53 |
+
self.intermediate_size = intermediate_size
|
| 54 |
+
self.bias = bias
|
| 55 |
+
self.architecture_class_name = architecture_class_name
|
| 56 |
+
self.block_class_name = block_class_name
|
| 57 |
+
self.norm_class_name = norm_class_name
|
| 58 |
+
self.norm_eps = norm_eps
|
| 59 |
+
self.mlp_class_name = mlp_class_name
|
| 60 |
+
self.nonlin_name = nonlin_name
|
| 61 |
+
self.init_strategy = init_strategy
|
| 62 |
+
self.init_orthogonal = init_orthogonal
|
| 63 |
+
self.state_init = state_init
|
| 64 |
+
self.injection_type = injection_type
|
| 65 |
+
self.n_layers_in_recurrent_block = n_layers_in_recurrent_block
|
| 66 |
+
self.mean_recurrence = mean_recurrence
|
| 67 |
+
self.sampling_scheme = sampling_scheme
|
| 68 |
+
self.mean_backprop_depth = mean_backprop_depth
|
| 69 |
+
self.n_layers_in_prelude = n_layers_in_prelude
|
| 70 |
+
self.n_layers_in_coda = n_layers_in_coda
|
| 71 |
+
self.qk_bias = qk_bias
|
| 72 |
+
self.activation_checkpoint_impl = activation_checkpoint_impl
|
| 73 |
+
self.rope_base = rope_base
|
| 74 |
+
self.torch_dtype = torch_dtype # Added from JSON
|
| 75 |
+
self.transformers_version = transformers_version # Added from JSON
|
| 76 |
+
# inference
|
| 77 |
+
self.test_time_noise = 0
|
| 78 |
+
self.test_time_noise_type = "fixed"
|
| 79 |
+
# Derived
|
| 80 |
+
self.num_key_value_heads = n_heads
|
| 81 |
+
self.num_attention_heads = n_heads
|
| 82 |
+
self.head_dim = n_embd // n_heads
|
| 83 |
+
self.effective_expected_depth = (
|
| 84 |
+
self.n_layers_in_prelude + self.n_layers_in_coda + self.n_layers_in_recurrent_block * self.mean_recurrence
|
| 85 |
+
)
|
| 86 |
+
self.init_values = {
|
| 87 |
+
"std": sqrt(2 / (5 * self.n_embd)),
|
| 88 |
+
"out_proj": sqrt(2 / (5 * self.n_embd)) / sqrt(2 * self.effective_expected_depth),
|
| 89 |
+
"embedding": sqrt(2 / (5 * self.n_embd)),
|
| 90 |
+
"embed_scale": sqrt(self.n_embd),
|
| 91 |
+
}
|
| 92 |
+
|
| 93 |
+
super().__init__(
|
| 94 |
+
# pad_token_id=65509,
|
| 95 |
+
# bos_token_id=65504,
|
| 96 |
+
# eos_token_id=65505,
|
| 97 |
+
tie_word_embeddings=tie_embeddings,
|
| 98 |
+
**kwargs,
|
| 99 |
+
)
|
raven_modeling_minimal.py
ADDED
|
@@ -0,0 +1,1572 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Modeling file for HF compatibility and zero-shot experiments."""
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import math
|
| 5 |
+
|
| 6 |
+
from torch import Tensor
|
| 7 |
+
from torch.nn.attention.flex_attention import create_block_mask, BlockMask, flex_attention
|
| 8 |
+
from torch.nn.attention import bias as attn_bias
|
| 9 |
+
from dataclasses import dataclass
|
| 10 |
+
from typing import Union, Optional, Any
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
from .raven_config_minimal import RavenConfig
|
| 14 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
| 15 |
+
|
| 16 |
+
###################### Huggingface Glue code I ##################################################################
|
| 17 |
+
from transformers import PreTrainedModel, GenerationMixin
|
| 18 |
+
from transformers.utils import ModelOutput
|
| 19 |
+
from transformers.generation.utils import GenerateDecoderOnlyOutput
|
| 20 |
+
|
| 21 |
+
import torch.nn.functional as F
|
| 22 |
+
from transformers import GenerationConfig
|
| 23 |
+
from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding, apply_rotary_pos_emb
|
| 24 |
+
|
| 25 |
+
# torch.backends.cuda.enable_math_sdp(False)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class RavenPreTrainedModel(PreTrainedModel):
|
| 29 |
+
config_class = RavenConfig
|
| 30 |
+
base_model_prefix = "model"
|
| 31 |
+
supports_gradient_checkpointing = True
|
| 32 |
+
_no_split_modules = ["SandwichBlock"]
|
| 33 |
+
_skip_keys_device_placement = ["past_key_values"]
|
| 34 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 35 |
+
_supports_flash_attn_2 = True
|
| 36 |
+
_supports_sdpa = True
|
| 37 |
+
_supports_cache_class = True
|
| 38 |
+
_supports_quantized_cache = False
|
| 39 |
+
_supports_static_cache = True
|
| 40 |
+
_tp_plan = {}
|
| 41 |
+
|
| 42 |
+
def _init_weights(self, module):
|
| 43 |
+
if not torch.rand((1,)).is_meta:
|
| 44 |
+
print("Random Initialization not implemented.")
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
@dataclass
|
| 48 |
+
class CausalLMOutputRecurrentLatents(ModelOutput):
|
| 49 |
+
loss: Optional[torch.Tensor] = None
|
| 50 |
+
log_ppl: Optional[torch.Tensor] = None
|
| 51 |
+
logits: Optional[torch.Tensor] = None
|
| 52 |
+
past_key_values: Optional[Cache] = None
|
| 53 |
+
latent_states: Optional[torch.Tensor] = None
|
| 54 |
+
hidden_states: Optional[torch.Tensor] = None
|
| 55 |
+
attention_maps: Optional[dict[int, torch.Tensor]] = None
|
| 56 |
+
stats: Optional[dict] = None
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
###################### Minimal implementation from here ############################################################
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class RMSNorm(torch.nn.Module):
|
| 63 |
+
"""Saner dtype handling and slightly better for fusion"""
|
| 64 |
+
|
| 65 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
| 66 |
+
super().__init__()
|
| 67 |
+
self.eps = eps
|
| 68 |
+
self.weight = torch.nn.Parameter(torch.ones(dim))
|
| 69 |
+
|
| 70 |
+
def _norm(self, x):
|
| 71 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
| 72 |
+
|
| 73 |
+
def forward(self, x):
|
| 74 |
+
with torch.autocast(enabled=False, device_type=x.device.type if x.device.type != "meta" else "cuda"):
|
| 75 |
+
return self._norm(x.float()).type_as(x) * self.weight
|
| 76 |
+
|
| 77 |
+
def reset_parameters(self) -> None:
|
| 78 |
+
torch.nn.init.ones_(self.weight)
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
class HuginnDynamicCache(DynamicCache):
|
| 82 |
+
def __init__(self, lookup_strategy: str = "full") -> None:
|
| 83 |
+
super().__init__()
|
| 84 |
+
self._seen_tokens = 0
|
| 85 |
+
self.key_cache: dict[int, dict[int, torch.Tensor]] = {}
|
| 86 |
+
self.value_cache: dict[int, dict[int, torch.Tensor]] = {}
|
| 87 |
+
# structure: cache[index_of_layer_or_recurrent_step][index_in_sequence]
|
| 88 |
+
# the cache is held uncoalesced because certain recurrent steps may be missing for some sequence ids if using
|
| 89 |
+
# per-token adaptive compute. In those cases, the "lookup_strategy" determines how to proceed
|
| 90 |
+
# Also, It is critical that the head indices do not overlap with the recurrent iteration indices
|
| 91 |
+
self.lookup_strategy = lookup_strategy
|
| 92 |
+
|
| 93 |
+
def update(
|
| 94 |
+
self,
|
| 95 |
+
key_states: torch.Tensor,
|
| 96 |
+
value_states: torch.Tensor,
|
| 97 |
+
step_idx_tensor: torch.Tensor,
|
| 98 |
+
lookup_strategy: Optional[str] = None,
|
| 99 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 100 |
+
step_idx: int = int(step_idx_tensor) # todo: fix dicts with tensor step_idx, currently the memberships fail
|
| 101 |
+
lookup_strategy = self.lookup_strategy if lookup_strategy is None else lookup_strategy
|
| 102 |
+
if "compress-" in self.lookup_strategy and step_idx > 1: # hardcode for current model!
|
| 103 |
+
if "compress-s" in self.lookup_strategy:
|
| 104 |
+
compression_stage = int(self.lookup_strategy.split("compress-")[1][1:])
|
| 105 |
+
new_step_idx = (step_idx - 2) % compression_stage + 2
|
| 106 |
+
elif "compress-anchor" in self.lookup_strategy:
|
| 107 |
+
if step_idx - 2 < 4 * 8: # anchor onto first 8 recurrence steps # noqa: SIM108
|
| 108 |
+
new_step_idx = step_idx
|
| 109 |
+
else: # then re-use the next 4 KV states = one recurrence for all future recurrence
|
| 110 |
+
new_step_idx = 34 + (step_idx - 34) % 4
|
| 111 |
+
# print(step_idx, new_step_idx)
|
| 112 |
+
else: # compress-r
|
| 113 |
+
compression_stage = int(self.lookup_strategy.split("compress-")[1][1:])
|
| 114 |
+
new_step_idx = (step_idx - 2) // compression_stage + 2
|
| 115 |
+
step_idx = new_step_idx
|
| 116 |
+
# Init
|
| 117 |
+
if step_idx not in self.key_cache:
|
| 118 |
+
self.key_cache[step_idx] = {}
|
| 119 |
+
self.value_cache[step_idx] = {}
|
| 120 |
+
# Update the number of seen tokens, we assume that step_idx=0 (first prelude) is always hit
|
| 121 |
+
if step_idx == 0:
|
| 122 |
+
self._seen_tokens += key_states.shape[-2]
|
| 123 |
+
# Add entries to cache
|
| 124 |
+
for idx, entry in enumerate(key_states.unbind(dim=-2)):
|
| 125 |
+
if "compress-" not in self.lookup_strategy:
|
| 126 |
+
assert step_idx < 0 or self._seen_tokens - key_states.shape[-2] + idx not in self.key_cache[step_idx]
|
| 127 |
+
self.key_cache[step_idx][self._seen_tokens - key_states.shape[-2] + idx] = entry
|
| 128 |
+
for idx, entry in enumerate(value_states.unbind(dim=-2)):
|
| 129 |
+
self.value_cache[step_idx][self._seen_tokens - value_states.shape[-2] + idx] = entry
|
| 130 |
+
|
| 131 |
+
# Materialize past state based on lookup strategy:
|
| 132 |
+
if len(self.key_cache[step_idx]) == self._seen_tokens or self.lookup_strategy == "full":
|
| 133 |
+
# All entries are present, materialize cache as normal
|
| 134 |
+
return (
|
| 135 |
+
torch.stack(list(self.key_cache[step_idx].values()), dim=-2),
|
| 136 |
+
torch.stack(list(self.value_cache[step_idx].values()), dim=-2),
|
| 137 |
+
)
|
| 138 |
+
else: # some entries were not previously computed
|
| 139 |
+
if lookup_strategy.startswith("latest-m4"):
|
| 140 |
+
latest_keys = []
|
| 141 |
+
latest_values = []
|
| 142 |
+
for token_pos in range(self._seen_tokens):
|
| 143 |
+
# For steps >= 2, use modulo 4, this hard-codes the huginn block structure for now
|
| 144 |
+
if step_idx >= 2:
|
| 145 |
+
# Find valid steps for this token position
|
| 146 |
+
valid_steps = [s for s in range(step_idx + 1) if token_pos in self.key_cache[s]]
|
| 147 |
+
max_step = max([s for s in valid_steps if s >= 2 and s % 4 == step_idx % 4])
|
| 148 |
+
else:
|
| 149 |
+
max_step = step_idx if token_pos in self.key_cache[step_idx] else 0
|
| 150 |
+
latest_keys.append(self.key_cache[max_step][token_pos])
|
| 151 |
+
latest_values.append(self.value_cache[max_step][token_pos])
|
| 152 |
+
return torch.stack(latest_keys, dim=-2), torch.stack(latest_values, dim=-2)
|
| 153 |
+
elif lookup_strategy.startswith("available-m4"):
|
| 154 |
+
latest_keys = []
|
| 155 |
+
latest_values = []
|
| 156 |
+
for token_pos in range(self._seen_tokens):
|
| 157 |
+
if token_pos in self.key_cache[step_idx]:
|
| 158 |
+
step = step_idx
|
| 159 |
+
else:
|
| 160 |
+
# Find valid steps for this token position
|
| 161 |
+
valid_steps = [s for s in range(step_idx + 1) if token_pos in self.key_cache[s]]
|
| 162 |
+
step = max([s for s in valid_steps if s >= 2 and s % 4 == step_idx % 4])
|
| 163 |
+
latest_keys.append(self.key_cache[step][token_pos])
|
| 164 |
+
latest_values.append(self.value_cache[step][token_pos])
|
| 165 |
+
return torch.stack(latest_keys, dim=-2), torch.stack(latest_values, dim=-2)
|
| 166 |
+
elif lookup_strategy.startswith("always-last-m4"):
|
| 167 |
+
latest_keys = []
|
| 168 |
+
latest_values = []
|
| 169 |
+
for token_pos in range(self._seen_tokens):
|
| 170 |
+
# For steps >= 2, use modulo 4, this hard-codes the huginn block structure for now
|
| 171 |
+
if step_idx >= 2:
|
| 172 |
+
# Find valid steps for this token position
|
| 173 |
+
valid_steps = [key_step for key_step in self.key_cache if token_pos in self.key_cache[key_step]]
|
| 174 |
+
max_step = max([s for s in valid_steps if s >= 2 and s % 4 == step_idx % 4])
|
| 175 |
+
else:
|
| 176 |
+
max_step = step_idx if token_pos in self.key_cache[step_idx] else 0
|
| 177 |
+
latest_keys.append(self.key_cache[max_step][token_pos])
|
| 178 |
+
latest_values.append(self.value_cache[max_step][token_pos])
|
| 179 |
+
return torch.stack(latest_keys, dim=-2), torch.stack(latest_values, dim=-2)
|
| 180 |
+
elif lookup_strategy.startswith("skip"):
|
| 181 |
+
existing_keys = []
|
| 182 |
+
existing_values = []
|
| 183 |
+
for token_pos in range(self._seen_tokens):
|
| 184 |
+
if token_pos in self.key_cache[step_idx]:
|
| 185 |
+
existing_keys.append(self.key_cache[step_idx][token_pos])
|
| 186 |
+
existing_values.append(self.value_cache[step_idx][token_pos])
|
| 187 |
+
return torch.stack(existing_keys, dim=-2), torch.stack(existing_values, dim=-2)
|
| 188 |
+
elif lookup_strategy.startswith("randomized"): # sanity check
|
| 189 |
+
rand_keys = []
|
| 190 |
+
rand_values = []
|
| 191 |
+
for token_pos in range(self._seen_tokens):
|
| 192 |
+
if step_idx < 2: # For prelude steps
|
| 193 |
+
max_step = step_idx if token_pos in self.key_cache[step_idx] else 0
|
| 194 |
+
else: # Get all steps from same block position
|
| 195 |
+
curr_modulo = (step_idx - 2) % 4 + 2
|
| 196 |
+
valid_steps = [
|
| 197 |
+
s
|
| 198 |
+
for s in range(2, step_idx + 1)
|
| 199 |
+
if (s - 2) % 4 + 2 == curr_modulo and token_pos in self.key_cache[s]
|
| 200 |
+
]
|
| 201 |
+
max_step = valid_steps[torch.randint(len(valid_steps), (1,))]
|
| 202 |
+
rand_keys.append(self.key_cache[max_step][token_pos])
|
| 203 |
+
rand_values.append(self.value_cache[max_step][token_pos])
|
| 204 |
+
return torch.stack(rand_keys, dim=-2), torch.stack(rand_values, dim=-2)
|
| 205 |
+
else:
|
| 206 |
+
raise ValueError(f"Unknown lookup strategy: {lookup_strategy}")
|
| 207 |
+
|
| 208 |
+
def reset(self) -> None:
|
| 209 |
+
"""Reset the cache state."""
|
| 210 |
+
self._seen_tokens = 0
|
| 211 |
+
self.key_cache.clear()
|
| 212 |
+
self.value_cache.clear()
|
| 213 |
+
|
| 214 |
+
def clear_last_k_entries(self, k: int = 0):
|
| 215 |
+
"""Partially clear cache."""
|
| 216 |
+
assert self._seen_tokens >= k
|
| 217 |
+
self._seen_tokens = self._seen_tokens - k
|
| 218 |
+
# self.key_cache[step_idx][self._seen_tokens - key_states.shape[-2] + idx] = entry
|
| 219 |
+
self.key_cache = {
|
| 220 |
+
step: {seq: seq_cache for seq, seq_cache in cache.items() if seq < self._seen_tokens}
|
| 221 |
+
for step, cache in self.key_cache.items()
|
| 222 |
+
}
|
| 223 |
+
self.value_cache = {
|
| 224 |
+
step: {seq: seq_cache for seq, seq_cache in cache.items() if seq < self._seen_tokens}
|
| 225 |
+
for step, cache in self.value_cache.items()
|
| 226 |
+
}
|
| 227 |
+
|
| 228 |
+
def get_seq_length(self, step_idx: int = 0) -> int:
|
| 229 |
+
return self._seen_tokens
|
| 230 |
+
|
| 231 |
+
def get_memory_usage(self) -> float:
|
| 232 |
+
total_bytes = 0
|
| 233 |
+
# For each recurrent step/layer index
|
| 234 |
+
for step_idx in self.key_cache:
|
| 235 |
+
# Get the sequence cache for this step
|
| 236 |
+
key_seq_cache = self.key_cache[step_idx]
|
| 237 |
+
for seq_idx in key_seq_cache:
|
| 238 |
+
key_tensor = key_seq_cache[seq_idx]
|
| 239 |
+
# Add memory for of key tensors, assuming value is the same
|
| 240 |
+
total_bytes += key_tensor.nelement() * key_tensor.element_size()
|
| 241 |
+
return total_bytes * 2 / (1024 * 1024)
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
class HuginnStaticCache(Cache):
|
| 245 |
+
"""Static Cache for the recurrent model"""
|
| 246 |
+
|
| 247 |
+
is_compileable = False # this is todo
|
| 248 |
+
|
| 249 |
+
def __init__(
|
| 250 |
+
self,
|
| 251 |
+
max_length: int,
|
| 252 |
+
max_num_steps: int,
|
| 253 |
+
num_heads: int,
|
| 254 |
+
hidden_dim: int,
|
| 255 |
+
batch_size: int = 1,
|
| 256 |
+
lookup_strategy: str = "full",
|
| 257 |
+
device: Optional[Union[torch.device, str]] = None,
|
| 258 |
+
dtype: torch.dtype = torch.float32,
|
| 259 |
+
) -> None:
|
| 260 |
+
super().__init__()
|
| 261 |
+
self._seen_tokens = 0
|
| 262 |
+
self.max_length = max_length
|
| 263 |
+
self.lookup_strategy = lookup_strategy
|
| 264 |
+
|
| 265 |
+
# Adjust max_num_steps based on compression strategy
|
| 266 |
+
if "compress-" in lookup_strategy:
|
| 267 |
+
compression_stage = int(lookup_strategy.split("compress-")[1][1:])
|
| 268 |
+
if "compress-s" in lookup_strategy:
|
| 269 |
+
# For modulo compression (s), we need steps for 0,1 + compressed steps
|
| 270 |
+
self.max_num_steps = 4 + compression_stage
|
| 271 |
+
else:
|
| 272 |
+
# For relative compression, we need steps for 0,1 + compressed steps
|
| 273 |
+
self.max_num_steps = 4 + (max_num_steps - 4 + compression_stage - 1) // compression_stage
|
| 274 |
+
else:
|
| 275 |
+
self.max_num_steps = max_num_steps
|
| 276 |
+
|
| 277 |
+
# Pre-allocate cache tensors [steps, batch, heads, seq_len, head_dim]
|
| 278 |
+
device = torch.device(device) if device is not None else None
|
| 279 |
+
cache_shape = (self.max_num_steps, batch_size, num_heads, max_length, hidden_dim)
|
| 280 |
+
|
| 281 |
+
self.key_cache = torch.zeros(cache_shape, dtype=dtype, device=device)
|
| 282 |
+
self.value_cache = torch.zeros(cache_shape, dtype=dtype, device=device)
|
| 283 |
+
self.valid_mask = torch.zeros((self.max_num_steps, max_length), dtype=torch.bool, device=device)
|
| 284 |
+
# Mark tensors as static for compile
|
| 285 |
+
torch._dynamo.mark_static_address(self.key_cache)
|
| 286 |
+
torch._dynamo.mark_static_address(self.value_cache)
|
| 287 |
+
torch._dynamo.mark_static_address(self.valid_mask)
|
| 288 |
+
|
| 289 |
+
def update(
|
| 290 |
+
self,
|
| 291 |
+
key_states: torch.Tensor,
|
| 292 |
+
value_states: torch.Tensor,
|
| 293 |
+
step_idx: torch.Tensor,
|
| 294 |
+
lookup_strategy: Optional[str] = None,
|
| 295 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 296 |
+
if step_idx == 0:
|
| 297 |
+
self._seen_tokens += key_states.shape[-2]
|
| 298 |
+
|
| 299 |
+
# Adjust step_idx for compression
|
| 300 |
+
lookup_strategy = self.lookup_strategy if lookup_strategy is None else lookup_strategy
|
| 301 |
+
if "compress-" in lookup_strategy and step_idx > 1:
|
| 302 |
+
compression_stage = int(lookup_strategy.split("compress-")[1][1:])
|
| 303 |
+
if "compress-s" in lookup_strategy:
|
| 304 |
+
step_idx = (step_idx - 2) % compression_stage + 2
|
| 305 |
+
else:
|
| 306 |
+
step_idx = (step_idx - 2) // compression_stage + 2
|
| 307 |
+
|
| 308 |
+
start_idx = self._seen_tokens - key_states.shape[-2]
|
| 309 |
+
|
| 310 |
+
indices = torch.arange(start_idx, start_idx + key_states.shape[-2], device=key_states.device)
|
| 311 |
+
self.key_cache[step_idx].index_copy_(2, indices, key_states)
|
| 312 |
+
self.value_cache[step_idx].index_copy_(2, indices, value_states)
|
| 313 |
+
self.valid_mask[step_idx, start_idx : start_idx + key_states.shape[-2]] = True
|
| 314 |
+
|
| 315 |
+
# Return based on lookup strategy
|
| 316 |
+
if lookup_strategy == "full":
|
| 317 |
+
return (
|
| 318 |
+
self.key_cache[step_idx, :, :, : self._seen_tokens],
|
| 319 |
+
self.value_cache[step_idx, :, :, : self._seen_tokens],
|
| 320 |
+
)
|
| 321 |
+
elif lookup_strategy.startswith("latest-m4"):
|
| 322 |
+
if step_idx >= 2:
|
| 323 |
+
pattern_steps = torch.arange(2, step_idx.item() + 1, 4, device=self.valid_mask.device)
|
| 324 |
+
pattern_valid = self.valid_mask[pattern_steps]
|
| 325 |
+
max_valid_step = pattern_steps[pattern_valid.to(torch.long).argmax(dim=0)]
|
| 326 |
+
return (
|
| 327 |
+
self.key_cache[max_valid_step, torch.arange(self._seen_tokens)],
|
| 328 |
+
self.value_cache[max_valid_step, torch.arange(self._seen_tokens)],
|
| 329 |
+
)
|
| 330 |
+
return self.key_cache[step_idx, :, :, : self._seen_tokens], self.value_cache[
|
| 331 |
+
step_idx, :, :, : self._seen_tokens
|
| 332 |
+
]
|
| 333 |
+
elif lookup_strategy == "skip":
|
| 334 |
+
valid_mask = self.valid_mask[step_idx, : self._seen_tokens]
|
| 335 |
+
return (
|
| 336 |
+
self.key_cache[step_idx, :, :, : self._seen_tokens][valid_mask],
|
| 337 |
+
self.value_cache[step_idx, :, :, : self._seen_tokens][valid_mask],
|
| 338 |
+
)
|
| 339 |
+
elif lookup_strategy.startswith("randomized"):
|
| 340 |
+
if step_idx < 2:
|
| 341 |
+
max_step = step_idx
|
| 342 |
+
else:
|
| 343 |
+
curr_modulo = (step_idx - 2) % 4 + 2
|
| 344 |
+
valid_steps = (
|
| 345 |
+
torch.where(
|
| 346 |
+
(torch.arange(2, step_idx.item() + 1, device=self.valid_mask.device) - 2) % 4 + 2 == curr_modulo
|
| 347 |
+
)[0]
|
| 348 |
+
+ 2
|
| 349 |
+
)
|
| 350 |
+
rand_idx = torch.randint(len(valid_steps), (1,), device=valid_steps.device)
|
| 351 |
+
max_step = valid_steps[rand_idx]
|
| 352 |
+
return self.key_cache[max_step, : self._seen_tokens], self.value_cache[max_step, : self._seen_tokens]
|
| 353 |
+
else:
|
| 354 |
+
raise ValueError(f"Unknown lookup strategy: {lookup_strategy}")
|
| 355 |
+
|
| 356 |
+
def reset(self) -> None:
|
| 357 |
+
self._seen_tokens = 0
|
| 358 |
+
self.key_cache.zero_()
|
| 359 |
+
self.value_cache.zero_()
|
| 360 |
+
self.valid_mask.zero_()
|
| 361 |
+
|
| 362 |
+
def get_seq_length(self, step_idx: int = 0) -> int:
|
| 363 |
+
return self._seen_tokens
|
| 364 |
+
|
| 365 |
+
def get_memory_usage(self) -> float:
|
| 366 |
+
return (self.key_cache.nelement() + self.value_cache.nelement()) * self.key_cache.element_size() / (1024 * 1024)
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
ValidCache = HuginnDynamicCache | HuginnStaticCache
|
| 370 |
+
|
| 371 |
+
|
| 372 |
+
class CausalSelfAttention(torch.nn.Module):
|
| 373 |
+
def __init__(self, config: RavenConfig) -> None:
|
| 374 |
+
super().__init__()
|
| 375 |
+
self.config = config
|
| 376 |
+
self.n_head = config.num_attention_heads
|
| 377 |
+
self.n_kv_heads = config.num_key_value_heads
|
| 378 |
+
self.head_dim = config.n_embd // self.n_head
|
| 379 |
+
|
| 380 |
+
shape = (self.n_head + 2 * self.n_kv_heads) * self.head_dim
|
| 381 |
+
self.chunks = [config.n_embd, self.n_kv_heads * self.head_dim, self.n_kv_heads * self.head_dim]
|
| 382 |
+
self.Wqkv = torch.nn.Linear(config.n_embd, shape, bias=False)
|
| 383 |
+
if config.qk_bias:
|
| 384 |
+
self.qk_bias = torch.nn.Parameter(torch.zeros(2, 1, self.n_head, self.head_dim))
|
| 385 |
+
self.proj = torch.nn.Linear(config.n_embd, config.n_embd, bias=False)
|
| 386 |
+
|
| 387 |
+
def forward(
|
| 388 |
+
self,
|
| 389 |
+
x: Tensor,
|
| 390 |
+
freqs_cis: Tensor,
|
| 391 |
+
block_idx: torch.Tensor,
|
| 392 |
+
mask: Optional[BlockMask] = None,
|
| 393 |
+
past_key_values: Optional[ValidCache] = None,
|
| 394 |
+
) -> Tensor:
|
| 395 |
+
B, S, E = x.shape # batch size, sequence length, embedding dimensionality (n_embd)
|
| 396 |
+
q, k, v = self.Wqkv(x).split(self.chunks, dim=2)
|
| 397 |
+
q = q.view(B, S, self.n_head, self.head_dim)
|
| 398 |
+
k = k.view(B, S, self.n_kv_heads, self.head_dim)
|
| 399 |
+
v = v.view(B, S, self.n_kv_heads, self.head_dim)
|
| 400 |
+
# bias?
|
| 401 |
+
if self.config.qk_bias:
|
| 402 |
+
q_bias, k_bias = self.qk_bias.split(1, dim=0)
|
| 403 |
+
q, k = (q + q_bias).to(q.dtype), (k + k_bias).to(q.dtype)
|
| 404 |
+
|
| 405 |
+
q = q.transpose(1, 2) # (B, nh, S, hs)
|
| 406 |
+
k = k.transpose(1, 2)
|
| 407 |
+
v = v.transpose(1, 2)
|
| 408 |
+
|
| 409 |
+
# apply rotary
|
| 410 |
+
cos, sin = freqs_cis
|
| 411 |
+
q, k = apply_rotary_pos_emb(q, k, cos, sin)
|
| 412 |
+
|
| 413 |
+
if past_key_values is not None:
|
| 414 |
+
k, v = past_key_values.update(k, v, block_idx)
|
| 415 |
+
|
| 416 |
+
if mask is not None:
|
| 417 |
+
y: torch.Tensor = flex_attention(q, k, v, block_mask=mask) # type: ignore
|
| 418 |
+
else:
|
| 419 |
+
if q.shape[2] < k.shape[2]:
|
| 420 |
+
if q.shape[2] > 1:
|
| 421 |
+
bias = attn_bias.causal_lower_right(q.shape[2], k.shape[2])
|
| 422 |
+
y = torch.nn.functional.scaled_dot_product_attention(q, k, v, bias, dropout_p=0.0, enable_gqa=True)
|
| 423 |
+
else:
|
| 424 |
+
y = torch.nn.functional.scaled_dot_product_attention(q, k, v, dropout_p=0.0, is_causal=False, enable_gqa=True)
|
| 425 |
+
else:
|
| 426 |
+
y = torch.nn.functional.scaled_dot_product_attention(q, k, v, dropout_p=0.0, is_causal=True, enable_gqa=True)
|
| 427 |
+
y = y.transpose(1, 2).reshape(B, S, E).contiguous() # reshape is a view if possible (it mostly is)
|
| 428 |
+
return self.proj(y)
|
| 429 |
+
|
| 430 |
+
|
| 431 |
+
class GatedMLP(torch.nn.Module):
|
| 432 |
+
def __init__(self, config: RavenConfig, in_features: int = 0) -> None:
|
| 433 |
+
super().__init__()
|
| 434 |
+
in_features = config.n_embd if in_features == 0 else in_features
|
| 435 |
+
self.fc = torch.nn.Linear(in_features, config.intermediate_size * 2, bias=False)
|
| 436 |
+
|
| 437 |
+
self.proj = torch.nn.Linear(config.intermediate_size, config.n_embd, bias=False)
|
| 438 |
+
self.nonlin = torch.nn.SiLU()
|
| 439 |
+
|
| 440 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 441 |
+
# modified to single FC layer to improve parallelism
|
| 442 |
+
x_fc_1, x_fc_2 = self.fc(x).chunk(2, dim=-1)
|
| 443 |
+
x = self.nonlin(x_fc_1) * x_fc_2
|
| 444 |
+
return self.proj(x)
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
class SandwichBlock(torch.nn.Module):
|
| 448 |
+
expanded = False
|
| 449 |
+
|
| 450 |
+
def __init__(self, config: RavenConfig, layer_id: int) -> None:
|
| 451 |
+
super().__init__()
|
| 452 |
+
self.norm_1 = RMSNorm(config.n_embd, eps=config.norm_eps)
|
| 453 |
+
self.attn = CausalSelfAttention(config)
|
| 454 |
+
self.norm_2 = RMSNorm(config.n_embd, eps=config.norm_eps)
|
| 455 |
+
self.mlp = GatedMLP(config)
|
| 456 |
+
self.layer_id = layer_id
|
| 457 |
+
|
| 458 |
+
def forward(
|
| 459 |
+
self,
|
| 460 |
+
x: Tensor,
|
| 461 |
+
freqs_cis: Tensor,
|
| 462 |
+
step_idx: int,
|
| 463 |
+
mask: Optional[BlockMask] = None,
|
| 464 |
+
past_key_values: Optional[ValidCache] = None,
|
| 465 |
+
) -> Tensor:
|
| 466 |
+
attn_out = self.attn(self.norm_1(x), freqs_cis, step_idx, mask, past_key_values)
|
| 467 |
+
x = attn_out + x
|
| 468 |
+
x = self.mlp(self.norm_2(x)) + x
|
| 469 |
+
return x
|
| 470 |
+
|
| 471 |
+
|
| 472 |
+
class RavenForCausalLM(RavenPreTrainedModel, GenerationMixin):
|
| 473 |
+
|
| 474 |
+
def __init__(
|
| 475 |
+
self,
|
| 476 |
+
config: RavenConfig,
|
| 477 |
+
) -> None:
|
| 478 |
+
super().__init__(config)
|
| 479 |
+
self.config = config
|
| 480 |
+
|
| 481 |
+
# Transformer layers
|
| 482 |
+
prelude = torch.nn.ModuleList(SandwichBlock(config, layer_id=i) for i in range(config.n_layers_in_prelude))
|
| 483 |
+
adapter = torch.nn.Linear(config.n_embd * 2, config.n_embd, bias=config.bias)
|
| 484 |
+
core_block = torch.nn.ModuleList(
|
| 485 |
+
SandwichBlock(config, layer_id=i + config.n_layers_in_prelude)
|
| 486 |
+
for i in range(config.n_layers_in_recurrent_block)
|
| 487 |
+
)
|
| 488 |
+
o = config.n_layers_in_prelude + config.n_layers_in_recurrent_block * config.mean_recurrence
|
| 489 |
+
coda = torch.nn.ModuleList(SandwichBlock(config, layer_id=i + o) for i in range(config.n_layers_in_coda))
|
| 490 |
+
|
| 491 |
+
self.transformer = torch.nn.ModuleDict(
|
| 492 |
+
dict(
|
| 493 |
+
wte=torch.nn.Embedding(config.padded_vocab_size, config.n_embd),
|
| 494 |
+
prelude=prelude,
|
| 495 |
+
adapter=adapter,
|
| 496 |
+
core_block=core_block,
|
| 497 |
+
coda=coda,
|
| 498 |
+
ln_f=RMSNorm(config.n_embd, eps=config.norm_eps), # used twice :>
|
| 499 |
+
)
|
| 500 |
+
)
|
| 501 |
+
self.emb_scale = config.init_values["embed_scale"]
|
| 502 |
+
# Head
|
| 503 |
+
self.lm_head = torch.nn.Linear(config.n_embd, config.padded_vocab_size, bias=False)
|
| 504 |
+
if self.config.tie_embeddings:
|
| 505 |
+
self.tie_weights()
|
| 506 |
+
# rope
|
| 507 |
+
self.rotary_emb = LlamaRotaryEmbedding(config=config)
|
| 508 |
+
|
| 509 |
+
def get_input_embeddings(self):
|
| 510 |
+
return self.transformer.wte
|
| 511 |
+
|
| 512 |
+
def get_output_embeddings(self):
|
| 513 |
+
return self.lm_head
|
| 514 |
+
|
| 515 |
+
|
| 516 |
+
def compile_mask(
|
| 517 |
+
self,
|
| 518 |
+
input_ids: torch.Tensor,
|
| 519 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 520 |
+
past_key_values: Optional[ValidCache] = None,
|
| 521 |
+
pad_token_id=65509,
|
| 522 |
+
) -> Optional[BlockMask]:
|
| 523 |
+
batch_size, seq_len = input_ids.shape[0], input_ids.shape[1]
|
| 524 |
+
|
| 525 |
+
# If no padding and no attention mask, no need for a mask
|
| 526 |
+
if attention_mask is None and (input_ids == pad_token_id).sum() == 0:
|
| 527 |
+
return None
|
| 528 |
+
|
| 529 |
+
if past_key_values is not None and seq_len == 1:
|
| 530 |
+
return None
|
| 531 |
+
|
| 532 |
+
# Get total sequence length including cache
|
| 533 |
+
cache_len = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 534 |
+
kv_length = cache_len + seq_len
|
| 535 |
+
|
| 536 |
+
if attention_mask is None:
|
| 537 |
+
|
| 538 |
+
def mask_mod(b, h, q_idx, kv_idx):
|
| 539 |
+
return q_idx >= kv_idx & (input_ids[b, kv_idx] != pad_token_id)
|
| 540 |
+
else:
|
| 541 |
+
|
| 542 |
+
def mask_mod(b, h, q_idx, kv_idx):
|
| 543 |
+
return (q_idx >= kv_idx) & (input_ids[b, kv_idx] != pad_token_id) & attention_mask[b, q_idx, kv_idx]
|
| 544 |
+
|
| 545 |
+
kv_length = past_key_values.get_seq_length() if past_key_values is not None else seq_len
|
| 546 |
+
if kv_length == 0:
|
| 547 |
+
kv_length = seq_len # prefill
|
| 548 |
+
block_mask = create_block_mask(
|
| 549 |
+
mask_mod,
|
| 550 |
+
B=batch_size,
|
| 551 |
+
H=None,
|
| 552 |
+
Q_LEN=seq_len,
|
| 553 |
+
KV_LEN=kv_length,
|
| 554 |
+
device=input_ids.device,
|
| 555 |
+
)
|
| 556 |
+
|
| 557 |
+
# # Define mask_mod function
|
| 558 |
+
# def mask_mod(b, h, q_idx, kv_idx):
|
| 559 |
+
# # Always apply causal constraint
|
| 560 |
+
# is_causal = q_idx >= kv_idx
|
| 561 |
+
|
| 562 |
+
# # Handle cache vs current tokens
|
| 563 |
+
# is_cache = kv_idx < cache_len
|
| 564 |
+
# current_idx = kv_idx - cache_len
|
| 565 |
+
|
| 566 |
+
# # For cache: always valid; For current: check padding
|
| 567 |
+
# not_pad = input_ids[b, current_idx] != pad_token_id
|
| 568 |
+
# valid = is_cache | not_pad
|
| 569 |
+
|
| 570 |
+
# # Apply attention mask if provided
|
| 571 |
+
# if attention_mask is not None:
|
| 572 |
+
# q_idx_curr = q_idx - cache_len
|
| 573 |
+
# attn_valid = attention_mask[b, q_idx_curr, current_idx]
|
| 574 |
+
# valid = valid & (is_cache | attn_valid)
|
| 575 |
+
|
| 576 |
+
# return is_causal & valid
|
| 577 |
+
|
| 578 |
+
# def mask_mod(b, h, q_idx, kv_idx):
|
| 579 |
+
# is_causal = q_idx >= kv_idx
|
| 580 |
+
# is_current = (kv_idx >= cache_len) & (kv_idx < kv_length)
|
| 581 |
+
# current_idx = kv_idx - cache_len
|
| 582 |
+
|
| 583 |
+
# is_valid = (~is_current) | (
|
| 584 |
+
# (current_idx >= 0) & (current_idx < seq_len) & (input_ids != pad_token_id)[b, current_idx % seq_len]
|
| 585 |
+
# )
|
| 586 |
+
|
| 587 |
+
# return is_causal & is_valid
|
| 588 |
+
|
| 589 |
+
# # Define mask_mod function
|
| 590 |
+
# def mask_mod(b, h, q_idx, kv_idx):
|
| 591 |
+
# # Always apply causal constraint
|
| 592 |
+
# is_causal = q_idx >= kv_idx
|
| 593 |
+
|
| 594 |
+
# # Handle cache vs current tokens
|
| 595 |
+
# is_cache = kv_idx < cache_len
|
| 596 |
+
# current_idx = kv_idx - cache_len
|
| 597 |
+
# in_bounds = (current_idx >= 0) & (current_idx < seq_len)
|
| 598 |
+
|
| 599 |
+
# # For cache: always valid; For current: check padding
|
| 600 |
+
# not_pad = (input_ids[b, current_idx % seq_len] != pad_token_id) | ~in_bounds
|
| 601 |
+
# valid = is_cache | (not_pad & in_bounds)
|
| 602 |
+
|
| 603 |
+
# # Apply attention mask if provided
|
| 604 |
+
# if attention_mask is not None:
|
| 605 |
+
# q_idx_curr = q_idx - cache_len
|
| 606 |
+
# q_in_bounds = (q_idx_curr >= 0) & (q_idx_curr < seq_len)
|
| 607 |
+
# attn_valid = attention_mask[b, q_idx_curr % seq_len, current_idx % seq_len] | ~(in_bounds & q_in_bounds)
|
| 608 |
+
# valid = valid & (is_cache | attn_valid)
|
| 609 |
+
|
| 610 |
+
# return is_causal & valid
|
| 611 |
+
|
| 612 |
+
# Create block mask
|
| 613 |
+
block_mask = create_block_mask(
|
| 614 |
+
mask_mod,
|
| 615 |
+
B=batch_size,
|
| 616 |
+
H=None,
|
| 617 |
+
Q_LEN=seq_len,
|
| 618 |
+
KV_LEN=kv_length,
|
| 619 |
+
device=input_ids.device,
|
| 620 |
+
)
|
| 621 |
+
|
| 622 |
+
return block_mask
|
| 623 |
+
|
| 624 |
+
def forward(
|
| 625 |
+
self,
|
| 626 |
+
input_ids: torch.Tensor,
|
| 627 |
+
input_embeds: Optional[torch.Tensor] = None,
|
| 628 |
+
input_states: Optional[torch.Tensor] = None,
|
| 629 |
+
attention_mask: Optional[torch.Tensor] = None, # binary mask of shape q x kv, True=valid position
|
| 630 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 631 |
+
labels: Optional[torch.Tensor] = None,
|
| 632 |
+
num_steps: Optional[torch.Tensor] = None,
|
| 633 |
+
past_key_values: Optional[ValidCache] = None,
|
| 634 |
+
output_details: dict = {
|
| 635 |
+
"return_logits": True,
|
| 636 |
+
"return_latents": True,
|
| 637 |
+
"return_head": False,
|
| 638 |
+
"return_stats": False,
|
| 639 |
+
},
|
| 640 |
+
use_cache: bool = False,
|
| 641 |
+
cache_position: Optional[torch.Tensor] = None,
|
| 642 |
+
init_scale: float = 1.0,
|
| 643 |
+
**kwargs,
|
| 644 |
+
) -> CausalLMOutputRecurrentLatents:
|
| 645 |
+
# Support multiple position formats:
|
| 646 |
+
if position_ids is None and cache_position is None:
|
| 647 |
+
position_ids = torch.arange(input_ids.shape[1], device=self.device).unsqueeze(0)
|
| 648 |
+
elif cache_position is not None:
|
| 649 |
+
position_ids = cache_position.unsqueeze(0)
|
| 650 |
+
|
| 651 |
+
if input_embeds is None:
|
| 652 |
+
input_embeds = self.transformer.wte(input_ids) # type: ignore # types broken in 2.6+
|
| 653 |
+
|
| 654 |
+
if self.emb_scale != 1:
|
| 655 |
+
input_embeds = input_embeds * self.emb_scale # type: ignore
|
| 656 |
+
|
| 657 |
+
if use_cache and past_key_values is None:
|
| 658 |
+
past_key_values = HuginnDynamicCache()
|
| 659 |
+
|
| 660 |
+
prepared_attn_mask = None # self.compile_mask(input_ids, attention_mask, past_key_values)
|
| 661 |
+
block_idx = torch.tensor(-1, device=torch.device("cpu"), dtype=torch.long) # count in tensors for compile
|
| 662 |
+
|
| 663 |
+
freqs_cis = self.rotary_emb(input_embeds, position_ids)
|
| 664 |
+
|
| 665 |
+
# Non-recurrent prelude
|
| 666 |
+
for block in self.transformer.prelude: # type: ignore # types broken in 2.6+
|
| 667 |
+
block_idx += 1
|
| 668 |
+
input_embeds = block(input_embeds, freqs_cis, block_idx, prepared_attn_mask, past_key_values)
|
| 669 |
+
|
| 670 |
+
# Main recurrence
|
| 671 |
+
x, num_steps_no_grad, num_steps_with_grad, xk, block_idx = self.iterate_forward(
|
| 672 |
+
input_embeds, # type: ignore # mystery typing error
|
| 673 |
+
input_states,
|
| 674 |
+
freqs_cis,
|
| 675 |
+
block_idx,
|
| 676 |
+
prepared_attn_mask,
|
| 677 |
+
past_key_values,
|
| 678 |
+
num_steps,
|
| 679 |
+
init_scale,
|
| 680 |
+
)
|
| 681 |
+
latent_states = x.clone().detach()
|
| 682 |
+
|
| 683 |
+
# Coda layers
|
| 684 |
+
block_idx = torch.tensor(0, device=torch.device("cpu"), dtype=torch.long) # use negative indices for head
|
| 685 |
+
for block in self.transformer.coda: # type: ignore # types broken in 2.6+
|
| 686 |
+
block_idx -= 1
|
| 687 |
+
x = block(x, freqs_cis, block_idx, prepared_attn_mask, past_key_values)
|
| 688 |
+
x = self.transformer.ln_f(x) # type: ignore # types broken in 2.6+
|
| 689 |
+
|
| 690 |
+
# Prediction head, assuming labels really are labels and not equal to input_ids
|
| 691 |
+
if labels is not None:
|
| 692 |
+
logits = self.lm_head(x).float()
|
| 693 |
+
loss = torch.nn.functional.cross_entropy(
|
| 694 |
+
logits.view(-1, logits.shape[-1]), labels.view(-1), ignore_index=-100
|
| 695 |
+
)
|
| 696 |
+
log_ppl = loss.clone().detach().exp()
|
| 697 |
+
else:
|
| 698 |
+
logits = self.lm_head(x)#.float()
|
| 699 |
+
loss, log_ppl = torch.as_tensor(0.0), torch.as_tensor(0.0)
|
| 700 |
+
|
| 701 |
+
return CausalLMOutputRecurrentLatents(
|
| 702 |
+
loss=loss,
|
| 703 |
+
log_ppl=log_ppl,
|
| 704 |
+
logits=logits if output_details["return_logits"] else None,
|
| 705 |
+
past_key_values=past_key_values,
|
| 706 |
+
hidden_states=x if output_details["return_head"] else None,
|
| 707 |
+
latent_states=latent_states if output_details["return_latents"] else None,
|
| 708 |
+
stats=self.get_stats(logits, x, latent_states, xk, input_embeds, num_steps_no_grad, num_steps_with_grad)
|
| 709 |
+
if output_details["return_stats"]
|
| 710 |
+
else None,
|
| 711 |
+
)
|
| 712 |
+
|
| 713 |
+
@torch._dynamo.disable(recursive=False) # type: ignore
|
| 714 |
+
def iterate_forward(
|
| 715 |
+
self,
|
| 716 |
+
input_embeds: torch.Tensor,
|
| 717 |
+
input_states: torch.Tensor,
|
| 718 |
+
freqs_cis,
|
| 719 |
+
block_idx: torch.Tensor,
|
| 720 |
+
mask: Optional[BlockMask],
|
| 721 |
+
past_key_values: Optional[ValidCache] = None,
|
| 722 |
+
num_steps: Optional[torch.Tensor] = None,
|
| 723 |
+
init_scale: float = 1.0,
|
| 724 |
+
):
|
| 725 |
+
x = xk = self.initialize_state(input_embeds, scale=init_scale) if input_states is None else input_states.clone()
|
| 726 |
+
if num_steps is None:
|
| 727 |
+
num_steps_no_grad, num_steps_with_grad = self.randomized_iteration_sampler() # type: ignore
|
| 728 |
+
elif hasattr(num_steps, "__len__") and len(num_steps) > 1:
|
| 729 |
+
num_steps_no_grad, num_steps_with_grad = num_steps
|
| 730 |
+
else:
|
| 731 |
+
num_steps_no_grad, num_steps_with_grad = num_steps, torch.tensor(0) if not x.is_meta else 0
|
| 732 |
+
|
| 733 |
+
with torch.no_grad():
|
| 734 |
+
# ultra annoying in ddp due to
|
| 735 |
+
# https://discuss.pytorch.org/t/does-distributeddataparallel-work-with-torch-no-grad-and-find-unused-parameters-false/122594
|
| 736 |
+
# for now running with find_unused_params=True enabled even though the graph structure is (technically) clear
|
| 737 |
+
# and all parameters are always used
|
| 738 |
+
for no_grad_step in range(num_steps_no_grad):
|
| 739 |
+
xk = x
|
| 740 |
+
x, block_idx = self.core_block_forward(
|
| 741 |
+
xk, input_embeds, freqs_cis, mask, past_key_values, block_idx, no_grad_step
|
| 742 |
+
)
|
| 743 |
+
|
| 744 |
+
for grad_step in range(num_steps_with_grad):
|
| 745 |
+
xk = x
|
| 746 |
+
x, block_idx = self.core_block_forward(
|
| 747 |
+
xk, input_embeds, freqs_cis, mask, past_key_values, block_idx, num_steps_no_grad + grad_step
|
| 748 |
+
)
|
| 749 |
+
return x, num_steps_no_grad, num_steps_with_grad, xk.detach(), block_idx # type: ignore # types broken in 2.6+
|
| 750 |
+
|
| 751 |
+
def core_block_forward(
|
| 752 |
+
self,
|
| 753 |
+
x,
|
| 754 |
+
input_embeds,
|
| 755 |
+
freqs_cis,
|
| 756 |
+
mask: Optional[BlockMask],
|
| 757 |
+
past_key_values,
|
| 758 |
+
block_idx: torch.Tensor,
|
| 759 |
+
current_step: int | Tensor,
|
| 760 |
+
):
|
| 761 |
+
x = self._maybe_inject_noise(x, current_step)
|
| 762 |
+
x = self.transformer.adapter(torch.cat([x, input_embeds.to(x.device)], dim=-1)) # type: ignore # types broken in 2.6+
|
| 763 |
+
for block in self.transformer.core_block: # type: ignore # types broken in 2.6+
|
| 764 |
+
block_idx += 1
|
| 765 |
+
x = block(x, freqs_cis, block_idx, mask, past_key_values)
|
| 766 |
+
return x, block_idx
|
| 767 |
+
|
| 768 |
+
@torch.no_grad()
|
| 769 |
+
def iterate_one_step(
|
| 770 |
+
self,
|
| 771 |
+
input_embeds,
|
| 772 |
+
input_states,
|
| 773 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 774 |
+
cache_position: Optional[torch.Tensor] = None,
|
| 775 |
+
block_idx: torch.Tensor = torch.tensor(0, dtype=torch.long),
|
| 776 |
+
attention_mask: Optional[BlockMask] = None,
|
| 777 |
+
past_key_values: Optional[ValidCache] = None,
|
| 778 |
+
current_step: int = 0,
|
| 779 |
+
):
|
| 780 |
+
if position_ids is None and cache_position is None:
|
| 781 |
+
freqs_cis = self.freqs_cis[:, : input_embeds.shape[1]]
|
| 782 |
+
elif position_ids is not None:
|
| 783 |
+
freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
|
| 784 |
+
elif cache_position is not None:
|
| 785 |
+
freqs_cis = self.freqs_cis[:, cache_position]
|
| 786 |
+
x, block_idx = self.core_block_forward(
|
| 787 |
+
input_states,
|
| 788 |
+
input_embeds,
|
| 789 |
+
freqs_cis,
|
| 790 |
+
attention_mask,
|
| 791 |
+
past_key_values,
|
| 792 |
+
block_idx,
|
| 793 |
+
current_step=current_step,
|
| 794 |
+
)
|
| 795 |
+
return x, block_idx, current_step + 1
|
| 796 |
+
|
| 797 |
+
def predict_from_latents(
|
| 798 |
+
self,
|
| 799 |
+
latents,
|
| 800 |
+
attention_mask: Optional[BlockMask] = None,
|
| 801 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 802 |
+
cache_position: Optional[torch.Tensor] = None,
|
| 803 |
+
past_key_values: Optional[ValidCache] = None,
|
| 804 |
+
):
|
| 805 |
+
if position_ids is None and cache_position is None:
|
| 806 |
+
freqs_cis = self.freqs_cis[:, : latents.shape[1]]
|
| 807 |
+
elif position_ids is not None:
|
| 808 |
+
freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
|
| 809 |
+
elif cache_position is not None:
|
| 810 |
+
freqs_cis = self.freqs_cis[:, cache_position]
|
| 811 |
+
x = self.transformer.ln_f(latents) # type: ignore # types broken in 2.6+
|
| 812 |
+
# Coda layers
|
| 813 |
+
block_idx = torch.tensor(0, device=torch.device("cpu"), dtype=torch.long) # use negative indices for head
|
| 814 |
+
for block in self.transformer.coda: # type: ignore # types broken in 2.6+
|
| 815 |
+
block_idx -= 1
|
| 816 |
+
x = block(x, freqs_cis, block_idx, attention_mask, past_key_values)
|
| 817 |
+
x = self.transformer.ln_f(x) # type: ignore # types broken in 2.6+
|
| 818 |
+
|
| 819 |
+
logits = self.lm_head(x).float()
|
| 820 |
+
|
| 821 |
+
return CausalLMOutputRecurrentLatents(
|
| 822 |
+
loss=torch.as_tensor(0.0),
|
| 823 |
+
log_ppl=torch.as_tensor(0.0),
|
| 824 |
+
logits=logits,
|
| 825 |
+
past_key_values=past_key_values,
|
| 826 |
+
latent_states=x,
|
| 827 |
+
)
|
| 828 |
+
|
| 829 |
+
def embed_inputs(
|
| 830 |
+
self,
|
| 831 |
+
input_ids: torch.Tensor,
|
| 832 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 833 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 834 |
+
past_key_values: Optional[ValidCache] = None,
|
| 835 |
+
use_cache: bool = False,
|
| 836 |
+
cache_position: Optional[torch.Tensor] = None,
|
| 837 |
+
**kwargs,
|
| 838 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 839 |
+
# Support multiple position formats:
|
| 840 |
+
if position_ids is None and cache_position is None:
|
| 841 |
+
freqs_cis = self.freqs_cis[:, : input_ids.shape[1]]
|
| 842 |
+
elif position_ids is not None:
|
| 843 |
+
freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
|
| 844 |
+
elif cache_position is not None:
|
| 845 |
+
freqs_cis = self.freqs_cis[:, cache_position]
|
| 846 |
+
|
| 847 |
+
input_embeds = self.transformer.wte(input_ids) # type: ignore # types broken in 2.6+
|
| 848 |
+
prepared_attn_mask = self.compile_mask(input_ids, attention_mask)
|
| 849 |
+
|
| 850 |
+
if self.emb_scale != 1:
|
| 851 |
+
input_embeds = input_embeds * self.emb_scale # type: ignore
|
| 852 |
+
|
| 853 |
+
if use_cache and past_key_values is None:
|
| 854 |
+
past_key_values = HuginnDynamicCache()
|
| 855 |
+
|
| 856 |
+
block_idx = torch.tensor(-1, device=torch.device("cpu"), dtype=torch.long) # count in tensors for compile
|
| 857 |
+
# Non-recurrent prelude
|
| 858 |
+
for block in self.transformer.prelude: # type: ignore # types broken in 2.6+
|
| 859 |
+
block_idx += 1
|
| 860 |
+
input_embeds = block(input_embeds, freqs_cis, block_idx, prepared_attn_mask, past_key_values)
|
| 861 |
+
return input_embeds, block_idx
|
| 862 |
+
|
| 863 |
+
@torch._dynamo.disable(recursive=False) # type: ignore
|
| 864 |
+
def randomized_iteration_sampler(self) -> tuple[torch.Tensor, torch.Tensor]:
|
| 865 |
+
"""Outputs are long tensors so that they can be passed through compiled functions"""
|
| 866 |
+
t = max(self.config.mean_recurrence - self.config.mean_backprop_depth, 0)
|
| 867 |
+
s = self.config.mean_backprop_depth
|
| 868 |
+
if torch.rand((1,)).is_meta: # annoying clause to make meta-tensor-based flop counting work
|
| 869 |
+
# these values are only the mean TFLOPs of the randomized sampler
|
| 870 |
+
# Note that this clause also breaks the contract, and returns ints in meta tensor mode
|
| 871 |
+
return t, s # type: ignore
|
| 872 |
+
if self.training:
|
| 873 |
+
sigma = 0.5
|
| 874 |
+
mu = math.log(t + s) - (sigma**2 / 2)
|
| 875 |
+
rate = torch.zeros((1,)).log_normal_(mean=mu, std=sigma)
|
| 876 |
+
p = torch.poisson(torch.tensor([rate], dtype=torch.float)) + 1
|
| 877 |
+
n = torch.clamp(p - s, min=0)
|
| 878 |
+
k = torch.as_tensor(torch.minimum(torch.as_tensor(s), p))
|
| 879 |
+
else:
|
| 880 |
+
n, k = torch.as_tensor(self.config.mean_recurrence), torch.as_tensor(0)
|
| 881 |
+
|
| 882 |
+
return n.to(dtype=torch.long), k.to(dtype=torch.long)
|
| 883 |
+
|
| 884 |
+
def initialize_state(self, input_embeds, scale: float = 1.0):
|
| 885 |
+
x = torch.randn_like(input_embeds)
|
| 886 |
+
std = self.config.init_values["std"] * scale
|
| 887 |
+
if std > 0:
|
| 888 |
+
torch.nn.init.trunc_normal_(x, mean=0.0, std=std, a=-3 * std, b=3 * std)
|
| 889 |
+
if self.emb_scale != 1:
|
| 890 |
+
x = x * self.emb_scale
|
| 891 |
+
else:
|
| 892 |
+
x.zero_()
|
| 893 |
+
return x
|
| 894 |
+
|
| 895 |
+
def _maybe_inject_noise(self, x, current_step, renorm=False):
|
| 896 |
+
if self.config.test_time_noise > 0:
|
| 897 |
+
n = self.config.test_time_noise * self.config.init_values["std"] * self.emb_scale
|
| 898 |
+
if self.config.test_time_noise_type == "geom":
|
| 899 |
+
step1 = torch.as_tensor(current_step + 1, device=x.device) # need to cast for compile
|
| 900 |
+
x = x * (1 - n / step1) + torch.randn_like(x) * n / step1
|
| 901 |
+
elif self.config.test_time_noise_type == "sqrt":
|
| 902 |
+
step1sqrt = torch.as_tensor(current_step + 1, device=x.device).sqrt() # need to cast for compile
|
| 903 |
+
x = x * (1 - n / step1sqrt) + torch.randn_like(x) * n / step1sqrt
|
| 904 |
+
elif self.config.test_time_noise_type == "line":
|
| 905 |
+
noise = max(n, (self.config.mean_recurrence - current_step) / self.config.mean_recurrence) # type: ignore
|
| 906 |
+
x = x * (1 - noise) + torch.randn_like(x) * noise
|
| 907 |
+
elif self.config.test_time_noise_type == "chi":
|
| 908 |
+
noise = 2 * torch.rand(1, device=x.device, dtype=x.dtype) * n
|
| 909 |
+
x = x * (1 - noise) + torch.randn_like(x) * noise
|
| 910 |
+
elif self.config.test_time_noise_type == "fixed":
|
| 911 |
+
x = x * (1 - n) + torch.randn_like(x) * n
|
| 912 |
+
else:
|
| 913 |
+
raise ValueError()
|
| 914 |
+
|
| 915 |
+
if renorm:
|
| 916 |
+
x = self.transformer.core_block[-1].norm_4(x) # type: ignore moduledict types still broken in pytorch
|
| 917 |
+
return x
|
| 918 |
+
|
| 919 |
+
def prepare_inputs_for_generation(
|
| 920 |
+
self,
|
| 921 |
+
input_ids: torch.Tensor,
|
| 922 |
+
past_key_values: Optional[Cache] = None,
|
| 923 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 924 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 925 |
+
cache_position: Optional[torch.Tensor] = None,
|
| 926 |
+
cache_lookup_strategy: str = "full",
|
| 927 |
+
**kwargs,
|
| 928 |
+
):
|
| 929 |
+
model_inputs = {}
|
| 930 |
+
model_inputs["cache_position"] = cache_position
|
| 931 |
+
current_input_length = input_ids.shape[1]
|
| 932 |
+
|
| 933 |
+
if past_key_values is not None:
|
| 934 |
+
if not isinstance(past_key_values, (HuginnDynamicCache, HuginnStaticCache)):
|
| 935 |
+
assert past_key_values.get_seq_length() == 0 # only replace empty caches
|
| 936 |
+
# Need to use custom cache, detect and replace HF cache if generate injects it
|
| 937 |
+
if isinstance(past_key_values, StaticCache):
|
| 938 |
+
past_key_values = HuginnStaticCache(
|
| 939 |
+
max_length=getattr(self.generation_config, "max_length", self.config.block_size),
|
| 940 |
+
max_num_steps=4 + kwargs.get("num_steps", self.config.mean_recurrence) * 4,
|
| 941 |
+
num_heads=self.config.num_key_value_heads,
|
| 942 |
+
hidden_dim=self.config.n_embd // self.config.num_attention_heads,
|
| 943 |
+
dtype=torch.bfloat16,
|
| 944 |
+
device=input_ids.device,
|
| 945 |
+
lookup_strategy=cache_lookup_strategy,
|
| 946 |
+
)
|
| 947 |
+
else:
|
| 948 |
+
past_key_values = HuginnDynamicCache(lookup_strategy=cache_lookup_strategy)
|
| 949 |
+
model_inputs["past_key_values"] = past_key_values if kwargs["use_cache"] else None
|
| 950 |
+
input_ids = input_ids[:, cache_position] # type: ignore
|
| 951 |
+
|
| 952 |
+
model_inputs["input_ids"] = input_ids.clone(memory_format=torch.contiguous_format)
|
| 953 |
+
if cache_position is None:
|
| 954 |
+
position_ids = torch.arange(current_input_length)[None, :].to(input_ids.device)
|
| 955 |
+
model_inputs["position_ids"] = position_ids[:, -current_input_length:].clone(
|
| 956 |
+
memory_format=torch.contiguous_format
|
| 957 |
+
) # some form of position_ids is a critical argument for the model to correctly apply rope!
|
| 958 |
+
|
| 959 |
+
# forward all other entries
|
| 960 |
+
for key, value in kwargs.items():
|
| 961 |
+
if key not in model_inputs:
|
| 962 |
+
model_inputs[key] = value
|
| 963 |
+
return model_inputs
|
| 964 |
+
|
| 965 |
+
@torch.no_grad()
|
| 966 |
+
def generate(self, *args, **kwargs):
|
| 967 |
+
"""Dispatcher - use HF generate in all normal cases."""
|
| 968 |
+
self.generation_config = args[1] if len(args) > 1 else self.generation_config
|
| 969 |
+
if any(k in kwargs for k in ("criterion", "exit_threshold")):
|
| 970 |
+
# print("Dispatching to custom generate_adaptive function call")
|
| 971 |
+
return self.generate_with_adaptive_compute(*args, **kwargs)
|
| 972 |
+
elif "continuous_compute" in kwargs:
|
| 973 |
+
# print("Dispatching to custom generate_minimal function call")
|
| 974 |
+
return self.generate_minimal(*args, **kwargs)
|
| 975 |
+
else:
|
| 976 |
+
return super().generate(*args, **kwargs)
|
| 977 |
+
|
| 978 |
+
@torch.no_grad()
|
| 979 |
+
def _prep_generate_args(
|
| 980 |
+
self,
|
| 981 |
+
input_ids: torch.Tensor,
|
| 982 |
+
generation_config: Optional[GenerationConfig] = None, # type: ignore
|
| 983 |
+
cache_lookup_strategy: str = "full",
|
| 984 |
+
model_kwargs: dict = {},
|
| 985 |
+
):
|
| 986 |
+
# Setup
|
| 987 |
+
if generation_config is None:
|
| 988 |
+
generation_config: GenerationConfig = self.generation_config # type: ignore
|
| 989 |
+
if "max_new_tokens" in model_kwargs:
|
| 990 |
+
max_new_tokens = model_kwargs["max_new_tokens"]
|
| 991 |
+
if "max_length" in model_kwargs:
|
| 992 |
+
max_new_tokens = min(max_new_tokens, model_kwargs["max_length"] - input_ids.shape[1])
|
| 993 |
+
else:
|
| 994 |
+
max_length = model_kwargs.get("max_length", generation_config.max_length)
|
| 995 |
+
max_new_tokens = max_length - input_ids.shape[1]
|
| 996 |
+
|
| 997 |
+
if "cache_implementation" not in model_kwargs or model_kwargs["cache_implementation"] == "dynamic":
|
| 998 |
+
model_kwargs["past_key_values"] = HuginnDynamicCache(lookup_strategy=cache_lookup_strategy)
|
| 999 |
+
else:
|
| 1000 |
+
model_kwargs["past_key_values"] = HuginnStaticCache(
|
| 1001 |
+
max_length=max_length,
|
| 1002 |
+
max_num_steps=4 + model_kwargs.get("num_steps", self.config.mean_recurrence) * 4,
|
| 1003 |
+
num_heads=self.config.num_key_value_heads,
|
| 1004 |
+
hidden_dim=self.config.n_embd // self.config.num_attention_heads,
|
| 1005 |
+
batch_size=input_ids.shape[0],
|
| 1006 |
+
dtype=torch.bfloat16,
|
| 1007 |
+
device=input_ids.device,
|
| 1008 |
+
lookup_strategy=cache_lookup_strategy,
|
| 1009 |
+
)
|
| 1010 |
+
model_kwargs["use_cache"] = True
|
| 1011 |
+
model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
|
| 1012 |
+
return model_kwargs, generation_config, max_new_tokens
|
| 1013 |
+
|
| 1014 |
+
@torch.no_grad()
|
| 1015 |
+
def generate_minimal(
|
| 1016 |
+
self,
|
| 1017 |
+
input_ids: torch.Tensor,
|
| 1018 |
+
generation_config: Optional[GenerationConfig] = None, # type: ignore
|
| 1019 |
+
tokenizer=None,
|
| 1020 |
+
streamer=None,
|
| 1021 |
+
continuous_compute=False, # warm-start state / continuous CoT
|
| 1022 |
+
init_scale: float = 1.0,
|
| 1023 |
+
cache_lookup_strategy: str = "full",
|
| 1024 |
+
**model_kwargs,
|
| 1025 |
+
) -> Union[torch.Tensor, dict[str, Any]]:
|
| 1026 |
+
"""Minimal single-sequence generation. Template for more complicated generate tasks"""
|
| 1027 |
+
model_kwargs, generation_config, max_new_tokens = self._prep_generate_args(
|
| 1028 |
+
input_ids, generation_config, cache_lookup_strategy
|
| 1029 |
+
)
|
| 1030 |
+
stop_tokens = self._get_stops(generation_config, tokenizer, model_kwargs).to(input_ids.device)
|
| 1031 |
+
unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
|
| 1032 |
+
|
| 1033 |
+
# Set up continuous compute if enabled
|
| 1034 |
+
if continuous_compute:
|
| 1035 |
+
embedded_inputs, _ = self.embed_inputs(input_ids)
|
| 1036 |
+
model_kwargs["input_states"] = self.initialize_state(embedded_inputs, scale=init_scale)
|
| 1037 |
+
|
| 1038 |
+
# Generate tokens
|
| 1039 |
+
batch_size = input_ids.shape[0]
|
| 1040 |
+
for _ in range(max_new_tokens):
|
| 1041 |
+
# Forward pass
|
| 1042 |
+
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
| 1043 |
+
outputs = self(**model_inputs, init_scale=init_scale)
|
| 1044 |
+
|
| 1045 |
+
# Get next token
|
| 1046 |
+
next_token_logits = outputs.logits[:, -1, :].to(copy=True, dtype=torch.float32, device=input_ids.device)
|
| 1047 |
+
next_token = self._sample_next_token(next_token_logits, generation_config)
|
| 1048 |
+
|
| 1049 |
+
# Append token to sequence
|
| 1050 |
+
input_ids = torch.cat([input_ids, next_token], dim=-1)
|
| 1051 |
+
|
| 1052 |
+
if streamer:
|
| 1053 |
+
streamer.put(next_token.cpu())
|
| 1054 |
+
|
| 1055 |
+
# Update model kwargs
|
| 1056 |
+
model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs)
|
| 1057 |
+
if continuous_compute:
|
| 1058 |
+
model_kwargs["input_states"] = outputs.latent_states[:, -1:, :]
|
| 1059 |
+
|
| 1060 |
+
if stop_tokens is not None:
|
| 1061 |
+
for i in range(batch_size):
|
| 1062 |
+
if unfinished_sequences[i] and next_token[i, 0].item() in stop_tokens:
|
| 1063 |
+
unfinished_sequences[i] = 0
|
| 1064 |
+
if "stopping_criteria" in model_kwargs:
|
| 1065 |
+
unfinished_sequences = unfinished_sequences & ~model_kwargs["stopping_criteria"](input_ids, None)
|
| 1066 |
+
if unfinished_sequences.max() == 0:
|
| 1067 |
+
break
|
| 1068 |
+
|
| 1069 |
+
if streamer:
|
| 1070 |
+
streamer.end()
|
| 1071 |
+
|
| 1072 |
+
if generation_config.return_dict_in_generate:
|
| 1073 |
+
return GenerateDecoderOnlyOutput(
|
| 1074 |
+
sequences=input_ids, # type: ignore
|
| 1075 |
+
scores=None,
|
| 1076 |
+
logits=None,
|
| 1077 |
+
attentions=None,
|
| 1078 |
+
hidden_states=None,
|
| 1079 |
+
past_key_values=model_kwargs.get("past_key_values"),
|
| 1080 |
+
)
|
| 1081 |
+
return input_ids
|
| 1082 |
+
|
| 1083 |
+
@torch.no_grad()
|
| 1084 |
+
def generate_with_adaptive_compute(
|
| 1085 |
+
self,
|
| 1086 |
+
input_ids: torch.Tensor,
|
| 1087 |
+
generation_config: Optional[GenerationConfig] = None, # type: ignore
|
| 1088 |
+
tokenizer=None,
|
| 1089 |
+
streamer=None,
|
| 1090 |
+
continuous_compute=False, # warm-start state / continuous CoT
|
| 1091 |
+
criterion="none", # off by default, turn on by choosing an exit criterion
|
| 1092 |
+
exit_threshold: Union[str, float, int] = "auto",
|
| 1093 |
+
init_scale: float = 1.0,
|
| 1094 |
+
cache_lookup_strategy: str = "full",
|
| 1095 |
+
**model_kwargs,
|
| 1096 |
+
) -> Union[torch.Tensor, GenerateDecoderOnlyOutput]:
|
| 1097 |
+
"""
|
| 1098 |
+
Generate tokens with adaptive compute. This is NOT the most efficient implementation.
|
| 1099 |
+
For batches, on each token, we iterate until the entire batch finishes.
|
| 1100 |
+
"""
|
| 1101 |
+
model_kwargs, generation_config, max_new_tokens = self._prep_generate_args(
|
| 1102 |
+
input_ids, generation_config, cache_lookup_strategy, model_kwargs
|
| 1103 |
+
)
|
| 1104 |
+
max_steps = model_kwargs.get("num_steps", self.config.mean_recurrence)
|
| 1105 |
+
stop_tokens = self._get_stops(generation_config, tokenizer, model_kwargs).to(input_ids.device)
|
| 1106 |
+
logit_type = dict(copy=True, dtype=torch.float32, device=input_ids.device)
|
| 1107 |
+
batch_size = input_ids.shape[0]
|
| 1108 |
+
compute_steps = []
|
| 1109 |
+
|
| 1110 |
+
# Set up continuous compute if enabled
|
| 1111 |
+
if continuous_compute:
|
| 1112 |
+
embedded_inputs, _ = self.embed_inputs(input_ids)
|
| 1113 |
+
model_kwargs["input_states"] = self.initialize_state(embedded_inputs, scale=init_scale)
|
| 1114 |
+
|
| 1115 |
+
# Track which sequences have finished (using unfinished_sequences to match generate_minimal)
|
| 1116 |
+
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
|
| 1117 |
+
|
| 1118 |
+
# Generate tokens
|
| 1119 |
+
for _ in range(max_new_tokens):
|
| 1120 |
+
# Adaptive compute forward
|
| 1121 |
+
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
| 1122 |
+
aux_inputs = {
|
| 1123 |
+
k: model_inputs[k] for k in ["cache_position", "past_key_values", "attention_mask"] if k in model_inputs
|
| 1124 |
+
}
|
| 1125 |
+
embedded_inputs, block_idx = self.embed_inputs(model_inputs["input_ids"], **aux_inputs)
|
| 1126 |
+
current_latents = (
|
| 1127 |
+
self.initialize_state(embedded_inputs, scale=init_scale)
|
| 1128 |
+
if not continuous_compute
|
| 1129 |
+
else model_kwargs["input_states"]
|
| 1130 |
+
)
|
| 1131 |
+
|
| 1132 |
+
# Initialize criterion tracking for each sequence in batch
|
| 1133 |
+
exit_values_per_seq = [[] for _ in range(batch_size)]
|
| 1134 |
+
compute_steps_per_seq = [0] * batch_size
|
| 1135 |
+
exit_reached = torch.zeros(batch_size, dtype=torch.bool, device=input_ids.device)
|
| 1136 |
+
|
| 1137 |
+
# Set up criterions based on selected strategy
|
| 1138 |
+
if criterion == "entropy-diff":
|
| 1139 |
+
entropy = torch.ones(batch_size, device=input_ids.device) * 100.0
|
| 1140 |
+
exit_threshold = 1e-3 if exit_threshold == "auto" else float(exit_threshold)
|
| 1141 |
+
elif criterion == "latent-diff":
|
| 1142 |
+
exit_threshold = 0.03 if exit_threshold == "auto" else float(exit_threshold)
|
| 1143 |
+
elif "kl" in criterion:
|
| 1144 |
+
V = self.config.padded_vocab_size
|
| 1145 |
+
log_probs = ((1 / V) * torch.ones(batch_size, V, dtype=torch.float, device=input_ids.device)).log()
|
| 1146 |
+
if criterion == "minp-kl":
|
| 1147 |
+
exit_threshold = 1e-6 if exit_threshold == "auto" else float(exit_threshold)
|
| 1148 |
+
else:
|
| 1149 |
+
exit_threshold = 5e-4 if exit_threshold == "auto" else float(exit_threshold)
|
| 1150 |
+
elif criterion == "argmax-stability":
|
| 1151 |
+
stable_for_n_steps = torch.zeros(batch_size, dtype=torch.long, device=input_ids.device)
|
| 1152 |
+
current_argmax = torch.ones(batch_size, dtype=torch.long, device=input_ids.device) * -1
|
| 1153 |
+
exit_threshold = 5 if exit_threshold == "auto" else int(exit_threshold)
|
| 1154 |
+
elif criterion == "none":
|
| 1155 |
+
exit_threshold = 1.0 if exit_threshold == "auto" else float(exit_threshold)
|
| 1156 |
+
else:
|
| 1157 |
+
raise ValueError("Invalid adaptive compute strategy.")
|
| 1158 |
+
|
| 1159 |
+
next_token_logits = None
|
| 1160 |
+
|
| 1161 |
+
# Iterate through compute steps
|
| 1162 |
+
for compute_step in range(max_steps):
|
| 1163 |
+
prev_latents = current_latents.clone()
|
| 1164 |
+
current_latents, block_idx, _ = self.iterate_one_step(
|
| 1165 |
+
embedded_inputs,
|
| 1166 |
+
current_latents,
|
| 1167 |
+
block_idx=block_idx,
|
| 1168 |
+
**aux_inputs,
|
| 1169 |
+
current_step=compute_step,
|
| 1170 |
+
)
|
| 1171 |
+
|
| 1172 |
+
if _ > 0: # do not exit in prefill
|
| 1173 |
+
# Check exit condition for each sequence in batch
|
| 1174 |
+
if criterion == "entropy-diff":
|
| 1175 |
+
prev_entropy = entropy
|
| 1176 |
+
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
| 1177 |
+
logits: torch.Tensor = outputs.logits # type: ignore
|
| 1178 |
+
probs = F.softmax(logits[:, -1, :], dim=-1)
|
| 1179 |
+
entropy = -torch.sum(probs * torch.log(probs + 1e-10), dim=-1)
|
| 1180 |
+
exit_values = (entropy - prev_entropy).abs()
|
| 1181 |
+
elif criterion == "latent-diff":
|
| 1182 |
+
norm_diff = (prev_latents - current_latents).norm(dim=-1) / current_latents.norm(dim=-1)
|
| 1183 |
+
exit_values = norm_diff.mean(dim=-1)
|
| 1184 |
+
elif "kl" in criterion:
|
| 1185 |
+
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
| 1186 |
+
logits: torch.Tensor = outputs.logits # type: ignore
|
| 1187 |
+
prev_log_probs = log_probs
|
| 1188 |
+
if criterion == "minp-kl":
|
| 1189 |
+
probs = F.softmax(logits[:, -1, :].float(), dim=-1)
|
| 1190 |
+
max_probs = probs.max(dim=-1, keepdim=True)[0]
|
| 1191 |
+
probs_mask = probs < (0.1 * max_probs)
|
| 1192 |
+
masked_probs = probs.clone()
|
| 1193 |
+
masked_probs[probs_mask] = 1 / V
|
| 1194 |
+
probs = masked_probs / masked_probs.sum(dim=-1, keepdim=True)
|
| 1195 |
+
log_probs = probs.log()
|
| 1196 |
+
else:
|
| 1197 |
+
log_probs = F.log_softmax(logits[:, -1, :].float(), dim=-1)
|
| 1198 |
+
exit_values = F.kl_div(log_probs, prev_log_probs, reduction="none", log_target=True).sum(dim=-1)
|
| 1199 |
+
elif criterion == "argmax-stability":
|
| 1200 |
+
prev_argmax = current_argmax
|
| 1201 |
+
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
| 1202 |
+
logits: torch.Tensor = outputs.logits # type: ignore
|
| 1203 |
+
current_argmax = logits[:, -1, :].argmax(dim=-1)
|
| 1204 |
+
stable_for_n_steps = torch.where(
|
| 1205 |
+
current_argmax == prev_argmax, stable_for_n_steps + 1, torch.zeros_like(stable_for_n_steps)
|
| 1206 |
+
)
|
| 1207 |
+
exit_values = stable_for_n_steps
|
| 1208 |
+
elif criterion == "none":
|
| 1209 |
+
exit_values = torch.ones(batch_size, device=input_ids.device) * 2.0 * exit_threshold
|
| 1210 |
+
|
| 1211 |
+
# Record values and check exits for each sequence
|
| 1212 |
+
for i in range(batch_size):
|
| 1213 |
+
if not exit_reached[i] and unfinished_sequences[i].bool():
|
| 1214 |
+
exit_values_per_seq[i].append(exit_values[i].item())
|
| 1215 |
+
|
| 1216 |
+
# Check for new exits, respecting unfinished_sequences
|
| 1217 |
+
new_exits = (
|
| 1218 |
+
exit_values < exit_threshold
|
| 1219 |
+
if criterion != "argmax-stability"
|
| 1220 |
+
else exit_values >= exit_threshold
|
| 1221 |
+
)
|
| 1222 |
+
new_exits = new_exits & ~exit_reached & unfinished_sequences.bool()
|
| 1223 |
+
|
| 1224 |
+
if new_exits.any():
|
| 1225 |
+
exit_reached = exit_reached | new_exits
|
| 1226 |
+
if criterion == "latent-diff":
|
| 1227 |
+
# Normally we don't compute the output for latent-diff, but when there is an exit,
|
| 1228 |
+
# we need to compute and save the output
|
| 1229 |
+
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
| 1230 |
+
logits: torch.Tensor = outputs.logits # type: ignore
|
| 1231 |
+
if next_token_logits is None:
|
| 1232 |
+
next_token_logits = logits[:, -1, :].to(**logit_type) # type: ignore
|
| 1233 |
+
else:
|
| 1234 |
+
for i in range(batch_size):
|
| 1235 |
+
if new_exits[i]:
|
| 1236 |
+
next_token_logits[i] = logits[i, -1, :].to(**logit_type) # type: ignore
|
| 1237 |
+
for i in range(batch_size):
|
| 1238 |
+
if new_exits[i]:
|
| 1239 |
+
compute_steps_per_seq[i] = compute_step + 1
|
| 1240 |
+
|
| 1241 |
+
# If all sequences have exited or finished, break early
|
| 1242 |
+
if (exit_reached | ~unfinished_sequences.bool()).all():
|
| 1243 |
+
break
|
| 1244 |
+
# This else is if the for loop finished without breaking
|
| 1245 |
+
else:
|
| 1246 |
+
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
| 1247 |
+
|
| 1248 |
+
# For sequences that didn't exit early, use the final logits
|
| 1249 |
+
if next_token_logits is None:
|
| 1250 |
+
next_token_logits = outputs.logits[:, -1, :].to(**logit_type) # type: ignore
|
| 1251 |
+
else:
|
| 1252 |
+
for i in range(batch_size):
|
| 1253 |
+
if not exit_reached[i] and unfinished_sequences[i].bool():
|
| 1254 |
+
next_token_logits[i] = outputs.logits[i, -1, :].to(**logit_type) # type: ignore
|
| 1255 |
+
compute_steps_per_seq[i] = max_steps
|
| 1256 |
+
|
| 1257 |
+
# Save latent states for continuous compute if enabled
|
| 1258 |
+
if continuous_compute:
|
| 1259 |
+
model_kwargs["input_states"] = current_latents[:, -1:, :]
|
| 1260 |
+
|
| 1261 |
+
# Record compute steps for this token generation
|
| 1262 |
+
compute_steps.append([compute_steps_per_seq, exit_values_per_seq])
|
| 1263 |
+
|
| 1264 |
+
# Sample or select next token based on generation config
|
| 1265 |
+
next_token = self._sample_next_token(next_token_logits, generation_config)
|
| 1266 |
+
|
| 1267 |
+
# Append token to sequence
|
| 1268 |
+
input_ids = torch.cat([input_ids, next_token], dim=-1)
|
| 1269 |
+
|
| 1270 |
+
if streamer:
|
| 1271 |
+
streamer.put(next_token.cpu())
|
| 1272 |
+
|
| 1273 |
+
# Update model kwargs for next iteration
|
| 1274 |
+
model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs)
|
| 1275 |
+
|
| 1276 |
+
# Check for stop tokens and update unfinished sequences
|
| 1277 |
+
for i in range(batch_size):
|
| 1278 |
+
if (
|
| 1279 |
+
unfinished_sequences[i].bool()
|
| 1280 |
+
and stop_tokens is not None
|
| 1281 |
+
and next_token[i, 0].item() in stop_tokens
|
| 1282 |
+
):
|
| 1283 |
+
unfinished_sequences[i] = 0
|
| 1284 |
+
|
| 1285 |
+
# Apply any custom stopping criteria
|
| 1286 |
+
if "stopping_criteria" in model_kwargs:
|
| 1287 |
+
unfinished_sequences = unfinished_sequences & ~model_kwargs["stopping_criteria"](input_ids, None)
|
| 1288 |
+
|
| 1289 |
+
# Break if all sequences are finished
|
| 1290 |
+
if unfinished_sequences.max() == 0:
|
| 1291 |
+
break
|
| 1292 |
+
|
| 1293 |
+
if streamer:
|
| 1294 |
+
streamer.end()
|
| 1295 |
+
|
| 1296 |
+
if generation_config.return_dict_in_generate:
|
| 1297 |
+
return GenerateDecoderOnlyOutput(
|
| 1298 |
+
sequences=input_ids, # type: ignore
|
| 1299 |
+
scores=compute_steps, # type: ignore
|
| 1300 |
+
logits=None,
|
| 1301 |
+
attentions=None,
|
| 1302 |
+
hidden_states=None,
|
| 1303 |
+
past_key_values=model_kwargs.get("past_key_values"),
|
| 1304 |
+
)
|
| 1305 |
+
return input_ids
|
| 1306 |
+
|
| 1307 |
+
def _get_stops(self, generation_config, tokenizer, model_kwargs):
|
| 1308 |
+
stop_tokens = {65504, 65505, 65508} # begin_text, end_text, end_turn
|
| 1309 |
+
if generation_config.eos_token_id is not None:
|
| 1310 |
+
stop_tokens.add(generation_config.eos_token_id)
|
| 1311 |
+
if "stopping_criteria" in model_kwargs and tokenizer is None:
|
| 1312 |
+
tokenizer = model_kwargs["stopping_criteria"][0].tokenizer
|
| 1313 |
+
if hasattr(generation_config, "stop_strings") and tokenizer and generation_config.stop_strings:
|
| 1314 |
+
for s in generation_config.stop_strings:
|
| 1315 |
+
token_id = tokenizer(s, add_special_tokens=False)["input_ids"][0]
|
| 1316 |
+
stop_tokens.add(token_id)
|
| 1317 |
+
return torch.tensor(list(stop_tokens))
|
| 1318 |
+
|
| 1319 |
+
def _sample_next_token(self, next_token_logits, generation_config):
|
| 1320 |
+
"""Helper function to sample the next token."""
|
| 1321 |
+
if generation_config.do_sample:
|
| 1322 |
+
if generation_config.temperature:
|
| 1323 |
+
next_token_logits = next_token_logits.float() / generation_config.temperature
|
| 1324 |
+
|
| 1325 |
+
probs = F.softmax(next_token_logits, dim=-1)
|
| 1326 |
+
|
| 1327 |
+
# Apply top_k
|
| 1328 |
+
if generation_config.top_k:
|
| 1329 |
+
top_k_values, _ = torch.topk(probs, generation_config.top_k, dim=-1)
|
| 1330 |
+
min_values = top_k_values[:, -1].unsqueeze(-1).expand_as(probs)
|
| 1331 |
+
probs = torch.where(probs < min_values, torch.zeros_like(probs), probs)
|
| 1332 |
+
|
| 1333 |
+
# Apply top_p (nucleus sampling)
|
| 1334 |
+
if generation_config.top_p:
|
| 1335 |
+
sorted_probs, sorted_indices = torch.sort(probs, descending=True, dim=-1)
|
| 1336 |
+
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
|
| 1337 |
+
|
| 1338 |
+
# Create mask for probs to keep
|
| 1339 |
+
remove_indices = cumulative_probs > generation_config.top_p
|
| 1340 |
+
remove_indices[:, 0] = False # Keep at least the top probability
|
| 1341 |
+
|
| 1342 |
+
# Convert sorted indices mask back to original indices mask
|
| 1343 |
+
mask = torch.zeros_like(probs, dtype=torch.bool)
|
| 1344 |
+
for i in range(probs.shape[0]):
|
| 1345 |
+
mask[i, sorted_indices[i, remove_indices[i]]] = True
|
| 1346 |
+
|
| 1347 |
+
probs = torch.where(mask, torch.zeros_like(probs), probs)
|
| 1348 |
+
|
| 1349 |
+
# Apply min_p
|
| 1350 |
+
if generation_config.min_p:
|
| 1351 |
+
max_probs = probs.max(dim=-1, keepdim=True)[0]
|
| 1352 |
+
min_p_threshold = generation_config.min_p * max_probs
|
| 1353 |
+
probs = torch.where(probs < min_p_threshold, torch.zeros_like(probs), probs)
|
| 1354 |
+
|
| 1355 |
+
# Renormalize probabilities
|
| 1356 |
+
probs = probs / probs.sum(dim=-1, keepdim=True).clamp(min=1e-10)
|
| 1357 |
+
|
| 1358 |
+
# Sample from the distribution
|
| 1359 |
+
return torch.multinomial(probs, num_samples=1)
|
| 1360 |
+
else:
|
| 1361 |
+
return torch.argmax(next_token_logits, dim=-1, keepdim=True)
|
| 1362 |
+
|
| 1363 |
+
@torch.no_grad()
|
| 1364 |
+
def generate_speculative(
|
| 1365 |
+
self,
|
| 1366 |
+
input_ids: torch.Tensor,
|
| 1367 |
+
generation_config: Optional[GenerationConfig] = None, # type: ignore
|
| 1368 |
+
tokenizer=None,
|
| 1369 |
+
streamer=None,
|
| 1370 |
+
continuous_compute=False, # warm-start state / continuous CoT
|
| 1371 |
+
init_scale: float = 1.0,
|
| 1372 |
+
cache_lookup_strategy: str = "full",
|
| 1373 |
+
draft_steps=32,
|
| 1374 |
+
lookahead_for_draft=8,
|
| 1375 |
+
verification_threshold=1,
|
| 1376 |
+
num_steps: int = 32, # intercept deliberately
|
| 1377 |
+
**model_kwargs,
|
| 1378 |
+
) -> Union[torch.Tensor, dict[str, Any]]:
|
| 1379 |
+
"""Batched speculative decoding with per-sequence acceptance."""
|
| 1380 |
+
assert lookahead_for_draft > 0
|
| 1381 |
+
pad_id = 65509
|
| 1382 |
+
model_kwargs, generation_config, max_new_tokens = self._prep_generate_args(
|
| 1383 |
+
input_ids, generation_config, cache_lookup_strategy, model_kwargs
|
| 1384 |
+
)
|
| 1385 |
+
stop_tokens = self._get_stops(generation_config, tokenizer, model_kwargs).to(input_ids.device)
|
| 1386 |
+
unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
|
| 1387 |
+
|
| 1388 |
+
# Set up continuous compute if enabled
|
| 1389 |
+
if continuous_compute:
|
| 1390 |
+
embedded_inputs, _ = self.embed_inputs(input_ids)
|
| 1391 |
+
model_kwargs["input_states"] = self.initialize_state(embedded_inputs, scale=init_scale)
|
| 1392 |
+
|
| 1393 |
+
tokens_generated = 0
|
| 1394 |
+
# Prefill cache with full num_steps
|
| 1395 |
+
if model_kwargs["past_key_values"].get_seq_length() == 0:
|
| 1396 |
+
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
| 1397 |
+
outputs = self(**model_inputs, num_steps=num_steps, init_scale=init_scale)
|
| 1398 |
+
next_token = self._sample_next_token(
|
| 1399 |
+
outputs.logits[:, -1, :].to(copy=True, dtype=torch.float32), generation_config
|
| 1400 |
+
)
|
| 1401 |
+
input_ids = torch.cat([input_ids, next_token], dim=-1)
|
| 1402 |
+
tokens_generated += 1
|
| 1403 |
+
if streamer:
|
| 1404 |
+
streamer.put(next_token.cpu())
|
| 1405 |
+
model_kwargs["cache_position"] = torch.as_tensor(
|
| 1406 |
+
[model_inputs["past_key_values"].get_seq_length()], device=input_ids.device
|
| 1407 |
+
)
|
| 1408 |
+
if continuous_compute:
|
| 1409 |
+
model_kwargs["input_states"] = outputs.latent_states[:, -1:, :]
|
| 1410 |
+
|
| 1411 |
+
# Generate tokens
|
| 1412 |
+
batch_size, prefix_seq_len = input_ids.shape[0], input_ids.shape[1]
|
| 1413 |
+
accepted_tokens = []
|
| 1414 |
+
|
| 1415 |
+
while tokens_generated < max_new_tokens:
|
| 1416 |
+
### Run the next draft ####
|
| 1417 |
+
drafted_inputs = input_ids.clone()
|
| 1418 |
+
current_len = input_ids.shape[1]
|
| 1419 |
+
|
| 1420 |
+
for _ in range(lookahead_for_draft):
|
| 1421 |
+
model_inputs = self.prepare_inputs_for_generation(drafted_inputs, **model_kwargs)
|
| 1422 |
+
outputs = self(**model_inputs, num_steps=draft_steps, init_scale=init_scale)
|
| 1423 |
+
next_token_logits = outputs.logits[:, -1, :].to(copy=True, dtype=torch.float32)
|
| 1424 |
+
next_token = self._sample_next_token(next_token_logits, generation_config)
|
| 1425 |
+
drafted_inputs = torch.cat([drafted_inputs, next_token], dim=-1)
|
| 1426 |
+
model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + 1
|
| 1427 |
+
if continuous_compute:
|
| 1428 |
+
model_kwargs["input_states"] = outputs.latent_states[:, -1:, :]
|
| 1429 |
+
|
| 1430 |
+
model_kwargs["past_key_values"].clear_last_k_entries(lookahead_for_draft)
|
| 1431 |
+
|
| 1432 |
+
## Verify drafted tokens ###
|
| 1433 |
+
model_kwargs["cache_position"] = torch.arange(
|
| 1434 |
+
current_len - 1, current_len + lookahead_for_draft - 1, device=input_ids.device
|
| 1435 |
+
)
|
| 1436 |
+
model_inputs = self.prepare_inputs_for_generation(drafted_inputs, **model_kwargs)
|
| 1437 |
+
outputs = self(**model_inputs, num_steps=num_steps, init_scale=init_scale)
|
| 1438 |
+
verified_next_token_preds = outputs.logits.argmax(dim=-1)
|
| 1439 |
+
|
| 1440 |
+
if verification_threshold >= 1:
|
| 1441 |
+
mismatched_tokens = (
|
| 1442 |
+
verified_next_token_preds[:, -lookahead_for_draft:] != drafted_inputs[:, current_len:]
|
| 1443 |
+
)
|
| 1444 |
+
not_all_matched, first_mismatch = torch.max(mismatched_tokens, dim=1)
|
| 1445 |
+
else:
|
| 1446 |
+
verified_logits = outputs.logits[:, -lookahead_for_draft:, :]
|
| 1447 |
+
verified_probs = F.softmax(verified_logits, dim=-1)
|
| 1448 |
+
drafted_token_probs = torch.gather(
|
| 1449 |
+
verified_probs, -1, drafted_inputs[:, current_len:].unsqueeze(-1)
|
| 1450 |
+
).squeeze(-1)
|
| 1451 |
+
max_probs = verified_probs.max(dim=-1)[0]
|
| 1452 |
+
verification_passed = drafted_token_probs >= verification_threshold * max_probs
|
| 1453 |
+
not_all_matched, first_mismatch = torch.max(~verification_passed, dim=1)
|
| 1454 |
+
|
| 1455 |
+
# Per-sequence acceptance handling
|
| 1456 |
+
acceptance_lengths = torch.where(not_all_matched, first_mismatch, lookahead_for_draft)
|
| 1457 |
+
|
| 1458 |
+
# Build next_tokens for each sequence
|
| 1459 |
+
next_tokens_batch = []
|
| 1460 |
+
for i in range(batch_size):
|
| 1461 |
+
seq_acceptance = acceptance_lengths[i].item()
|
| 1462 |
+
if not_all_matched[i] and seq_acceptance < lookahead_for_draft:
|
| 1463 |
+
# Accept up to mismatch + sample final token
|
| 1464 |
+
accepted_part = drafted_inputs[i : i + 1, current_len : current_len + seq_acceptance]
|
| 1465 |
+
final_token_logits = outputs.logits[i : i + 1, seq_acceptance, :].to(copy=True, dtype=torch.float32)
|
| 1466 |
+
final_token = self._sample_next_token(final_token_logits, generation_config)
|
| 1467 |
+
seq_tokens = torch.cat([accepted_part, final_token], dim=-1) if seq_acceptance > 0 else final_token
|
| 1468 |
+
else:
|
| 1469 |
+
# Accept all drafted tokens
|
| 1470 |
+
seq_tokens = drafted_inputs[i : i + 1, current_len : current_len + seq_acceptance]
|
| 1471 |
+
next_tokens_batch.append(seq_tokens)
|
| 1472 |
+
|
| 1473 |
+
# Clean up KV cache - only if any sequence had mismatches
|
| 1474 |
+
if not_all_matched.any():
|
| 1475 |
+
min_first_mismatch = first_mismatch.min().item()
|
| 1476 |
+
model_inputs["past_key_values"].clear_last_k_entries(lookahead_for_draft - min_first_mismatch - 1)
|
| 1477 |
+
|
| 1478 |
+
# Concatenate accepted tokens to input_ids
|
| 1479 |
+
batch_accepted_counts = [tokens.shape[1] for tokens in next_tokens_batch]
|
| 1480 |
+
max_len = max(batch_accepted_counts)
|
| 1481 |
+
padded_tokens = [
|
| 1482 |
+
torch.cat(
|
| 1483 |
+
[
|
| 1484 |
+
tokens,
|
| 1485 |
+
pad_id * torch.ones((1, max_len - tokens.shape[1]), dtype=tokens.dtype, device=tokens.device),
|
| 1486 |
+
],
|
| 1487 |
+
dim=-1,
|
| 1488 |
+
)
|
| 1489 |
+
if tokens.shape[1] < max_len
|
| 1490 |
+
else tokens
|
| 1491 |
+
for tokens in next_tokens_batch
|
| 1492 |
+
]
|
| 1493 |
+
next_tokens = torch.cat(padded_tokens, dim=0)
|
| 1494 |
+
input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
| 1495 |
+
|
| 1496 |
+
accepted_tokens.append(batch_accepted_counts)
|
| 1497 |
+
tokens_generated += max(batch_accepted_counts)
|
| 1498 |
+
|
| 1499 |
+
if streamer:
|
| 1500 |
+
streamer.put(next_tokens_batch[0].cpu())
|
| 1501 |
+
|
| 1502 |
+
model_kwargs["cache_position"] = torch.as_tensor(
|
| 1503 |
+
[model_inputs["past_key_values"].get_seq_length()], device=input_ids.device
|
| 1504 |
+
)
|
| 1505 |
+
if continuous_compute:
|
| 1506 |
+
model_kwargs["input_states"] = outputs.latent_states[:, -1:, :]
|
| 1507 |
+
|
| 1508 |
+
# Check stopping conditions
|
| 1509 |
+
if stop_tokens is not None:
|
| 1510 |
+
for i in range(batch_size):
|
| 1511 |
+
if unfinished_sequences[i] and torch.isin(next_tokens_batch[i], stop_tokens).any():
|
| 1512 |
+
unfinished_sequences[i] = 0
|
| 1513 |
+
if "stopping_criteria" in model_kwargs:
|
| 1514 |
+
unfinished_sequences = unfinished_sequences & ~model_kwargs["stopping_criteria"](input_ids, None)
|
| 1515 |
+
if unfinished_sequences.max() == 0:
|
| 1516 |
+
break
|
| 1517 |
+
|
| 1518 |
+
if streamer:
|
| 1519 |
+
streamer.end()
|
| 1520 |
+
|
| 1521 |
+
# Cut off extraneous parts of the sequence per batch element
|
| 1522 |
+
if stop_tokens is not None:
|
| 1523 |
+
for i in range(batch_size):
|
| 1524 |
+
stop_positions = torch.isin(input_ids[i, prefix_seq_len:], stop_tokens).nonzero()
|
| 1525 |
+
if len(stop_positions) > 0:
|
| 1526 |
+
input_ids[i, prefix_seq_len + stop_positions[0].item() + 1 :] = pad_id
|
| 1527 |
+
# Trim tensor to remove columns that are pad_id across all sequences
|
| 1528 |
+
non_pad_mask = input_ids != pad_id
|
| 1529 |
+
last_real_token = non_pad_mask.any(dim=0).nonzero()
|
| 1530 |
+
if len(last_real_token) > 0:
|
| 1531 |
+
input_ids = input_ids[:, : last_real_token[-1].item() + 1]
|
| 1532 |
+
|
| 1533 |
+
if generation_config.return_dict_in_generate:
|
| 1534 |
+
return GenerateDecoderOnlyOutput(
|
| 1535 |
+
sequences=input_ids, # type: ignore
|
| 1536 |
+
scores=accepted_tokens, # type: ignore
|
| 1537 |
+
logits=None,
|
| 1538 |
+
attentions=None,
|
| 1539 |
+
hidden_states=None,
|
| 1540 |
+
past_key_values=model_kwargs.get("past_key_values"),
|
| 1541 |
+
)
|
| 1542 |
+
return input_ids
|
| 1543 |
+
|
| 1544 |
+
def get_stats(self, logits, x, latent_states, xk, input_embeds, num_steps_no_grad, num_steps_with_grad):
|
| 1545 |
+
probs = torch.softmax(logits.float(), dim=-1)
|
| 1546 |
+
prob_entropy = torch.where(probs > 0, -probs * probs.log(), 0).sum(dim=-1)
|
| 1547 |
+
residual_diff = (x - latent_states).norm(dim=-1)
|
| 1548 |
+
rel_residual = residual_diff / latent_states.norm(dim=-1)
|
| 1549 |
+
stats = {
|
| 1550 |
+
"entropy": prob_entropy,
|
| 1551 |
+
"residual_diff": residual_diff,
|
| 1552 |
+
"rel_residual": rel_residual,
|
| 1553 |
+
"num_steps_no_grad": num_steps_no_grad,
|
| 1554 |
+
"num_steps_with_grad": num_steps_with_grad,
|
| 1555 |
+
}
|
| 1556 |
+
return stats
|
| 1557 |
+
|
| 1558 |
+
|
| 1559 |
+
#################################### HF registration ############################################################
|
| 1560 |
+
|
| 1561 |
+
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
| 1562 |
+
|
| 1563 |
+
# New
|
| 1564 |
+
RavenConfig.register_for_auto_class()
|
| 1565 |
+
|
| 1566 |
+
RavenForCausalLM.register_for_auto_class("AutoModel")
|
| 1567 |
+
RavenForCausalLM.register_for_auto_class("AutoModelForCausalLM")
|
| 1568 |
+
|
| 1569 |
+
# Old?
|
| 1570 |
+
AutoConfig.register("huginn_raven", RavenConfig)
|
| 1571 |
+
AutoModel.register(RavenConfig, RavenForCausalLM)
|
| 1572 |
+
AutoModelForCausalLM.register(RavenConfig, RavenForCausalLM)
|