Update app.py
Browse files
app.py
CHANGED
|
@@ -1,37 +1,24 @@
|
|
| 1 |
# app.py for Hugging Face Spaces
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
-
from
|
| 5 |
-
import torch
|
| 6 |
-
import ultralytics.nn.tasks
|
| 7 |
-
from huggingface_hub import hf_hub_download
|
| 8 |
from PIL import Image
|
| 9 |
import numpy as np
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
| 13 |
-
try:
|
| 14 |
-
return torch.load(weight, map_location='cpu', weights_only=False)
|
| 15 |
-
except Exception as e:
|
| 16 |
-
raise e
|
| 17 |
-
|
| 18 |
-
ultralytics.nn.tasks.torch_safe_load = patched_torch_safe_load
|
| 19 |
-
|
| 20 |
-
# Download and load the model
|
| 21 |
-
model_path = hf_hub_download(repo_id="foduucom/product-detection-in-shelf-yolov8", filename="best.pt")
|
| 22 |
-
model = YOLO(model_path)
|
| 23 |
|
| 24 |
# Set model parameters
|
| 25 |
-
model.conf = 0.25 # confidence threshold
|
| 26 |
-
model.iou = 0.45 # IoU threshold
|
| 27 |
-
model.agnostic_nms = False
|
| 28 |
-
model.max_det = 1000
|
| 29 |
|
| 30 |
def detect_skus(image):
|
| 31 |
-
# image
|
| 32 |
-
results = model(image)
|
| 33 |
|
| 34 |
-
# Extract unique SKU names
|
| 35 |
sku_set = set()
|
| 36 |
for result in results:
|
| 37 |
for box in result.boxes:
|
|
|
|
| 1 |
# app.py for Hugging Face Spaces
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
+
from ultralyticsplus import YOLO
|
|
|
|
|
|
|
|
|
|
| 5 |
from PIL import Image
|
| 6 |
import numpy as np
|
| 7 |
|
| 8 |
+
# Load the model
|
| 9 |
+
model = YOLO('foduucom/product-detection-in-shelf-yolov8')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# Set model parameters
|
| 12 |
+
model.overrides['conf'] = 0.25 # NMS confidence threshold
|
| 13 |
+
model.overrides['iou'] = 0.45 # NMS IoU threshold
|
| 14 |
+
model.overrides['agnostic_nms'] = False # NMS class-agnostic
|
| 15 |
+
model.overrides['max_det'] = 1000 # maximum number of detections per image
|
| 16 |
|
| 17 |
def detect_skus(image):
|
| 18 |
+
# Convert Gradio image to numpy array if needed, but YOLO accepts PIL
|
| 19 |
+
results = model(image)
|
| 20 |
|
| 21 |
+
# Extract unique SKU names (assuming classes are SKU names)
|
| 22 |
sku_set = set()
|
| 23 |
for result in results:
|
| 24 |
for box in result.boxes:
|