Spaces:
Runtime error
Runtime error
artelabsuper
commited on
Commit
·
053b94b
1
Parent(s):
4216279
input scale selectable
Browse files
app.py
CHANGED
|
@@ -11,6 +11,7 @@ from models.modelNetB import Generator as GB
|
|
| 11 |
from models.modelNetC import Generator as GC
|
| 12 |
|
| 13 |
scale_size = 128
|
|
|
|
| 14 |
# load model
|
| 15 |
modeltype2path = {
|
| 16 |
'ModelA': 'DTM_exp_train10%_model_a/g-best.pth',
|
|
@@ -33,8 +34,9 @@ preprocess = transforms.Compose([
|
|
| 33 |
transforms.ToTensor()
|
| 34 |
])
|
| 35 |
|
| 36 |
-
def predict(input_image, model_name):
|
| 37 |
pil_image = Image.fromarray(input_image.astype('uint8'), 'RGB')
|
|
|
|
| 38 |
# transform image to torch and do preprocessing
|
| 39 |
torch_img = preprocess(pil_image).to(DEVICE).unsqueeze(0).to(DEVICE)
|
| 40 |
torch_img = (torch_img - torch.min(torch_img)) / (torch.max(torch_img) - torch.min(torch_img))
|
|
@@ -61,8 +63,9 @@ def predict(input_image, model_name):
|
|
| 61 |
iface = gr.Interface(
|
| 62 |
fn=predict,
|
| 63 |
inputs=[
|
| 64 |
-
gr.Image(
|
| 65 |
-
gr.inputs.Radio(MODELS_TYPE)
|
|
|
|
| 66 |
],
|
| 67 |
outputs=[
|
| 68 |
gr.Text(label='Model info'),
|
|
@@ -70,9 +73,9 @@ iface = gr.Interface(
|
|
| 70 |
gr.Image(label='DTM')
|
| 71 |
],
|
| 72 |
examples=[
|
| 73 |
-
[f"demo_imgs/{name}", MODELS_TYPE[0]] for name in os.listdir('demo_imgs')
|
| 74 |
],
|
| 75 |
title="Super Resolution and DTM Estimation",
|
| 76 |
-
description=f"This demo predict Super Resolution and (Super Resolution) DTM from a Grayscale image (if RGB we convert it
|
| 77 |
)
|
| 78 |
iface.launch()
|
|
|
|
| 11 |
from models.modelNetC import Generator as GC
|
| 12 |
|
| 13 |
scale_size = 128
|
| 14 |
+
scale_sizes = [128, 256, 512]
|
| 15 |
# load model
|
| 16 |
modeltype2path = {
|
| 17 |
'ModelA': 'DTM_exp_train10%_model_a/g-best.pth',
|
|
|
|
| 34 |
transforms.ToTensor()
|
| 35 |
])
|
| 36 |
|
| 37 |
+
def predict(input_image, model_name, input_scale_factor):
|
| 38 |
pil_image = Image.fromarray(input_image.astype('uint8'), 'RGB')
|
| 39 |
+
pil_image = transforms.Resize((input_scale_factor, input_scale_factor))(pil_image)
|
| 40 |
# transform image to torch and do preprocessing
|
| 41 |
torch_img = preprocess(pil_image).to(DEVICE).unsqueeze(0).to(DEVICE)
|
| 42 |
torch_img = (torch_img - torch.min(torch_img)) / (torch.max(torch_img) - torch.min(torch_img))
|
|
|
|
| 63 |
iface = gr.Interface(
|
| 64 |
fn=predict,
|
| 65 |
inputs=[
|
| 66 |
+
gr.Image(),
|
| 67 |
+
gr.inputs.Radio(MODELS_TYPE),
|
| 68 |
+
gr.inputs.Radio(scale_sizes)
|
| 69 |
],
|
| 70 |
outputs=[
|
| 71 |
gr.Text(label='Model info'),
|
|
|
|
| 73 |
gr.Image(label='DTM')
|
| 74 |
],
|
| 75 |
examples=[
|
| 76 |
+
[f"demo_imgs/{name}", MODELS_TYPE[0], 128] for name in os.listdir('demo_imgs')
|
| 77 |
],
|
| 78 |
title="Super Resolution and DTM Estimation",
|
| 79 |
+
description=f"This demo predict Super Resolution and (Super Resolution) DTM from a Grayscale image (if RGB we convert it)."
|
| 80 |
)
|
| 81 |
iface.launch()
|