Create syntax_analysis.py
Browse files- modules/syntax_analysis.py +132 -0
modules/syntax_analysis.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# syntax_analysis.py
|
| 2 |
+
import spacy
|
| 3 |
+
import networkx as nx
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
from collections import Counter
|
| 6 |
+
|
| 7 |
+
# Load spaCy model
|
| 8 |
+
nlp = spacy.load("es_core_news_lg")
|
| 9 |
+
|
| 10 |
+
# Define colors for grammatical categories
|
| 11 |
+
POS_COLORS = {
|
| 12 |
+
'ADJ': '#FFA07A', # Light Salmon
|
| 13 |
+
'ADP': '#98FB98', # Pale Green
|
| 14 |
+
'ADV': '#87CEFA', # Light Sky Blue
|
| 15 |
+
'AUX': '#DDA0DD', # Plum
|
| 16 |
+
'CCONJ': '#F0E68C', # Khaki
|
| 17 |
+
'DET': '#FFB6C1', # Light Pink
|
| 18 |
+
'INTJ': '#FF6347', # Tomato
|
| 19 |
+
'NOUN': '#90EE90', # Light Green
|
| 20 |
+
'NUM': '#FAFAD2', # Light Goldenrod Yellow
|
| 21 |
+
'PART': '#D3D3D3', # Light Gray
|
| 22 |
+
'PRON': '#FFA500', # Orange
|
| 23 |
+
'PROPN': '#20B2AA', # Light Sea Green
|
| 24 |
+
'SCONJ': '#DEB887', # Burlywood
|
| 25 |
+
'SYM': '#7B68EE', # Medium Slate Blue
|
| 26 |
+
'VERB': '#FF69B4', # Hot Pink
|
| 27 |
+
'X': '#A9A9A9', # Dark Gray
|
| 28 |
+
}
|
| 29 |
+
|
| 30 |
+
POS_TRANSLATIONS = {
|
| 31 |
+
'ADJ': 'Adjetivo',
|
| 32 |
+
'ADP': 'Advposici贸n',
|
| 33 |
+
'ADV': 'Adverbio',
|
| 34 |
+
'AUX': 'Auxiliar',
|
| 35 |
+
'CCONJ': 'Conjunci贸n Coordinante',
|
| 36 |
+
'DET': 'Determinante',
|
| 37 |
+
'INTJ': 'Interjecci贸n',
|
| 38 |
+
'NOUN': 'Sustantivo',
|
| 39 |
+
'NUM': 'N煤mero',
|
| 40 |
+
'PART': 'Part铆cula',
|
| 41 |
+
'PRON': 'Pronombre',
|
| 42 |
+
'PROPN': 'Nombre Propio',
|
| 43 |
+
'SCONJ': 'Conjunci贸n Subordinante',
|
| 44 |
+
'SYM': 'S铆mbolo',
|
| 45 |
+
'VERB': 'Verbo',
|
| 46 |
+
'X': 'Otro',
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
def count_pos(doc):
|
| 50 |
+
return Counter(token.pos_ for token in doc if token.pos_ != 'PUNCT')
|
| 51 |
+
|
| 52 |
+
def create_syntax_graph(doc):
|
| 53 |
+
G = nx.DiGraph()
|
| 54 |
+
pos_counts = count_pos(doc)
|
| 55 |
+
word_nodes = {}
|
| 56 |
+
word_colors = {}
|
| 57 |
+
|
| 58 |
+
for token in doc:
|
| 59 |
+
if token.pos_ != 'PUNCT':
|
| 60 |
+
lower_text = token.text.lower()
|
| 61 |
+
if lower_text not in word_nodes:
|
| 62 |
+
node_id = len(word_nodes)
|
| 63 |
+
word_nodes[lower_text] = node_id
|
| 64 |
+
color = POS_COLORS.get(token.pos_, '#FFFFFF')
|
| 65 |
+
word_colors[lower_text] = color
|
| 66 |
+
G.add_node(node_id,
|
| 67 |
+
label=f"{token.text}\n[{POS_TRANSLATIONS.get(token.pos_, token.pos_)}]",
|
| 68 |
+
pos=token.pos_,
|
| 69 |
+
size=pos_counts[token.pos_] * 500,
|
| 70 |
+
color=color)
|
| 71 |
+
|
| 72 |
+
if token.dep_ != "ROOT" and token.head.pos_ != 'PUNCT':
|
| 73 |
+
head_id = word_nodes.get(token.head.text.lower())
|
| 74 |
+
if head_id is not None:
|
| 75 |
+
G.add_edge(head_id, word_nodes[lower_text], label=token.dep_)
|
| 76 |
+
|
| 77 |
+
return G, word_colors
|
| 78 |
+
|
| 79 |
+
def visualize_syntax_graph(doc):
|
| 80 |
+
G, word_colors = create_syntax_graph(doc)
|
| 81 |
+
|
| 82 |
+
plt.figure(figsize=(20, 15))
|
| 83 |
+
pos = nx.spring_layout(G, k=2, iterations=100)
|
| 84 |
+
|
| 85 |
+
node_colors = [data['color'] for _, data in G.nodes(data=True)]
|
| 86 |
+
node_sizes = [data['size'] for _, data in G.nodes(data=True)]
|
| 87 |
+
|
| 88 |
+
nx.draw(G, pos, with_labels=False, node_color=node_colors, node_size=node_sizes, arrows=True)
|
| 89 |
+
|
| 90 |
+
nx.draw_networkx_labels(G, pos, {node: data['label'] for node, data in G.nodes(data=True)}, font_size=8)
|
| 91 |
+
|
| 92 |
+
edge_labels = nx.get_edge_attributes(G, 'label')
|
| 93 |
+
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=8)
|
| 94 |
+
|
| 95 |
+
plt.title("An谩lisis Sint谩ctico")
|
| 96 |
+
plt.axis('off')
|
| 97 |
+
|
| 98 |
+
legend_elements = [plt.Rectangle((0,0),1,1, facecolor=color, edgecolor='none', label=f"{POS_TRANSLATIONS[pos]} ({count_pos(doc)[pos]})")
|
| 99 |
+
for pos, color in POS_COLORS.items() if pos in set(nx.get_node_attributes(G, 'pos').values())]
|
| 100 |
+
plt.legend(handles=legend_elements, loc='center left', bbox_to_anchor=(1, 0.5))
|
| 101 |
+
|
| 102 |
+
return plt
|
| 103 |
+
|
| 104 |
+
def visualize_syntax(text):
|
| 105 |
+
max_tokens = 5000
|
| 106 |
+
doc = nlp(text)
|
| 107 |
+
if len(doc) > max_tokens:
|
| 108 |
+
doc = nlp(text[:max_tokens])
|
| 109 |
+
print(f"Warning: The input text is too long. Only the first {max_tokens} tokens will be visualized.")
|
| 110 |
+
return visualize_syntax_graph(doc)
|
| 111 |
+
|
| 112 |
+
# Repeated words colors
|
| 113 |
+
def get_repeated_words_colors(doc):
|
| 114 |
+
word_counts = Counter(token.text.lower() for token in doc if token.pos_ != 'PUNCT')
|
| 115 |
+
repeated_words = {word: count for word, count in word_counts.items() if count > 1}
|
| 116 |
+
|
| 117 |
+
word_colors = {}
|
| 118 |
+
for token in doc:
|
| 119 |
+
if token.text.lower() in repeated_words:
|
| 120 |
+
word_colors[token.text.lower()] = POS_COLORS.get(token.pos_, '#FFFFFF')
|
| 121 |
+
|
| 122 |
+
return word_colors
|
| 123 |
+
|
| 124 |
+
def highlight_repeated_words(doc, word_colors):
|
| 125 |
+
highlighted_text = []
|
| 126 |
+
for token in doc:
|
| 127 |
+
if token.text.lower() in word_colors:
|
| 128 |
+
color = word_colors[token.text.lower()]
|
| 129 |
+
highlighted_text.append(f'<span style="background-color: {color};">{token.text}</span>')
|
| 130 |
+
else:
|
| 131 |
+
highlighted_text.append(token.text)
|
| 132 |
+
return ' '.join(highlighted_text)
|