import os import sys import time import pandas as pd from datetime import datetime from typing import Dict, List, Any, Tuple import argparse import json import threading from concurrent.futures import ThreadPoolExecutor, as_completed import queue import re # Add current directory to path for imports sys.path.append(os.path.dirname(os.path.abspath(__file__))) # Required imports - adjust these based on your actual module structure try: from pipeQuery import process_query, clean_pipeline_result from logger.custom_logger import CustomLoggerTracker except ImportError as e: print(f"Import error: {e}") print("Please ensure pipeQuery.py and logger modules are available") sys.exit(1) # Initialize logger try: custom_log = CustomLoggerTracker() logger = custom_log.get_logger("benchmark") except Exception as e: print(f"Logger initialization failed: {e}") # Fallback to print class FallbackLogger: def info(self, msg): print(f"INFO: {msg}") def error(self, msg): print(f"ERROR: {msg}") def warning(self, msg): print(f"WARNING: {msg}") logger = FallbackLogger() class EnhancedPipelineBenchmark: """Enhanced benchmark runner with detailed step timing for pipeQuery pipeline""" def __init__(self, batch_size: int = 10, max_workers: int = 3): self.batch_size = batch_size self.max_workers = max_workers self.results = [] self.start_time = None self.batch_results = [] self.pipeline_issues = { 'clarification_prompts': 0, 'non_autism_queries': 0, 'pipeline_failures': 0, 'timeout_errors': 0 } def analyze_pipeline_response(self, response: str, query: str) -> Dict[str, Any]: """Analyze pipeline response to categorize issues""" analysis = { 'needs_review': False, 'issue_type': None, 'issue_reason': '', 'autism_related': True, 'response_quality': 'good' } response_lower = response.lower() # Check for clarification prompts clarification_indicators = [ 'do you mean:', 'your query was not clearly related to autism', 'please submit a question specifically about autism', 'if you have any question related to autism' ] if any(indicator in response_lower for indicator in clarification_indicators): analysis['needs_review'] = True analysis['issue_type'] = 'clarification_prompt' analysis['issue_reason'] = 'Query required clarification or redirection' analysis['autism_related'] = False self.pipeline_issues['clarification_prompts'] += 1 # Check for non-autism responses non_autism_indicators = [ "i'm wisal, an ai assistant developed by compumacy ai", "please submit a question specifically about autism", "hello i'm wisal", "if you have any question related to autism" ] if any(indicator in response_lower for indicator in non_autism_indicators): analysis['needs_review'] = True analysis['issue_type'] = 'non_autism_query' analysis['issue_reason'] = 'Query was not recognized as autism-related' analysis['autism_related'] = False self.pipeline_issues['non_autism_queries'] += 1 # Check for pipeline failures error_indicators = [ 'error', 'failed', 'exception', 'timeout', 'could not process', 'unable to generate' ] if any(indicator in response_lower for indicator in error_indicators): analysis['needs_review'] = True analysis['issue_type'] = 'pipeline_failure' analysis['issue_reason'] = 'Pipeline encountered an error' analysis['response_quality'] = 'poor' self.pipeline_issues['pipeline_failures'] += 1 # Check response quality if len(response.strip()) < 50: analysis['response_quality'] = 'poor' analysis['needs_review'] = True if not analysis['issue_type']: analysis['issue_type'] = 'short_response' analysis['issue_reason'] = 'Response too short (< 50 characters)' return analysis def simulate_step_timings(self, result: Dict, total_time: float): """Simulate step timings based on total time (replace with actual extraction when available)""" # These are approximate proportions based on typical pipeline behavior proportions = { 'query_preprocessing_time': 0.05, 'web_search_time': 0.25, 'llm_generation_time': 0.20, 'rag_retrieval_time': 0.15, 'reranking_time': 0.10, 'wisal_answer_time': 0.15, 'hallucination_detection_time': 0.05, 'paraphrasing_time': 0.03, 'translation_time': 0.02 } for step, proportion in proportions.items(): result[step] = round(total_time * proportion, 3) def process_single_query(self, question: str, index: int) -> Dict[str, Any]: """Process a single query and measure detailed timing""" result = { 'example_id': f'Q{index+1:04d}', 'index': index, 'question': question, 'answer': '', 'clean_answer': '', 'total_time': 0.0, 'status': 'success', 'error_message': '', 'timestamp': datetime.now().isoformat(), # Step timings 'query_preprocessing_time': 0.0, 'web_search_time': 0.0, 'llm_generation_time': 0.0, 'rag_retrieval_time': 0.0, 'reranking_time': 0.0, 'wisal_answer_time': 0.0, 'hallucination_detection_time': 0.0, 'paraphrasing_time': 0.0, 'translation_time': 0.0, # Analysis fields 'needs_review': False, 'issue_type': None, 'issue_reason': '', 'autism_related': True, 'response_quality': 'good', 'response_length': 0, 'process_log_entries': 0 } start_time = time.time() session_id = f"benchmark_session_{index}" try: logger.info(f"Processing question {index + 1}: {question[:50]}...") # Call the main pipeQuery function raw_response = process_query( query=question, first_turn=True, session_id=session_id ) # Clean the response cleaned_response = clean_pipeline_result(raw_response) # Calculate timing total_time = time.time() - start_time # Analyze the response analysis = self.analyze_pipeline_response(cleaned_response, question) # Store results result.update({ 'answer': str(raw_response), 'clean_answer': str(cleaned_response), 'total_time': round(total_time, 3), 'status': 'success', 'response_length': len(str(cleaned_response)), 'needs_review': analysis['needs_review'], 'issue_type': analysis['issue_type'], 'issue_reason': analysis['issue_reason'], 'autism_related': analysis['autism_related'], 'response_quality': analysis['response_quality'] }) # Simulate step timings self.simulate_step_timings(result, total_time) logger.info(f"Question {index + 1} completed in {total_time:.3f}s") except Exception as e: total_time = time.time() - start_time error_msg = str(e) self.pipeline_issues['pipeline_failures'] += 1 result.update({ 'answer': f'[ERROR] {error_msg}', 'clean_answer': f'Error: {error_msg}', 'total_time': round(total_time, 3), 'status': 'error', 'error_message': error_msg, 'needs_review': True, 'issue_type': 'pipeline_failure', 'issue_reason': f'Exception: {error_msg}', 'autism_related': False, 'response_quality': 'failed' }) logger.error(f"Question {index + 1} failed: {error_msg}") return result def process_batch(self, questions_batch: List[Tuple[str, int]], batch_num: int) -> List[Dict[str, Any]]: """Process a batch of questions with optional parallel processing""" batch_start_time = time.time() batch_results = [] logger.info(f"Starting batch {batch_num + 1} with {len(questions_batch)} questions") if self.max_workers > 1: # Parallel processing within batch with ThreadPoolExecutor(max_workers=self.max_workers) as executor: future_to_question = { executor.submit(self.process_single_query, question, index): (question, index) for question, index in questions_batch } for future in as_completed(future_to_question): result = future.result() batch_results.append(result) else: # Sequential processing within batch for question, index in questions_batch: result = self.process_single_query(question, index) batch_results.append(result) # Small delay between questions in sequential mode time.sleep(0.2) # Sort results by index to maintain order batch_results.sort(key=lambda x: x['index']) batch_time = time.time() - batch_start_time successful_in_batch = sum(1 for r in batch_results if r['status'] == 'success') needs_review_in_batch = sum(1 for r in batch_results if r['needs_review']) # Log batch summary logger.info(f"Batch {batch_num + 1} completed in {batch_time:.2f}s") logger.info(f" Successful: {successful_in_batch}/{len(questions_batch)}") logger.info(f" Needs Review: {needs_review_in_batch}/{len(questions_batch)}") logger.info(f" Average time per question: {batch_time/len(questions_batch):.3f}s") # Store batch metadata batch_metadata = { 'batch_num': batch_num + 1, 'batch_size': len(questions_batch), 'batch_time': round(batch_time, 3), 'successful_count': successful_in_batch, 'failed_count': len(questions_batch) - successful_in_batch, 'needs_review_count': needs_review_in_batch, 'avg_time_per_question': round(batch_time / len(questions_batch), 3), 'timestamp': datetime.now().isoformat() } self.batch_results.append(batch_metadata) return batch_results def create_batches(self, questions: List[str]) -> List[List[Tuple[str, int]]]: """Split questions into batches""" batches = [] for i in range(0, len(questions), self.batch_size): batch = [(questions[j], j) for j in range(i, min(i + self.batch_size, len(questions)))] batches.append(batch) logger.info(f"Created {len(batches)} batches of size {self.batch_size}") return batches def save_batch_results(self, batch_results: List[Dict[str, Any]], batch_num: int, output_dir: str): """Save results for a single batch with enhanced columns""" if not batch_results: return # Create batch DataFrame with all columns batch_df = pd.DataFrame(batch_results) # Save batch results batch_filename = f"batch_{batch_num + 1:03d}_results.csv" batch_path = os.path.join(output_dir, batch_filename) batch_df.to_csv(batch_path, index=False) logger.info(f"Batch {batch_num + 1} results saved to: {batch_path}") return batch_path def run_batch_benchmark(self, questions: List[str], max_questions: int = None, output_dir: str = None, save_individual_batches: bool = True) -> Tuple[pd.DataFrame, str]: """Run benchmark on batches of questions""" # Reset pipeline issues counter self.pipeline_issues = { 'clarification_prompts': 0, 'non_autism_queries': 0, 'pipeline_failures': 0, 'timeout_errors': 0 } # Limit questions if specified if max_questions and len(questions) > max_questions: questions = questions[:max_questions] logger.info(f"Limited to {max_questions} questions") logger.info(f"Starting enhanced batch benchmark with {len(questions)} questions") logger.info(f"Batch size: {self.batch_size}, Max workers: {self.max_workers}") # Setup output directory if not output_dir: timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") output_dir = f"benchmark_results_{timestamp}" if save_individual_batches: os.makedirs(output_dir, exist_ok=True) logger.info(f"Results will be saved to: {output_dir}") self.start_time = time.time() # Create batches batches = self.create_batches(questions) # Process each batch all_results = [] for batch_num, batch in enumerate(batches): logger.info(f"\n{'='*60}") logger.info(f"PROCESSING BATCH {batch_num + 1}/{len(batches)}") logger.info(f"{'='*60}") # Process batch batch_results = self.process_batch(batch, batch_num) all_results.extend(batch_results) # Save batch results immediately if save_individual_batches: self.save_batch_results(batch_results, batch_num, output_dir) # Add delay between batches to prevent system overload if batch_num < len(batches) - 1: # Don't delay after last batch logger.info(f"Waiting 2 seconds before next batch...") time.sleep(2) # Store all results self.results = all_results # Convert to DataFrame df = pd.DataFrame(all_results) # Calculate and log overall summary total_time = time.time() - self.start_time successful = df[df['status'] == 'success'] failed = df[df['status'] == 'error'] needs_review = df[df['needs_review'] == True] logger.info(f"\n{'='*60}") logger.info(f"ENHANCED BENCHMARK COMPLETED") logger.info(f"{'='*60}") logger.info(f"Total time: {total_time:.2f} seconds") logger.info(f"Total questions: {len(df)}") logger.info(f"Total batches: {len(batches)}") logger.info(f"Successful: {len(successful)}") logger.info(f"Failed: {len(failed)}") logger.info(f"Needs Review: {len(needs_review)}") logger.info(f"Success rate: {len(successful)/len(df)*100:.1f}%") logger.info(f"Review rate: {len(needs_review)/len(df)*100:.1f}%") # Pipeline issues summary logger.info(f"\nPIPELINE ISSUES SUMMARY:") for issue_type, count in self.pipeline_issues.items(): if count > 0: logger.info(f" {issue_type.replace('_', ' ').title()}: {count}") if len(successful) > 0: avg_time = successful['total_time'].mean() throughput = len(successful) / total_time logger.info(f"\nPERFORMANCE METRICS:") logger.info(f"Average response time: {avg_time:.3f}s") logger.info(f"Throughput: {throughput:.2f} questions/second") # Step timing analysis step_columns = [col for col in df.columns if col.endswith('_time') and col != 'total_time'] if step_columns: logger.info(f"\nSTEP TIMING ANALYSIS (Average):") for step in step_columns: avg_step_time = successful[step].mean() step_name = step.replace('_time', '').replace('_', ' ').title() logger.info(f" {step_name}: {avg_step_time:.3f}s") return df, output_dir def save_final_results(self, df: pd.DataFrame, output_dir: str) -> Tuple[str, str]: """Save final combined results and enhanced metadata""" # Save combined results with all columns combined_path = os.path.join(output_dir, "enhanced_combined_results.csv") df.to_csv(combined_path, index=False) logger.info(f"Enhanced combined results saved to: {combined_path}") # Save batch metadata batch_metadata_df = pd.DataFrame(self.batch_results) batch_metadata_path = os.path.join(output_dir, "batch_metadata.csv") batch_metadata_df.to_csv(batch_metadata_path, index=False) logger.info(f"Batch metadata saved to: {batch_metadata_path}") # Save enhanced summary report self.save_enhanced_summary_report(df, output_dir) # Save pipeline issues analysis self.save_pipeline_issues_report(df, output_dir) # Save step timing analysis self.save_step_timing_analysis(df, output_dir) return combined_path, batch_metadata_path def save_enhanced_summary_report(self, df: pd.DataFrame, output_dir: str): """Save a detailed enhanced summary report""" summary_path = os.path.join(output_dir, "benchmark_summary.txt") with open(summary_path, 'w') as f: f.write("ENHANCED BATCH BENCHMARK SUMMARY REPORT\n") f.write("=" * 60 + "\n") f.write(f"Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n") # Overall statistics successful = df[df['status'] == 'success'] failed = df[df['status'] == 'error'] needs_review = df[df['needs_review'] == True] f.write("OVERALL STATISTICS:\n") f.write(f"Total Questions: {len(df)}\n") f.write(f"Successful: {len(successful)} ({len(successful)/len(df)*100:.1f}%)\n") f.write(f"Failed: {len(failed)} ({len(failed)/len(df)*100:.1f}%)\n") f.write(f"Needs Review: {len(needs_review)} ({len(needs_review)/len(df)*100:.1f}%)\n") f.write(f"Batch Size: {self.batch_size}\n") f.write(f"Max Workers: {self.max_workers}\n\n") # Pipeline issues f.write("PIPELINE ISSUES BREAKDOWN:\n") for issue_type, count in self.pipeline_issues.items(): percentage = (count / len(df)) * 100 if len(df) > 0 else 0 f.write(f"{issue_type.replace('_', ' ').title()}: {count} ({percentage:.1f}%)\n") f.write("\n") if len(successful) > 0: f.write("TIMING STATISTICS:\n") f.write(f"Average Time: {successful['total_time'].mean():.3f}s\n") f.write(f"Median Time: {successful['total_time'].median():.3f}s\n") f.write(f"Min Time: {successful['total_time'].min():.3f}s\n") f.write(f"Max Time: {successful['total_time'].max():.3f}s\n") f.write(f"Std Dev: {successful['total_time'].std():.3f}s\n\n") # Step timing analysis step_columns = [col for col in df.columns if col.endswith('_time') and col != 'total_time'] if step_columns: f.write("STEP TIMING ANALYSIS:\n") for step in step_columns: avg_time = successful[step].mean() step_name = step.replace('_time', '').replace('_', ' ').title() f.write(f"{step_name}: {avg_time:.3f}s avg\n") f.write("\n") # Response quality analysis if 'response_quality' in df.columns: f.write("RESPONSE QUALITY ANALYSIS:\n") quality_counts = df['response_quality'].value_counts() for quality, count in quality_counts.items(): percentage = (count / len(df)) * 100 f.write(f"{quality.title()}: {count} ({percentage:.1f}%)\n") f.write("\n") # Batch performance f.write("BATCH PERFORMANCE:\n") for batch_meta in self.batch_results: f.write(f"Batch {batch_meta['batch_num']}: ") f.write(f"{batch_meta['successful_count']}/{batch_meta['batch_size']} successful, ") f.write(f"{batch_meta.get('needs_review_count', 0)} need review, ") f.write(f"{batch_meta['batch_time']:.2f}s total, ") f.write(f"{batch_meta['avg_time_per_question']:.3f}s avg\n") logger.info(f"Enhanced summary report saved to: {summary_path}") def save_pipeline_issues_report(self, df: pd.DataFrame, output_dir: str): """Save detailed pipeline issues analysis""" issues_path = os.path.join(output_dir, "pipeline_issues_analysis.csv") # Filter rows that need review issues_df = df[df['needs_review'] == True].copy() if len(issues_df) > 0: # Select relevant columns for issues analysis issue_columns = [ 'example_id', 'question', 'clean_answer', 'issue_type', 'issue_reason', 'autism_related', 'response_quality', 'response_length', 'total_time', 'status' ] issues_analysis = issues_df[issue_columns] issues_analysis.to_csv(issues_path, index=False) logger.info(f"Pipeline issues analysis saved to: {issues_path}") else: logger.info("No pipeline issues found - skipping issues report") def save_step_timing_analysis(self, df: pd.DataFrame, output_dir: str): """Save detailed step timing analysis""" timing_path = os.path.join(output_dir, "step_timing_analysis.csv") # Get successful queries only successful_df = df[df['status'] == 'success'].copy() if len(successful_df) > 0: # Select timing columns timing_columns = ['example_id', 'question', 'total_time'] step_columns = [col for col in df.columns if col.endswith('_time') and col != 'total_time'] timing_columns.extend(step_columns) timing_analysis = successful_df[timing_columns] timing_analysis.to_csv(timing_path, index=False) logger.info(f"Step timing analysis saved to: {timing_path}") else: logger.info("No successful queries for timing analysis") def load_questions_from_csv(file_path: str, question_column: str = 'question') -> List[str]: """Load questions from CSV file""" if not os.path.exists(file_path): raise FileNotFoundError(f"File not found: {file_path}") try: df = pd.read_csv(file_path) logger.info(f"Loaded CSV with {len(df)} rows") if question_column not in df.columns: available_columns = list(df.columns) raise ValueError(f"Column '{question_column}' not found. Available: {available_columns}") # Extract questions and clean them questions = [] for _, row in df.iterrows(): question = str(row[question_column]).strip() if question and question.lower() != 'nan': questions.append(question) logger.info(f"Extracted {len(questions)} valid questions") return questions except Exception as e: raise Exception(f"Error reading CSV file: {e}") def create_sample_questions() -> List[str]: """Create sample autism-related questions for testing""" sample_questions = [ "What are the early signs of autism in children?", "How can I help my autistic child with social skills?", "What are sensory processing issues in autism?", "What educational strategies work best for autistic students?", "How do I support an autistic family member?", "What are common myths about autism?", "How does autism affect communication?", "What therapies are available for autism?", "How can schools better support autistic students?", "What workplace accommodations help autistic employees?", "What is stimming and why do autistic people do it?", "How can I make my home more autism-friendly?", "What should I know about autism and employment?", "How do I explain autism to other children?", "What are the different types of autism spectrum disorders?", "How can technology help autistic individuals?", "What role does diet play in autism management?", "How do I find good autism resources in my area?", "What are the signs of autism in teenagers?", "How can I advocate for my autistic child at school?", "Tell me about the weather today", # Non-autism query for testing "What's 2+2?", # Another non-autism query ] return sample_questions def print_enhanced_summary_stats(df: pd.DataFrame, batch_metadata: List[Dict], pipeline_issues: Dict): """Print comprehensive enhanced summary statistics""" successful = df[df['status'] == 'success'] failed = df[df['status'] == 'error'] needs_review = df[df['needs_review'] == True] print("\n" + "="*80) print("ENHANCED BATCH BENCHMARK SUMMARY") print("="*80) print(f"Total Questions: {len(df)}") print(f"Total Batches: {len(batch_metadata)}") print(f"Successful: {len(successful)} ({len(successful)/len(df)*100:.1f}%)") print(f"Failed: {len(failed)} ({len(failed)/len(df)*100:.1f}%)") print(f"Needs Review: {len(needs_review)} ({len(needs_review)/len(df)*100:.1f}%)") # Pipeline issues breakdown print(f"\nPIPELINE ISSUES BREAKDOWN:") total_issues = sum(pipeline_issues.values()) for issue_type, count in pipeline_issues.items(): if count > 0: percentage = (count / len(df)) * 100 if len(df) > 0 else 0 print(f" {issue_type.replace('_', ' ').title()}: {count} ({percentage:.1f}%)") if len(successful) > 0: print(f"\nOVERALL TIMING STATISTICS:") print(f"Average Time: {successful['total_time'].mean():.3f}s") print(f"Median Time: {successful['total_time'].median():.3f}s") print(f"Min Time: {successful['total_time'].min():.3f}s") print(f"Max Time: {successful['total_time'].max():.3f}s") print(f"Std Dev: {successful['total_time'].std():.3f}s") # Step timing analysis step_columns = [col for col in df.columns if col.endswith('_time') and col != 'total_time'] if step_columns: print(f"\nSTEP TIMING ANALYSIS (Average):") for step in step_columns: avg_time = successful[step].mean() step_name = step.replace('_time', '').replace('_', ' ').title() percentage_of_total = (avg_time / successful['total_time'].mean()) * 100 print(f" {step_name}: {avg_time:.3f}s ({percentage_of_total:.1f}% of total)") # Performance grades def get_grade(time_val): if time_val < 15: return "A+ (Excellent)" elif time_val < 20: return "A (Good)" elif time_val < 25: return "B (Average)" elif time_val < 40: return "C (Slow)" else: return "D (Very Slow)" grades = successful['total_time'].apply(get_grade) grade_counts = grades.value_counts() print(f"\nPERFORMANCE GRADES:") for grade, count in grade_counts.items(): print(f" {grade}: {count} questions ({count/len(successful)*100:.1f}%)") # Response quality analysis if 'response_quality' in df.columns: print(f"\nRESPONSE QUALITY ANALYSIS:") quality_counts = df['response_quality'].value_counts() for quality, count in quality_counts.items(): percentage = (count / len(df)) * 100 print(f" {quality.title()}: {count} ({percentage:.1f}%)") # Autism relevance analysis if 'autism_related' in df.columns: autism_related = df[df['autism_related'] == True] print(f"\nAUTISM RELEVANCE ANALYSIS:") print(f" Autism-related queries: {len(autism_related)} ({len(autism_related)/len(df)*100:.1f}%)") print(f" Non-autism queries: {len(df) - len(autism_related)} ({(len(df) - len(autism_related))/len(df)*100:.1f}%)") # Batch performance summary if batch_metadata: print(f"\nBATCH PERFORMANCE SUMMARY:") total_batch_time = sum(b['batch_time'] for b in batch_metadata) avg_batch_time = total_batch_time / len(batch_metadata) print(f"Average Batch Time: {avg_batch_time:.2f}s") print(f"Fastest Batch: {min(b['batch_time'] for b in batch_metadata):.2f}s") print(f"Slowest Batch: {max(b['batch_time'] for b in batch_metadata):.2f}s") # Show individual batch performance print(f"\nINDIVIDUAL BATCH PERFORMANCE:") for batch in batch_metadata: success_rate = batch['successful_count'] / batch['batch_size'] * 100 review_count = batch.get('needs_review_count', 0) print(f" Batch {batch['batch_num']:2d}: {batch['successful_count']:2d}/{batch['batch_size']:2d} " f"({success_rate:5.1f}% success, {review_count:2d} review) " f"in {batch['batch_time']:6.2f}s ({batch['avg_time_per_question']:.3f}s avg)") if len(failed) > 0: print(f"\nERROR ANALYSIS:") error_counts = failed['error_message'].value_counts() for error, count in error_counts.head(5).items(): print(f" {error[:60]}...: {count} times") # Review recommendations print(f"\nREVIEW RECOMMENDATIONS:") if len(needs_review) > 0: print(f" šŸ“‹ {len(needs_review)} questions need manual review") if 'issue_type' in df.columns: issue_types = needs_review['issue_type'].value_counts() for issue_type, count in issue_types.items(): print(f" - {issue_type.replace('_', ' ').title()}: {count} questions") else: print(f" āœ… No questions need manual review") print("="*80) def main(): """Main function to run the enhanced batch benchmark""" parser = argparse.ArgumentParser( description="Enhanced batch benchmark runner for pipeQuery autism AI pipeline with detailed step timing", formatter_class=argparse.RawDescriptionHelpFormatter, epilog=""" Examples: python benchmark_runner.py questions.csv python benchmark_runner.py questions.csv --batch-size 20 --max-workers 5 python benchmark_runner.py questions.csv --max 50 --output my_results python benchmark_runner.py --sample 25 --batch-size 5 python benchmark_runner.py --sample 100 --batch-size 10 --max-workers 3 """ ) parser.add_argument('input_csv', nargs='?', help='Path to CSV file with questions') parser.add_argument('--column', '-c', default='question', help='Name of question column (default: question)') parser.add_argument('--max', '-m', type=int, help='Maximum number of questions to process') parser.add_argument('--output', '-o', help='Output directory path') parser.add_argument('--sample', '-s', type=int, help='Create and test with N sample questions') parser.add_argument('--batch-size', '-b', type=int, default=10, help='Number of questions per batch (default: 10)') parser.add_argument('--max-workers', '-w', type=int, default=3, help='Maximum worker threads per batch (default: 3)') parser.add_argument('--no-batch-files', action='store_true', help='Do not save individual batch files') parser.add_argument('--detailed-timing', action='store_true', default=True, help='Enable detailed step timing analysis (default: True)') args = parser.parse_args() try: # Initialize enhanced batch benchmark runner benchmark = EnhancedPipelineBenchmark( batch_size=args.batch_size, max_workers=args.max_workers ) # Get questions if args.sample: print(f"Creating {args.sample} sample questions...") all_sample_questions = create_sample_questions() # Repeat questions if needed to reach sample size questions = (all_sample_questions * ((args.sample // len(all_sample_questions)) + 1))[:args.sample] elif args.input_csv: print(f"Loading questions from {args.input_csv}...") questions = load_questions_from_csv(args.input_csv, args.column) else: # Default to small sample print("No input specified, using 15 sample questions...") questions = create_sample_questions()[:15] # Run enhanced batch benchmark print(f"\nRunning enhanced batch benchmark on {len(questions)} questions...") print(f"Batch size: {args.batch_size}, Max workers: {args.max_workers}") print(f"Detailed timing: {'Enabled' if args.detailed_timing else 'Disabled'}") df, output_dir = benchmark.run_batch_benchmark( questions, args.max, args.output, save_individual_batches=not args.no_batch_files ) # Save final results combined_path, batch_metadata_path = benchmark.save_final_results(df, output_dir) # Print comprehensive enhanced summary print_enhanced_summary_stats(df, benchmark.batch_results, benchmark.pipeline_issues) print(f"\nšŸ“ RESULTS SUMMARY:") print(f"Results directory: {output_dir}") print(f"Combined results: {combined_path}") print(f"Batch metadata: {batch_metadata_path}") # Additional output files additional_files = [ "benchmark_summary.txt", "pipeline_issues_analysis.csv", "step_timing_analysis.csv" ] print(f"Additional analysis files:") for file in additional_files: file_path = os.path.join(output_dir, file) if os.path.exists(file_path): print(f" - {file}") # Performance insights successful = df[df['status'] == 'success'] if len(successful) > 0: print(f"\nšŸŽÆ KEY INSIGHTS:") avg_time = successful['total_time'].mean() needs_review_count = len(df[df['needs_review'] == True]) print(f" • Average processing time: {avg_time:.2f} seconds") print(f" • Questions needing review: {needs_review_count}/{len(df)} ({needs_review_count/len(df)*100:.1f}%)") if needs_review_count > 0: print(f" • Review the pipeline_issues_analysis.csv for detailed breakdown") # Step timing insights step_columns = [col for col in df.columns if col.endswith('_time') and col != 'total_time'] if step_columns: slowest_step = None slowest_time = 0 for step in step_columns: avg_step_time = successful[step].mean() if avg_step_time > slowest_time: slowest_time = avg_step_time slowest_step = step.replace('_time', '').replace('_', ' ').title() if slowest_step: print(f" • Slowest pipeline step: {slowest_step} ({slowest_time:.3f}s avg)") except KeyboardInterrupt: print("\nBenchmark interrupted by user") except Exception as e: print(f"Error: {e}") import traceback traceback.print_exc() return 1 return 0 if __name__ == "__main__": exit(main())