Spaces:
Runtime error
Runtime error
artelabsuper
commited on
Commit
·
eba1c6b
1
Parent(s):
1513566
track and test model
Browse files- .gitattributes +5 -27
- .gitignore +2 -0
- DTM_exp_train10%_model_a/d-best.pth +3 -0
- DTM_exp_train10%_model_a/g-best.pth +3 -0
- DTM_exp_train10%_model_b/g-best.pth +3 -0
- DTM_exp_train10%_model_c/d-best.pth +3 -0
- DTM_exp_train10%_model_c/g-best.pth +3 -0
- models/modelNetA.py +381 -0
- models/modelNetB.py +307 -0
- models/modelNetC.py +335 -0
- requirements.txt +2 -1
- test.py +55 -0
.gitattributes
CHANGED
|
@@ -1,27 +1,5 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 8 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 9 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 10 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
| 11 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 12 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 13 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 14 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 15 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 16 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 17 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 18 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 19 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 20 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 21 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 22 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 23 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 24 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 25 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 26 |
-
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 27 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 1 |
+
DTM_exp_train10%_model_a/d-best.pth filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
DTM_exp_train10%_model_a/g-best.pth filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
DTM_exp_train10%_model_c/d-best.pth filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
DTM_exp_train10%_model_c/g-best.pth filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
DTM_exp_train10%_model_b/g-best.pth filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.gitignore
CHANGED
|
@@ -1,3 +1,5 @@
|
|
| 1 |
venv
|
| 2 |
*.pyc
|
| 3 |
__pycache__
|
|
|
|
|
|
|
|
|
| 1 |
venv
|
| 2 |
*.pyc
|
| 3 |
__pycache__
|
| 4 |
+
sr.png
|
| 5 |
+
test.png
|
DTM_exp_train10%_model_a/d-best.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8ecac9857f6f35d88afec8cea345c81ab1c7a8761ddda8225de820c3d3b48f4c
|
| 3 |
+
size 27401785
|
DTM_exp_train10%_model_a/g-best.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c0dab4fd03de2f0189e87db212a8fce5f1c7771aea0a23b804a146d9c00097df
|
| 3 |
+
size 61648584
|
DTM_exp_train10%_model_b/g-best.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:939adfbd0619db38fc5720ad1c2cb558a605e8e8aefac4703cfa98bbb651ec93
|
| 3 |
+
size 61648714
|
DTM_exp_train10%_model_c/d-best.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:65f96e37fdd9b1bc8c40b7e257a92c9b706f585b791586a50e2ec2463991e059
|
| 3 |
+
size 27401786
|
DTM_exp_train10%_model_c/g-best.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4f9652227743f248f3e8aa514c236b8738e11e062c2f270fceec385daedad7c3
|
| 3 |
+
size 49787998
|
models/modelNetA.py
ADDED
|
@@ -0,0 +1,381 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2021 Dakewe Biotech Corporation. All Rights Reserved.
|
| 2 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 3 |
+
# you may not use this file except in compliance with the License.
|
| 4 |
+
# You may obtain a copy of the License at
|
| 5 |
+
#
|
| 6 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 7 |
+
#
|
| 8 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 9 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 10 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 11 |
+
# See the License for the specific language governing permissions and
|
| 12 |
+
# limitations under the License.
|
| 13 |
+
# ==============================================================================
|
| 14 |
+
|
| 15 |
+
# ==============================================================================
|
| 16 |
+
# File description: Realize the model definition function.
|
| 17 |
+
# ==============================================================================
|
| 18 |
+
import torch
|
| 19 |
+
import torch.nn as nn
|
| 20 |
+
import torch.nn.functional as F
|
| 21 |
+
import torchvision.models as models
|
| 22 |
+
from torch import Tensor
|
| 23 |
+
|
| 24 |
+
__all__ = [
|
| 25 |
+
"ResidualDenseBlock", "ResidualResidualDenseBlock",
|
| 26 |
+
"Discriminator", "Generator",
|
| 27 |
+
"DownSamplingNetwork"
|
| 28 |
+
]
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class ResidualDenseBlock(nn.Module):
|
| 32 |
+
"""Achieves densely connected convolutional layers.
|
| 33 |
+
`Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993v5.pdf>` paper.
|
| 34 |
+
|
| 35 |
+
Args:
|
| 36 |
+
channels (int): The number of channels in the input image.
|
| 37 |
+
growths (int): The number of channels that increase in each layer of convolution.
|
| 38 |
+
"""
|
| 39 |
+
|
| 40 |
+
def __init__(self, channels: int, growths: int) -> None:
|
| 41 |
+
super(ResidualDenseBlock, self).__init__()
|
| 42 |
+
self.conv1 = nn.Conv2d(channels + growths * 0, growths, (3, 3), (1, 1), (1, 1))
|
| 43 |
+
self.conv2 = nn.Conv2d(channels + growths * 1, growths, (3, 3), (1, 1), (1, 1))
|
| 44 |
+
self.conv3 = nn.Conv2d(channels + growths * 2, growths, (3, 3), (1, 1), (1, 1))
|
| 45 |
+
self.conv4 = nn.Conv2d(channels + growths * 3, growths, (3, 3), (1, 1), (1, 1))
|
| 46 |
+
self.conv5 = nn.Conv2d(channels + growths * 4, channels, (3, 3), (1, 1), (1, 1))
|
| 47 |
+
|
| 48 |
+
self.leaky_relu = nn.LeakyReLU(0.2, True)
|
| 49 |
+
self.identity = nn.Identity()
|
| 50 |
+
|
| 51 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 52 |
+
identity = x
|
| 53 |
+
|
| 54 |
+
out1 = self.leaky_relu(self.conv1(x))
|
| 55 |
+
out2 = self.leaky_relu(self.conv2(torch.cat([x, out1], 1)))
|
| 56 |
+
out3 = self.leaky_relu(self.conv3(torch.cat([x, out1, out2], 1)))
|
| 57 |
+
out4 = self.leaky_relu(self.conv4(torch.cat([x, out1, out2, out3], 1)))
|
| 58 |
+
out5 = self.identity(self.conv5(torch.cat([x, out1, out2, out3, out4], 1)))
|
| 59 |
+
out = out5 * 0.2 + identity
|
| 60 |
+
|
| 61 |
+
return out
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class ResidualDenseBlock(nn.Module):
|
| 66 |
+
"""Achieves densely connected convolutional layers.
|
| 67 |
+
`Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993v5.pdf>` paper.
|
| 68 |
+
|
| 69 |
+
Args:
|
| 70 |
+
channels (int): The number of channels in the input image.
|
| 71 |
+
growths (int): The number of channels that increase in each layer of convolution.
|
| 72 |
+
"""
|
| 73 |
+
|
| 74 |
+
def __init__(self, channels: int, growths: int) -> None:
|
| 75 |
+
super(ResidualDenseBlock, self).__init__()
|
| 76 |
+
self.conv1 = nn.Conv2d(channels + growths * 0, growths, (3, 3), (1, 1), (1, 1))
|
| 77 |
+
self.conv2 = nn.Conv2d(channels + growths * 1, growths, (3, 3), (1, 1), (1, 1))
|
| 78 |
+
self.conv3 = nn.Conv2d(channels + growths * 2, growths, (3, 3), (1, 1), (1, 1))
|
| 79 |
+
self.conv4 = nn.Conv2d(channels + growths * 3, growths, (3, 3), (1, 1), (1, 1))
|
| 80 |
+
self.conv5 = nn.Conv2d(channels + growths * 4, channels, (3, 3), (1, 1), (1, 1))
|
| 81 |
+
|
| 82 |
+
self.leaky_relu = nn.LeakyReLU(0.2, True)
|
| 83 |
+
self.identity = nn.Identity()
|
| 84 |
+
|
| 85 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 86 |
+
identity = x
|
| 87 |
+
|
| 88 |
+
out1 = self.leaky_relu(self.conv1(x))
|
| 89 |
+
out2 = self.leaky_relu(self.conv2(torch.cat([x, out1], 1)))
|
| 90 |
+
out3 = self.leaky_relu(self.conv3(torch.cat([x, out1, out2], 1)))
|
| 91 |
+
out4 = self.leaky_relu(self.conv4(torch.cat([x, out1, out2, out3], 1)))
|
| 92 |
+
out5 = self.identity(self.conv5(torch.cat([x, out1, out2, out3, out4], 1)))
|
| 93 |
+
out = out5 * 0.2 + identity
|
| 94 |
+
|
| 95 |
+
return out
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
class MiniResidualDenseBlock(nn.Module):
|
| 100 |
+
"""Achieves densely connected convolutional layers.
|
| 101 |
+
`Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993v5.pdf>` paper.
|
| 102 |
+
|
| 103 |
+
Args:
|
| 104 |
+
channels (int): The number of channels in the input image.
|
| 105 |
+
growths (int): The number of channels that increase in each layer of convolution.
|
| 106 |
+
"""
|
| 107 |
+
|
| 108 |
+
def __init__(self, channels: int, growths: int) -> None:
|
| 109 |
+
super(MiniResidualDenseBlock, self).__init__()
|
| 110 |
+
self.conv1 = nn.Conv2d(channels + growths * 0, growths, (3, 3), (1, 1), (1, 1))
|
| 111 |
+
self.conv2 = nn.Conv2d(channels + growths * 1, growths, (3, 3), (1, 1), (1, 1))
|
| 112 |
+
self.conv3 = nn.Conv2d(channels + growths * 2, growths, (3, 3), (1, 1), (1, 1))
|
| 113 |
+
self.conv4 = nn.Conv2d(channels + growths * 3, growths, (3, 3), (1, 1), (1, 1))
|
| 114 |
+
self.conv5 = nn.Conv2d(channels + growths * 4, channels, (3, 3), (1, 1), (1, 1))
|
| 115 |
+
|
| 116 |
+
self.leaky_relu = nn.LeakyReLU(0.2, True)
|
| 117 |
+
|
| 118 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 119 |
+
identity = x
|
| 120 |
+
|
| 121 |
+
out1 = self.leaky_relu(self.conv1(x))
|
| 122 |
+
out2 = self.leaky_relu(self.conv2(torch.cat([x, out1], 1)))
|
| 123 |
+
out3 = self.leaky_relu(self.conv3(torch.cat([x, out1, out2], 1)))
|
| 124 |
+
out4 = self.leaky_relu(self.conv4(torch.cat([x, out1, out2, out3], 1)))
|
| 125 |
+
out5 = self.leaky_relu(self.conv5(torch.cat([x, out1, out2, out3, out4], 1)))
|
| 126 |
+
out = out5 * 0.2 + identity
|
| 127 |
+
|
| 128 |
+
return out
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
class ResidualResidualDenseBlock(nn.Module):
|
| 133 |
+
"""Multi-layer residual dense convolution block.
|
| 134 |
+
|
| 135 |
+
Args:
|
| 136 |
+
channels (int): The number of channels in the input image.
|
| 137 |
+
growths (int): The number of channels that increase in each layer of convolution.
|
| 138 |
+
"""
|
| 139 |
+
|
| 140 |
+
def __init__(self, channels: int, growths: int) -> None:
|
| 141 |
+
super(ResidualResidualDenseBlock, self).__init__()
|
| 142 |
+
self.rdb1 = ResidualDenseBlock(channels, growths)
|
| 143 |
+
self.rdb2 = ResidualDenseBlock(channels, growths)
|
| 144 |
+
self.rdb3 = ResidualDenseBlock(channels, growths)
|
| 145 |
+
|
| 146 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 147 |
+
identity = x
|
| 148 |
+
|
| 149 |
+
out = self.rdb1(x)
|
| 150 |
+
out = self.rdb2(out)
|
| 151 |
+
out = self.rdb3(out)
|
| 152 |
+
out = out * 0.2 + identity
|
| 153 |
+
|
| 154 |
+
return out
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
class MiniResidualResidualDenseBlock(nn.Module):
|
| 158 |
+
"""Multi-layer residual dense convolution block.
|
| 159 |
+
|
| 160 |
+
Args:
|
| 161 |
+
channels (int): The number of channels in the input image.
|
| 162 |
+
growths (int): The number of channels that increase in each layer of convolution.
|
| 163 |
+
"""
|
| 164 |
+
|
| 165 |
+
def __init__(self, channels: int, growths: int) -> None:
|
| 166 |
+
super(MiniResidualResidualDenseBlock, self).__init__()
|
| 167 |
+
self.M_rdb1 = MiniResidualDenseBlock(channels, growths)
|
| 168 |
+
self.M_rdb2 = MiniResidualDenseBlock(channels, growths)
|
| 169 |
+
self.M_rdb3 = MiniResidualDenseBlock(channels, growths)
|
| 170 |
+
|
| 171 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 172 |
+
identity = x
|
| 173 |
+
out = self.M_rdb1(x)
|
| 174 |
+
out = self.M_rdb2(out)
|
| 175 |
+
out = self.M_rdb3(out)
|
| 176 |
+
out = out * 0.2 + identity
|
| 177 |
+
return out
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
class Discriminator(nn.Module):
|
| 182 |
+
def __init__(self) -> None:
|
| 183 |
+
super(Discriminator, self).__init__()
|
| 184 |
+
self.features = nn.Sequential(
|
| 185 |
+
# input size. (3) x 512 x 512
|
| 186 |
+
nn.Conv2d(2, 32, (3, 3), (1, 1), (1, 1), bias=True),
|
| 187 |
+
nn.LeakyReLU(0.2, True),
|
| 188 |
+
nn.Conv2d(32, 64, (4, 4), (2, 2), (1, 1), bias=False),
|
| 189 |
+
nn.BatchNorm2d(64),
|
| 190 |
+
nn.LeakyReLU(0.2, True),
|
| 191 |
+
nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1), bias=False),
|
| 192 |
+
nn.BatchNorm2d(64),
|
| 193 |
+
nn.LeakyReLU(0.2, True),
|
| 194 |
+
# state size. (128) x 256 x 256
|
| 195 |
+
nn.Conv2d(64, 128, (4, 4), (2, 2), (1, 1), bias=False),
|
| 196 |
+
nn.BatchNorm2d(128),
|
| 197 |
+
nn.LeakyReLU(0.2, True),
|
| 198 |
+
nn.Conv2d(128, 128, (3, 3), (1, 1), (1, 1), bias=False),
|
| 199 |
+
nn.BatchNorm2d(128),
|
| 200 |
+
nn.LeakyReLU(0.2, True),
|
| 201 |
+
# state size. (256) x 64 x 64
|
| 202 |
+
nn.Conv2d(128, 256, (4, 4), (2, 2), (1, 1), bias=False),
|
| 203 |
+
nn.BatchNorm2d(256),
|
| 204 |
+
nn.LeakyReLU(0.2, True),
|
| 205 |
+
nn.Conv2d(256, 256, (3, 3), (1, 1), (1, 1), bias=False),
|
| 206 |
+
nn.BatchNorm2d(256),
|
| 207 |
+
nn.LeakyReLU(0.2, True),
|
| 208 |
+
nn.Conv2d(256, 256, (4, 4), (2, 2), (1, 1), bias=False),
|
| 209 |
+
nn.BatchNorm2d(256),
|
| 210 |
+
nn.LeakyReLU(0.2, True),
|
| 211 |
+
nn.Conv2d(256, 256, (3, 3), (1, 1), (1, 1), bias=False),
|
| 212 |
+
nn.BatchNorm2d(256),
|
| 213 |
+
nn.LeakyReLU(0.2, True),
|
| 214 |
+
# state size. (512) x 16 x 16
|
| 215 |
+
nn.Conv2d(256, 256, (4, 4), (2, 2), (1, 1), bias=False),
|
| 216 |
+
nn.BatchNorm2d(256),
|
| 217 |
+
nn.LeakyReLU(0.2, True),
|
| 218 |
+
|
| 219 |
+
nn.Conv2d(256, 256, (4, 4), (2, 2), (1, 1), bias=False),
|
| 220 |
+
nn.BatchNorm2d(256),
|
| 221 |
+
nn.LeakyReLU(0.2, True),
|
| 222 |
+
# state size. (512) x 8 x 8
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
self.classifier = nn.Sequential(
|
| 226 |
+
nn.Linear(256 * 8 * 8, 100),
|
| 227 |
+
nn.LeakyReLU(0.2, True),
|
| 228 |
+
nn.Linear(100, 1),
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 232 |
+
out = self.features(x)
|
| 233 |
+
out = torch.flatten(out, 1)
|
| 234 |
+
out = self.classifier(out)
|
| 235 |
+
return out
|
| 236 |
+
|
| 237 |
+
class Generator(nn.Module):
|
| 238 |
+
def __init__(self) -> None:
|
| 239 |
+
super(Generator, self).__init__()
|
| 240 |
+
#RLNet
|
| 241 |
+
self.RLNetconv_block1 = nn.Conv2d(1, 64, (3, 3), (1, 1), (1, 1))
|
| 242 |
+
RLNettrunk = []
|
| 243 |
+
for _ in range(4):
|
| 244 |
+
RLNettrunk += [ResidualResidualDenseBlock(64, 32)]
|
| 245 |
+
self.RLNettrunk = nn.Sequential(*RLNettrunk)
|
| 246 |
+
self.RLNetconv_block2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1))
|
| 247 |
+
self.RLNetconv_block3 = nn.Sequential(
|
| 248 |
+
nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)),
|
| 249 |
+
nn.LeakyReLU(0.2, True)
|
| 250 |
+
)
|
| 251 |
+
self.RLNetconv_block4 = nn.Sequential(
|
| 252 |
+
nn.Conv2d(64, 1, (3, 3), (1, 1), (1, 1)),
|
| 253 |
+
nn.Tanh()
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
#############################################################################
|
| 257 |
+
#Generator
|
| 258 |
+
self.conv_block1 = nn.Conv2d(1, 64, (3, 3), (1, 1), (1, 1))
|
| 259 |
+
|
| 260 |
+
trunk = []
|
| 261 |
+
for _ in range(16):
|
| 262 |
+
trunk += [ResidualResidualDenseBlock(64, 32)]
|
| 263 |
+
self.trunk = nn.Sequential(*trunk)
|
| 264 |
+
|
| 265 |
+
# After the feature extraction network, reconnect a layer of convolutional blocks.
|
| 266 |
+
self.conv_block2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1))
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
# Upsampling convolutional layer.
|
| 270 |
+
self.upsampling = nn.Sequential(
|
| 271 |
+
nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)),
|
| 272 |
+
nn.LeakyReLU(0.2, True)
|
| 273 |
+
)
|
| 274 |
+
|
| 275 |
+
# Reconnect a layer of convolution block after upsampling.
|
| 276 |
+
self.conv_block3 = nn.Sequential(
|
| 277 |
+
nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)),
|
| 278 |
+
nn.LeakyReLU(0.2, True)
|
| 279 |
+
)
|
| 280 |
+
|
| 281 |
+
self.conv_block4 = nn.Sequential(
|
| 282 |
+
nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)),
|
| 283 |
+
#nn.Sigmoid()
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
self.conv_block0_branch0 = nn.Sequential(
|
| 287 |
+
nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)),
|
| 288 |
+
nn.LeakyReLU(0.2, True),
|
| 289 |
+
nn.Conv2d(64, 128, (3, 3), (1, 1), (1, 1)),
|
| 290 |
+
nn.LeakyReLU(0.2, True),
|
| 291 |
+
nn.Conv2d(128, 128, (3, 3), (1, 1), (1, 1)),
|
| 292 |
+
nn.LeakyReLU(0.2, True),
|
| 293 |
+
nn.Conv2d(128, 64, (3, 3), (1, 1), (1, 1)),
|
| 294 |
+
nn.Tanh()
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
self.conv_block0_branch1 = nn.Sequential(
|
| 298 |
+
nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)),
|
| 299 |
+
nn.LeakyReLU(0.2, True),
|
| 300 |
+
nn.Conv2d(64, 128, (3, 3), (1, 1), (1, 1)),
|
| 301 |
+
nn.LeakyReLU(0.2, True),
|
| 302 |
+
nn.Conv2d(128, 128, (3, 3), (1, 1), (1, 1)),
|
| 303 |
+
nn.LeakyReLU(0.2, True),
|
| 304 |
+
nn.Conv2d(128, 64, (3, 3), (1, 1), (1, 1)),
|
| 305 |
+
nn.Tanh()
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
self.conv_block1_branch0 = nn.Sequential(
|
| 309 |
+
nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)),
|
| 310 |
+
nn.LeakyReLU(0.2, True),
|
| 311 |
+
nn.Conv2d(64, 1, (3, 3), (1, 1), (1, 1)),
|
| 312 |
+
#nn.LeakyReLU(0.2, True),
|
| 313 |
+
#nn.Conv2d(32, 1, (3, 3), (1, 1), (1, 1)),
|
| 314 |
+
nn.Sigmoid()
|
| 315 |
+
)
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
self.conv_block1_branch1 = nn.Sequential(
|
| 320 |
+
nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)),
|
| 321 |
+
nn.LeakyReLU(0.2, True),
|
| 322 |
+
nn.Conv2d(64, 1, (3, 3), (1, 1), (1, 1)),
|
| 323 |
+
nn.Sigmoid())
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
def _forward_impl(self, x: Tensor) -> Tensor:
|
| 329 |
+
#RLNet
|
| 330 |
+
out1 = self.RLNetconv_block1(x)
|
| 331 |
+
out = self.RLNettrunk(out1)
|
| 332 |
+
out2 = self.RLNetconv_block2(out)
|
| 333 |
+
out = out1 + out2
|
| 334 |
+
out = self.RLNetconv_block3(out)
|
| 335 |
+
out = self.RLNetconv_block4(out)
|
| 336 |
+
rlNet_out = out + x
|
| 337 |
+
|
| 338 |
+
#Generator
|
| 339 |
+
out1 = self.conv_block1(rlNet_out)
|
| 340 |
+
out = self.trunk(out1)
|
| 341 |
+
out2 = self.conv_block2(out)
|
| 342 |
+
out = out1 + out2
|
| 343 |
+
out = self.upsampling(F.interpolate(out, scale_factor=2, mode="bicubic"))
|
| 344 |
+
out = self.upsampling(F.interpolate(out, scale_factor=2, mode="bicubic"))
|
| 345 |
+
out = self.conv_block3(out)
|
| 346 |
+
#
|
| 347 |
+
out = self.conv_block4(out)
|
| 348 |
+
|
| 349 |
+
#demResidual = out[:, 1:2, :, :]
|
| 350 |
+
#grayResidual = out[:, 0:1, :, :]
|
| 351 |
+
|
| 352 |
+
# out = self.trunkRGB(out_4)
|
| 353 |
+
#
|
| 354 |
+
# out_dem = out[:, 3:4, :, :] * 0.2 + demResidual # DEM images extracted
|
| 355 |
+
# out_rgb = out[:, 0:3, :, :] * 0.2 + rgbResidual # RGB images extracted
|
| 356 |
+
|
| 357 |
+
#ra0
|
| 358 |
+
#out_rgb= rgbResidual + self.conv_block0_branch0(rgbResidual)
|
| 359 |
+
|
| 360 |
+
out_dem = out + self.conv_block0_branch1(out) #out+ tanh()
|
| 361 |
+
out_gray = out + self.conv_block0_branch0(out) #out+ tanh()
|
| 362 |
+
|
| 363 |
+
out_gray = self.conv_block1_branch0(out_gray) #sigmoid()
|
| 364 |
+
out_dem = self.conv_block1_branch1(out_dem) #sigmoid()
|
| 365 |
+
|
| 366 |
+
return out_gray, out_dem, rlNet_out
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 370 |
+
return self._forward_impl(x)
|
| 371 |
+
|
| 372 |
+
def _initialize_weights(self) -> None:
|
| 373 |
+
for m in self.modules():
|
| 374 |
+
if isinstance(m, nn.Conv2d):
|
| 375 |
+
nn.init.kaiming_normal_(m.weight)
|
| 376 |
+
if m.bias is not None:
|
| 377 |
+
nn.init.constant_(m.bias, 0)
|
| 378 |
+
m.weight.data *= 0.1
|
| 379 |
+
elif isinstance(m, nn.BatchNorm2d):
|
| 380 |
+
nn.init.constant_(m.weight, 1)
|
| 381 |
+
m.weight.data *= 0.1
|
models/modelNetB.py
ADDED
|
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from torch import Tensor
|
| 5 |
+
|
| 6 |
+
__all__ = [
|
| 7 |
+
"ResidualDenseBlock", "ResidualResidualDenseBlock", "Generator",
|
| 8 |
+
"DownSamplingNetwork"
|
| 9 |
+
]
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class ResidualDenseBlock(nn.Module):
|
| 13 |
+
"""Achieves densely connected convolutional layers.
|
| 14 |
+
`Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993v5.pdf>` paper.
|
| 15 |
+
|
| 16 |
+
Args:
|
| 17 |
+
channels (int): The number of channels in the input image.
|
| 18 |
+
growths (int): The number of channels that increase in each layer of convolution.
|
| 19 |
+
"""
|
| 20 |
+
|
| 21 |
+
def __init__(self, channels: int, growths: int) -> None:
|
| 22 |
+
super(ResidualDenseBlock, self).__init__()
|
| 23 |
+
self.conv1 = nn.Conv2d(channels + growths * 0, growths, (3, 3), (1, 1), (1, 1))
|
| 24 |
+
self.conv2 = nn.Conv2d(channels + growths * 1, growths, (3, 3), (1, 1), (1, 1))
|
| 25 |
+
self.conv3 = nn.Conv2d(channels + growths * 2, growths, (3, 3), (1, 1), (1, 1))
|
| 26 |
+
self.conv4 = nn.Conv2d(channels + growths * 3, growths, (3, 3), (1, 1), (1, 1))
|
| 27 |
+
self.conv5 = nn.Conv2d(channels + growths * 4, channels, (3, 3), (1, 1), (1, 1))
|
| 28 |
+
|
| 29 |
+
self.leaky_relu = nn.LeakyReLU(0.2, True)
|
| 30 |
+
self.identity = nn.Identity()
|
| 31 |
+
|
| 32 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 33 |
+
identity = x
|
| 34 |
+
|
| 35 |
+
out1 = self.leaky_relu(self.conv1(x))
|
| 36 |
+
out2 = self.leaky_relu(self.conv2(torch.cat([x, out1], 1)))
|
| 37 |
+
out3 = self.leaky_relu(self.conv3(torch.cat([x, out1, out2], 1)))
|
| 38 |
+
out4 = self.leaky_relu(self.conv4(torch.cat([x, out1, out2, out3], 1)))
|
| 39 |
+
out5 = self.identity(self.conv5(torch.cat([x, out1, out2, out3, out4], 1)))
|
| 40 |
+
out = out5 * 0.2 + identity
|
| 41 |
+
|
| 42 |
+
return out
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class ResidualDenseBlock(nn.Module):
|
| 47 |
+
"""Achieves densely connected convolutional layers.
|
| 48 |
+
`Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993v5.pdf>` paper.
|
| 49 |
+
|
| 50 |
+
Args:
|
| 51 |
+
channels (int): The number of channels in the input image.
|
| 52 |
+
growths (int): The number of channels that increase in each layer of convolution.
|
| 53 |
+
"""
|
| 54 |
+
|
| 55 |
+
def __init__(self, channels: int, growths: int) -> None:
|
| 56 |
+
super(ResidualDenseBlock, self).__init__()
|
| 57 |
+
self.conv1 = nn.Conv2d(channels + growths * 0, growths, (3, 3), (1, 1), (1, 1))
|
| 58 |
+
self.conv2 = nn.Conv2d(channels + growths * 1, growths, (3, 3), (1, 1), (1, 1))
|
| 59 |
+
self.conv3 = nn.Conv2d(channels + growths * 2, growths, (3, 3), (1, 1), (1, 1))
|
| 60 |
+
self.conv4 = nn.Conv2d(channels + growths * 3, growths, (3, 3), (1, 1), (1, 1))
|
| 61 |
+
self.conv5 = nn.Conv2d(channels + growths * 4, channels, (3, 3), (1, 1), (1, 1))
|
| 62 |
+
|
| 63 |
+
self.leaky_relu = nn.LeakyReLU(0.2, True)
|
| 64 |
+
self.identity = nn.Identity()
|
| 65 |
+
|
| 66 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 67 |
+
identity = x
|
| 68 |
+
|
| 69 |
+
out1 = self.leaky_relu(self.conv1(x))
|
| 70 |
+
out2 = self.leaky_relu(self.conv2(torch.cat([x, out1], 1)))
|
| 71 |
+
out3 = self.leaky_relu(self.conv3(torch.cat([x, out1, out2], 1)))
|
| 72 |
+
out4 = self.leaky_relu(self.conv4(torch.cat([x, out1, out2, out3], 1)))
|
| 73 |
+
out5 = self.identity(self.conv5(torch.cat([x, out1, out2, out3, out4], 1)))
|
| 74 |
+
out = out5 * 0.2 + identity
|
| 75 |
+
|
| 76 |
+
return out
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
class MiniResidualDenseBlock(nn.Module):
|
| 81 |
+
"""Achieves densely connected convolutional layers.
|
| 82 |
+
`Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993v5.pdf>` paper.
|
| 83 |
+
|
| 84 |
+
Args:
|
| 85 |
+
channels (int): The number of channels in the input image.
|
| 86 |
+
growths (int): The number of channels that increase in each layer of convolution.
|
| 87 |
+
"""
|
| 88 |
+
|
| 89 |
+
def __init__(self, channels: int, growths: int) -> None:
|
| 90 |
+
super(MiniResidualDenseBlock, self).__init__()
|
| 91 |
+
self.conv1 = nn.Conv2d(channels + growths * 0, growths, (3, 3), (1, 1), (1, 1))
|
| 92 |
+
self.conv2 = nn.Conv2d(channels + growths * 1, growths, (3, 3), (1, 1), (1, 1))
|
| 93 |
+
self.conv3 = nn.Conv2d(channels + growths * 2, growths, (3, 3), (1, 1), (1, 1))
|
| 94 |
+
self.conv4 = nn.Conv2d(channels + growths * 3, growths, (3, 3), (1, 1), (1, 1))
|
| 95 |
+
self.conv5 = nn.Conv2d(channels + growths * 4, channels, (3, 3), (1, 1), (1, 1))
|
| 96 |
+
|
| 97 |
+
self.leaky_relu = nn.LeakyReLU(0.2, True)
|
| 98 |
+
|
| 99 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 100 |
+
identity = x
|
| 101 |
+
|
| 102 |
+
out1 = self.leaky_relu(self.conv1(x))
|
| 103 |
+
out2 = self.leaky_relu(self.conv2(torch.cat([x, out1], 1)))
|
| 104 |
+
out3 = self.leaky_relu(self.conv3(torch.cat([x, out1, out2], 1)))
|
| 105 |
+
out4 = self.leaky_relu(self.conv4(torch.cat([x, out1, out2, out3], 1)))
|
| 106 |
+
out5 = self.leaky_relu(self.conv5(torch.cat([x, out1, out2, out3, out4], 1)))
|
| 107 |
+
out = out5 * 0.2 + identity
|
| 108 |
+
|
| 109 |
+
return out
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
class ResidualResidualDenseBlock(nn.Module):
|
| 114 |
+
"""Multi-layer residual dense convolution block.
|
| 115 |
+
|
| 116 |
+
Args:
|
| 117 |
+
channels (int): The number of channels in the input image.
|
| 118 |
+
growths (int): The number of channels that increase in each layer of convolution.
|
| 119 |
+
"""
|
| 120 |
+
|
| 121 |
+
def __init__(self, channels: int, growths: int) -> None:
|
| 122 |
+
super(ResidualResidualDenseBlock, self).__init__()
|
| 123 |
+
self.rdb1 = ResidualDenseBlock(channels, growths)
|
| 124 |
+
self.rdb2 = ResidualDenseBlock(channels, growths)
|
| 125 |
+
self.rdb3 = ResidualDenseBlock(channels, growths)
|
| 126 |
+
|
| 127 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 128 |
+
identity = x
|
| 129 |
+
|
| 130 |
+
out = self.rdb1(x)
|
| 131 |
+
out = self.rdb2(out)
|
| 132 |
+
out = self.rdb3(out)
|
| 133 |
+
out = out * 0.2 + identity
|
| 134 |
+
|
| 135 |
+
return out
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
class MiniResidualResidualDenseBlock(nn.Module):
|
| 139 |
+
"""Multi-layer residual dense convolution block.
|
| 140 |
+
|
| 141 |
+
Args:
|
| 142 |
+
channels (int): The number of channels in the input image.
|
| 143 |
+
growths (int): The number of channels that increase in each layer of convolution.
|
| 144 |
+
"""
|
| 145 |
+
|
| 146 |
+
def __init__(self, channels: int, growths: int) -> None:
|
| 147 |
+
super(MiniResidualResidualDenseBlock, self).__init__()
|
| 148 |
+
self.M_rdb1 = MiniResidualDenseBlock(channels, growths)
|
| 149 |
+
self.M_rdb2 = MiniResidualDenseBlock(channels, growths)
|
| 150 |
+
self.M_rdb3 = MiniResidualDenseBlock(channels, growths)
|
| 151 |
+
|
| 152 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 153 |
+
identity = x
|
| 154 |
+
out = self.M_rdb1(x)
|
| 155 |
+
out = self.M_rdb2(out)
|
| 156 |
+
out = self.M_rdb3(out)
|
| 157 |
+
out = out * 0.2 + identity
|
| 158 |
+
return out
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
class Generator(nn.Module):
|
| 162 |
+
def __init__(self) -> None:
|
| 163 |
+
super(Generator, self).__init__()
|
| 164 |
+
|
| 165 |
+
#RLNet
|
| 166 |
+
self.RLNetconv_block1 = nn.Conv2d(1, 64, (3, 3), (1, 1), (1, 1))
|
| 167 |
+
RLNettrunk = []
|
| 168 |
+
for _ in range(4):
|
| 169 |
+
RLNettrunk += [ResidualResidualDenseBlock(64, 32)]
|
| 170 |
+
self.RLNettrunk = nn.Sequential(*RLNettrunk)
|
| 171 |
+
self.RLNetconv_block2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1))
|
| 172 |
+
self.RLNetconv_block3 = nn.Sequential(
|
| 173 |
+
nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)),
|
| 174 |
+
nn.LeakyReLU(0.2, True)
|
| 175 |
+
)
|
| 176 |
+
self.RLNetconv_block4 = nn.Sequential(
|
| 177 |
+
nn.Conv2d(64, 1, (3, 3), (1, 1), (1, 1)),
|
| 178 |
+
nn.Tanh()
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
#############################################################################
|
| 182 |
+
# Generator
|
| 183 |
+
self.conv_block1 = nn.Conv2d(1, 64, (3, 3), (1, 1), (1, 1))
|
| 184 |
+
trunk = []
|
| 185 |
+
for _ in range(16):
|
| 186 |
+
trunk += [ResidualResidualDenseBlock(64, 32)]
|
| 187 |
+
self.trunk = nn.Sequential(*trunk)
|
| 188 |
+
|
| 189 |
+
# After the feature extraction network, reconnect a layer of convolutional blocks.
|
| 190 |
+
self.conv_block2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1))
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
# Upsampling convolutional layer.
|
| 194 |
+
self.upsampling = nn.Sequential(
|
| 195 |
+
nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)),
|
| 196 |
+
nn.LeakyReLU(0.2, True)
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
# Reconnect a layer of convolution block after upsampling.
|
| 200 |
+
self.conv_block3 = nn.Sequential(
|
| 201 |
+
nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)),
|
| 202 |
+
nn.LeakyReLU(0.2, True)
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
self.conv_block4 = nn.Sequential(
|
| 206 |
+
nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)),
|
| 207 |
+
#nn.Sigmoid()
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
self.conv_block0_branch0 = nn.Sequential(
|
| 211 |
+
nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)),
|
| 212 |
+
nn.LeakyReLU(0.2, True),
|
| 213 |
+
nn.Conv2d(64, 128, (3, 3), (1, 1), (1, 1)),
|
| 214 |
+
nn.LeakyReLU(0.2, True),
|
| 215 |
+
nn.Conv2d(128, 128, (3, 3), (1, 1), (1, 1)),
|
| 216 |
+
nn.LeakyReLU(0.2, True),
|
| 217 |
+
nn.Conv2d(128, 64, (3, 3), (1, 1), (1, 1)),
|
| 218 |
+
nn.Tanh()
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
self.conv_block0_branch1 = nn.Sequential(
|
| 222 |
+
nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)),
|
| 223 |
+
nn.LeakyReLU(0.2, True),
|
| 224 |
+
nn.Conv2d(64, 128, (3, 3), (1, 1), (1, 1)),
|
| 225 |
+
nn.LeakyReLU(0.2, True),
|
| 226 |
+
nn.Conv2d(128, 128, (3, 3), (1, 1), (1, 1)),
|
| 227 |
+
nn.LeakyReLU(0.2, True),
|
| 228 |
+
nn.Conv2d(128, 64, (3, 3), (1, 1), (1, 1)),
|
| 229 |
+
nn.Tanh()
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
self.conv_block1_branch0 = nn.Sequential(
|
| 233 |
+
nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)),
|
| 234 |
+
nn.LeakyReLU(0.2, True),
|
| 235 |
+
nn.Conv2d(64, 1, (3, 3), (1, 1), (1, 1)),
|
| 236 |
+
#nn.LeakyReLU(0.2, True),
|
| 237 |
+
#nn.Conv2d(32, 1, (3, 3), (1, 1), (1, 1)),
|
| 238 |
+
nn.Sigmoid()
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
self.conv_block1_branch1 = nn.Sequential(
|
| 244 |
+
nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)),
|
| 245 |
+
nn.LeakyReLU(0.2, True),
|
| 246 |
+
nn.Conv2d(64, 1, (3, 3), (1, 1), (1, 1)),
|
| 247 |
+
nn.Sigmoid())
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def _forward_impl(self, x: Tensor) -> Tensor:
|
| 253 |
+
#RLNet
|
| 254 |
+
out1 = self.RLNetconv_block1(x)
|
| 255 |
+
out = self.RLNettrunk(out1)
|
| 256 |
+
out2 = self.RLNetconv_block2(out)
|
| 257 |
+
out = out1 + out2
|
| 258 |
+
out = self.RLNetconv_block3(out)
|
| 259 |
+
out = self.RLNetconv_block4(out)
|
| 260 |
+
rlNet_out = out + x
|
| 261 |
+
|
| 262 |
+
#Generator
|
| 263 |
+
out1 = self.conv_block1(rlNet_out)
|
| 264 |
+
out = self.trunk(out1)
|
| 265 |
+
out2 = self.conv_block2(out)
|
| 266 |
+
out = out1 + out2
|
| 267 |
+
out = self.upsampling(F.interpolate(out, scale_factor=2, mode="bicubic"))
|
| 268 |
+
out = self.upsampling(F.interpolate(out, scale_factor=2, mode="bicubic"))
|
| 269 |
+
out = self.conv_block3(out)
|
| 270 |
+
#
|
| 271 |
+
out = self.conv_block4(out)
|
| 272 |
+
|
| 273 |
+
#demResidual = out[:, 1:2, :, :]
|
| 274 |
+
#grayResidual = out[:, 0:1, :, :]
|
| 275 |
+
|
| 276 |
+
# out = self.trunkRGB(out_4)
|
| 277 |
+
#
|
| 278 |
+
# out_dem = out[:, 3:4, :, :] * 0.2 + demResidual # DEM images extracted
|
| 279 |
+
# out_rgb = out[:, 0:3, :, :] * 0.2 + rgbResidual # RGB images extracted
|
| 280 |
+
|
| 281 |
+
#ra0
|
| 282 |
+
#out_rgb= rgbResidual + self.conv_block0_branch0(rgbResidual)
|
| 283 |
+
|
| 284 |
+
out_dem = out + self.conv_block0_branch1(out) #out+ tanh()
|
| 285 |
+
out_gray = out + self.conv_block0_branch0(out) #out+ tanh()
|
| 286 |
+
|
| 287 |
+
out_gray = self.conv_block1_branch0(out_gray) #sigmoid()
|
| 288 |
+
out_dem = self.conv_block1_branch1(out_dem) #sigmoid()
|
| 289 |
+
|
| 290 |
+
return out_gray, out_dem, rlNet_out
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 294 |
+
return self._forward_impl(x)
|
| 295 |
+
|
| 296 |
+
def _initialize_weights(self) -> None:
|
| 297 |
+
for m in self.modules():
|
| 298 |
+
if isinstance(m, nn.Conv2d):
|
| 299 |
+
nn.init.kaiming_normal_(m.weight)
|
| 300 |
+
if m.bias is not None:
|
| 301 |
+
nn.init.constant_(m.bias, 0)
|
| 302 |
+
m.weight.data *= 0.1
|
| 303 |
+
elif isinstance(m, nn.BatchNorm2d):
|
| 304 |
+
nn.init.constant_(m.weight, 1)
|
| 305 |
+
m.weight.data *= 0.1
|
| 306 |
+
|
| 307 |
+
|
models/modelNetC.py
ADDED
|
@@ -0,0 +1,335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from torch import Tensor
|
| 5 |
+
|
| 6 |
+
__all__ = [
|
| 7 |
+
"ResidualDenseBlock", "ResidualResidualDenseBlock", "Generator",
|
| 8 |
+
"DownSamplingNetwork"
|
| 9 |
+
]
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class ResidualDenseBlock(nn.Module):
|
| 13 |
+
"""Achieves densely connected convolutional layers.
|
| 14 |
+
`Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993v5.pdf>` paper.
|
| 15 |
+
|
| 16 |
+
Args:
|
| 17 |
+
channels (int): The number of channels in the input image.
|
| 18 |
+
growths (int): The number of channels that increase in each layer of convolution.
|
| 19 |
+
"""
|
| 20 |
+
|
| 21 |
+
def __init__(self, channels: int, growths: int) -> None:
|
| 22 |
+
super(ResidualDenseBlock, self).__init__()
|
| 23 |
+
self.conv1 = nn.Conv2d(channels + growths * 0, growths, (3, 3), (1, 1), (1, 1))
|
| 24 |
+
self.conv2 = nn.Conv2d(channels + growths * 1, growths, (3, 3), (1, 1), (1, 1))
|
| 25 |
+
self.conv3 = nn.Conv2d(channels + growths * 2, growths, (3, 3), (1, 1), (1, 1))
|
| 26 |
+
self.conv4 = nn.Conv2d(channels + growths * 3, growths, (3, 3), (1, 1), (1, 1))
|
| 27 |
+
self.conv5 = nn.Conv2d(channels + growths * 4, channels, (3, 3), (1, 1), (1, 1))
|
| 28 |
+
|
| 29 |
+
self.leaky_relu = nn.LeakyReLU(0.2, True)
|
| 30 |
+
self.identity = nn.Identity()
|
| 31 |
+
|
| 32 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 33 |
+
identity = x
|
| 34 |
+
|
| 35 |
+
out1 = self.leaky_relu(self.conv1(x))
|
| 36 |
+
out2 = self.leaky_relu(self.conv2(torch.cat([x, out1], 1)))
|
| 37 |
+
out3 = self.leaky_relu(self.conv3(torch.cat([x, out1, out2], 1)))
|
| 38 |
+
out4 = self.leaky_relu(self.conv4(torch.cat([x, out1, out2, out3], 1)))
|
| 39 |
+
out5 = self.identity(self.conv5(torch.cat([x, out1, out2, out3, out4], 1)))
|
| 40 |
+
out = out5 * 0.2 + identity
|
| 41 |
+
|
| 42 |
+
return out
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class ResidualDenseBlock(nn.Module):
|
| 47 |
+
"""Achieves densely connected convolutional layers.
|
| 48 |
+
`Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993v5.pdf>` paper.
|
| 49 |
+
|
| 50 |
+
Args:
|
| 51 |
+
channels (int): The number of channels in the input image.
|
| 52 |
+
growths (int): The number of channels that increase in each layer of convolution.
|
| 53 |
+
"""
|
| 54 |
+
|
| 55 |
+
def __init__(self, channels: int, growths: int) -> None:
|
| 56 |
+
super(ResidualDenseBlock, self).__init__()
|
| 57 |
+
self.conv1 = nn.Conv2d(channels + growths * 0, growths, (3, 3), (1, 1), (1, 1))
|
| 58 |
+
self.conv2 = nn.Conv2d(channels + growths * 1, growths, (3, 3), (1, 1), (1, 1))
|
| 59 |
+
self.conv3 = nn.Conv2d(channels + growths * 2, growths, (3, 3), (1, 1), (1, 1))
|
| 60 |
+
self.conv4 = nn.Conv2d(channels + growths * 3, growths, (3, 3), (1, 1), (1, 1))
|
| 61 |
+
self.conv5 = nn.Conv2d(channels + growths * 4, channels, (3, 3), (1, 1), (1, 1))
|
| 62 |
+
|
| 63 |
+
self.leaky_relu = nn.LeakyReLU(0.2, True)
|
| 64 |
+
self.identity = nn.Identity()
|
| 65 |
+
|
| 66 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 67 |
+
identity = x
|
| 68 |
+
|
| 69 |
+
out1 = self.leaky_relu(self.conv1(x))
|
| 70 |
+
out2 = self.leaky_relu(self.conv2(torch.cat([x, out1], 1)))
|
| 71 |
+
out3 = self.leaky_relu(self.conv3(torch.cat([x, out1, out2], 1)))
|
| 72 |
+
out4 = self.leaky_relu(self.conv4(torch.cat([x, out1, out2, out3], 1)))
|
| 73 |
+
out5 = self.identity(self.conv5(torch.cat([x, out1, out2, out3, out4], 1)))
|
| 74 |
+
out = out5 * 0.2 + identity
|
| 75 |
+
|
| 76 |
+
return out
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
class MiniResidualDenseBlock(nn.Module):
|
| 81 |
+
"""Achieves densely connected convolutional layers.
|
| 82 |
+
`Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993v5.pdf>` paper.
|
| 83 |
+
|
| 84 |
+
Args:
|
| 85 |
+
channels (int): The number of channels in the input image.
|
| 86 |
+
growths (int): The number of channels that increase in each layer of convolution.
|
| 87 |
+
"""
|
| 88 |
+
|
| 89 |
+
def __init__(self, channels: int, growths: int) -> None:
|
| 90 |
+
super(MiniResidualDenseBlock, self).__init__()
|
| 91 |
+
self.conv1 = nn.Conv2d(channels + growths * 0, growths, (3, 3), (1, 1), (1, 1))
|
| 92 |
+
self.conv2 = nn.Conv2d(channels + growths * 1, growths, (3, 3), (1, 1), (1, 1))
|
| 93 |
+
self.conv3 = nn.Conv2d(channels + growths * 2, growths, (3, 3), (1, 1), (1, 1))
|
| 94 |
+
self.conv4 = nn.Conv2d(channels + growths * 3, growths, (3, 3), (1, 1), (1, 1))
|
| 95 |
+
self.conv5 = nn.Conv2d(channels + growths * 4, channels, (3, 3), (1, 1), (1, 1))
|
| 96 |
+
|
| 97 |
+
self.leaky_relu = nn.LeakyReLU(0.2, True)
|
| 98 |
+
|
| 99 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 100 |
+
identity = x
|
| 101 |
+
|
| 102 |
+
out1 = self.leaky_relu(self.conv1(x))
|
| 103 |
+
out2 = self.leaky_relu(self.conv2(torch.cat([x, out1], 1)))
|
| 104 |
+
out3 = self.leaky_relu(self.conv3(torch.cat([x, out1, out2], 1)))
|
| 105 |
+
out4 = self.leaky_relu(self.conv4(torch.cat([x, out1, out2, out3], 1)))
|
| 106 |
+
out5 = self.leaky_relu(self.conv5(torch.cat([x, out1, out2, out3, out4], 1)))
|
| 107 |
+
out = out5 * 0.2 + identity
|
| 108 |
+
|
| 109 |
+
return out
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
class ResidualResidualDenseBlock(nn.Module):
|
| 114 |
+
"""Multi-layer residual dense convolution block.
|
| 115 |
+
|
| 116 |
+
Args:
|
| 117 |
+
channels (int): The number of channels in the input image.
|
| 118 |
+
growths (int): The number of channels that increase in each layer of convolution.
|
| 119 |
+
"""
|
| 120 |
+
|
| 121 |
+
def __init__(self, channels: int, growths: int) -> None:
|
| 122 |
+
super(ResidualResidualDenseBlock, self).__init__()
|
| 123 |
+
self.rdb1 = ResidualDenseBlock(channels, growths)
|
| 124 |
+
self.rdb2 = ResidualDenseBlock(channels, growths)
|
| 125 |
+
self.rdb3 = ResidualDenseBlock(channels, growths)
|
| 126 |
+
|
| 127 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 128 |
+
identity = x
|
| 129 |
+
|
| 130 |
+
out = self.rdb1(x)
|
| 131 |
+
out = self.rdb2(out)
|
| 132 |
+
out = self.rdb3(out)
|
| 133 |
+
out = out * 0.2 + identity
|
| 134 |
+
|
| 135 |
+
return out
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
class MiniResidualResidualDenseBlock(nn.Module):
|
| 139 |
+
"""Multi-layer residual dense convolution block.
|
| 140 |
+
|
| 141 |
+
Args:
|
| 142 |
+
channels (int): The number of channels in the input image.
|
| 143 |
+
growths (int): The number of channels that increase in each layer of convolution.
|
| 144 |
+
"""
|
| 145 |
+
|
| 146 |
+
def __init__(self, channels: int, growths: int) -> None:
|
| 147 |
+
super(MiniResidualResidualDenseBlock, self).__init__()
|
| 148 |
+
self.M_rdb1 = MiniResidualDenseBlock(channels, growths)
|
| 149 |
+
self.M_rdb2 = MiniResidualDenseBlock(channels, growths)
|
| 150 |
+
self.M_rdb3 = MiniResidualDenseBlock(channels, growths)
|
| 151 |
+
|
| 152 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 153 |
+
identity = x
|
| 154 |
+
out = self.M_rdb1(x)
|
| 155 |
+
out = self.M_rdb2(out)
|
| 156 |
+
out = self.M_rdb3(out)
|
| 157 |
+
out = out * 0.2 + identity
|
| 158 |
+
return out
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
class Generator(nn.Module):
|
| 162 |
+
def __init__(self) -> None:
|
| 163 |
+
super(Generator, self).__init__()
|
| 164 |
+
# Generator
|
| 165 |
+
self.conv_block1 = nn.Conv2d(1, 64, (3, 3), (1, 1), (1, 1))
|
| 166 |
+
trunk = []
|
| 167 |
+
for _ in range(16):
|
| 168 |
+
trunk += [ResidualResidualDenseBlock(64, 32)]
|
| 169 |
+
self.trunk = nn.Sequential(*trunk)
|
| 170 |
+
|
| 171 |
+
# After the feature extraction network, reconnect a layer of convolutional blocks.
|
| 172 |
+
self.conv_block2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1))
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
# Upsampling convolutional layer.
|
| 176 |
+
self.upsampling = nn.Sequential(
|
| 177 |
+
nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)),
|
| 178 |
+
nn.LeakyReLU(0.2, True)
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
# Reconnect a layer of convolution block after upsampling.
|
| 182 |
+
self.conv_block3 = nn.Sequential(
|
| 183 |
+
nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)),
|
| 184 |
+
nn.LeakyReLU(0.2, True)
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
self.conv_block4 = nn.Sequential(
|
| 188 |
+
nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)),
|
| 189 |
+
#nn.Sigmoid()
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
self.conv_block0_branch0 = nn.Sequential(
|
| 193 |
+
nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)),
|
| 194 |
+
nn.LeakyReLU(0.2, True),
|
| 195 |
+
nn.Conv2d(64, 128, (3, 3), (1, 1), (1, 1)),
|
| 196 |
+
nn.LeakyReLU(0.2, True),
|
| 197 |
+
nn.Conv2d(128, 128, (3, 3), (1, 1), (1, 1)),
|
| 198 |
+
nn.LeakyReLU(0.2, True),
|
| 199 |
+
nn.Conv2d(128, 64, (3, 3), (1, 1), (1, 1)),
|
| 200 |
+
nn.Tanh()
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
self.conv_block0_branch1 = nn.Sequential(
|
| 204 |
+
nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)),
|
| 205 |
+
nn.LeakyReLU(0.2, True),
|
| 206 |
+
nn.Conv2d(64, 128, (3, 3), (1, 1), (1, 1)),
|
| 207 |
+
nn.LeakyReLU(0.2, True),
|
| 208 |
+
nn.Conv2d(128, 128, (3, 3), (1, 1), (1, 1)),
|
| 209 |
+
nn.LeakyReLU(0.2, True),
|
| 210 |
+
nn.Conv2d(128, 64, (3, 3), (1, 1), (1, 1)),
|
| 211 |
+
nn.Tanh()
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
self.conv_block1_branch0 = nn.Sequential(
|
| 215 |
+
nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)),
|
| 216 |
+
nn.LeakyReLU(0.2, True),
|
| 217 |
+
nn.Conv2d(64, 1, (3, 3), (1, 1), (1, 1)),
|
| 218 |
+
#nn.LeakyReLU(0.2, True),
|
| 219 |
+
#nn.Conv2d(32, 1, (3, 3), (1, 1), (1, 1)),
|
| 220 |
+
nn.Sigmoid()
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
self.conv_block1_branch1 = nn.Sequential(
|
| 226 |
+
nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)),
|
| 227 |
+
nn.LeakyReLU(0.2, True),
|
| 228 |
+
nn.Conv2d(64, 1, (3, 3), (1, 1), (1, 1)),
|
| 229 |
+
nn.Sigmoid())
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
def _forward_impl(self, x: Tensor) -> Tensor:
|
| 235 |
+
#Generator
|
| 236 |
+
out1 = self.conv_block1(x)
|
| 237 |
+
out = self.trunk(out1)
|
| 238 |
+
out2 = self.conv_block2(out)
|
| 239 |
+
out = out1 + out2
|
| 240 |
+
out = self.upsampling(F.interpolate(out, scale_factor=2, mode="bicubic"))
|
| 241 |
+
out = self.upsampling(F.interpolate(out, scale_factor=2, mode="bicubic"))
|
| 242 |
+
out = self.conv_block3(out)
|
| 243 |
+
#
|
| 244 |
+
out = self.conv_block4(out)
|
| 245 |
+
|
| 246 |
+
#demResidual = out[:, 1:2, :, :]
|
| 247 |
+
#grayResidual = out[:, 0:1, :, :]
|
| 248 |
+
|
| 249 |
+
# out = self.trunkRGB(out_4)
|
| 250 |
+
#
|
| 251 |
+
# out_dem = out[:, 3:4, :, :] * 0.2 + demResidual # DEM images extracted
|
| 252 |
+
# out_rgb = out[:, 0:3, :, :] * 0.2 + rgbResidual # RGB images extracted
|
| 253 |
+
|
| 254 |
+
#ra0
|
| 255 |
+
#out_rgb= rgbResidual + self.conv_block0_branch0(rgbResidual)
|
| 256 |
+
|
| 257 |
+
out_dem = out + self.conv_block0_branch1(out) #out+ tanh()
|
| 258 |
+
out_gray = out + self.conv_block0_branch0(out) #out+ tanh()
|
| 259 |
+
|
| 260 |
+
out_gray = self.conv_block1_branch0(out_gray) #sigmoid()
|
| 261 |
+
out_dem = self.conv_block1_branch1(out_dem) #sigmoid()
|
| 262 |
+
|
| 263 |
+
return out_gray, out_dem
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 267 |
+
return self._forward_impl(x)
|
| 268 |
+
|
| 269 |
+
def _initialize_weights(self) -> None:
|
| 270 |
+
for m in self.modules():
|
| 271 |
+
if isinstance(m, nn.Conv2d):
|
| 272 |
+
nn.init.kaiming_normal_(m.weight)
|
| 273 |
+
if m.bias is not None:
|
| 274 |
+
nn.init.constant_(m.bias, 0)
|
| 275 |
+
m.weight.data *= 0.1
|
| 276 |
+
elif isinstance(m, nn.BatchNorm2d):
|
| 277 |
+
nn.init.constant_(m.weight, 1)
|
| 278 |
+
m.weight.data *= 0.1
|
| 279 |
+
|
| 280 |
+
class Discriminator(nn.Module):
|
| 281 |
+
def __init__(self) -> None:
|
| 282 |
+
super(Discriminator, self).__init__()
|
| 283 |
+
self.features = nn.Sequential(
|
| 284 |
+
# input size. (3) x 512 x 512
|
| 285 |
+
nn.Conv2d(2, 32, (3, 3), (1, 1), (1, 1), bias=True),
|
| 286 |
+
nn.LeakyReLU(0.2, True),
|
| 287 |
+
nn.Conv2d(32, 64, (4, 4), (2, 2), (1, 1), bias=False),
|
| 288 |
+
nn.BatchNorm2d(64),
|
| 289 |
+
nn.LeakyReLU(0.2, True),
|
| 290 |
+
nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1), bias=False),
|
| 291 |
+
nn.BatchNorm2d(64),
|
| 292 |
+
nn.LeakyReLU(0.2, True),
|
| 293 |
+
# state size. (128) x 256 x 256
|
| 294 |
+
nn.Conv2d(64, 128, (4, 4), (2, 2), (1, 1), bias=False),
|
| 295 |
+
nn.BatchNorm2d(128),
|
| 296 |
+
nn.LeakyReLU(0.2, True),
|
| 297 |
+
nn.Conv2d(128, 128, (3, 3), (1, 1), (1, 1), bias=False),
|
| 298 |
+
nn.BatchNorm2d(128),
|
| 299 |
+
nn.LeakyReLU(0.2, True),
|
| 300 |
+
# state size. (256) x 64 x 64
|
| 301 |
+
nn.Conv2d(128, 256, (4, 4), (2, 2), (1, 1), bias=False),
|
| 302 |
+
nn.BatchNorm2d(256),
|
| 303 |
+
nn.LeakyReLU(0.2, True),
|
| 304 |
+
nn.Conv2d(256, 256, (3, 3), (1, 1), (1, 1), bias=False),
|
| 305 |
+
nn.BatchNorm2d(256),
|
| 306 |
+
nn.LeakyReLU(0.2, True),
|
| 307 |
+
nn.Conv2d(256, 256, (4, 4), (2, 2), (1, 1), bias=False),
|
| 308 |
+
nn.BatchNorm2d(256),
|
| 309 |
+
nn.LeakyReLU(0.2, True),
|
| 310 |
+
nn.Conv2d(256, 256, (3, 3), (1, 1), (1, 1), bias=False),
|
| 311 |
+
nn.BatchNorm2d(256),
|
| 312 |
+
nn.LeakyReLU(0.2, True),
|
| 313 |
+
# state size. (512) x 16 x 16
|
| 314 |
+
nn.Conv2d(256, 256, (4, 4), (2, 2), (1, 1), bias=False),
|
| 315 |
+
nn.BatchNorm2d(256),
|
| 316 |
+
nn.LeakyReLU(0.2, True),
|
| 317 |
+
|
| 318 |
+
nn.Conv2d(256, 256, (4, 4), (2, 2), (1, 1), bias=False),
|
| 319 |
+
nn.BatchNorm2d(256),
|
| 320 |
+
nn.LeakyReLU(0.2, True),
|
| 321 |
+
# state size. (512) x 8 x 8
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
self.classifier = nn.Sequential(
|
| 325 |
+
nn.Linear(256 * 8 * 8, 100),
|
| 326 |
+
nn.LeakyReLU(0.2, True),
|
| 327 |
+
nn.Linear(100, 1),
|
| 328 |
+
)
|
| 329 |
+
|
| 330 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 331 |
+
out = self.features(x)
|
| 332 |
+
out = torch.flatten(out, 1)
|
| 333 |
+
out = self.classifier(out)
|
| 334 |
+
return out
|
| 335 |
+
|
requirements.txt
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
gradio
|
| 2 |
torch
|
| 3 |
-
torchvision
|
|
|
|
| 1 |
+
matplotlib
|
| 2 |
gradio
|
| 3 |
torch
|
| 4 |
+
torchvision
|
test.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torchvision
|
| 3 |
+
from torchvision import transforms
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
import numpy as np
|
| 7 |
+
from models.modelNetA import Generator as GA
|
| 8 |
+
from models.modelNetB import Generator as GB
|
| 9 |
+
from models.modelNetC import Generator as GC
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
DEVICE='cpu'
|
| 14 |
+
model_type = 'model_b'
|
| 15 |
+
|
| 16 |
+
modeltype2path = {
|
| 17 |
+
'model_a': 'DTM_exp_train10%_model_a/g-best.pth',
|
| 18 |
+
'model_b': 'DTM_exp_train10%_model_b/g-best.pth',
|
| 19 |
+
'model_c': 'DTM_exp_train10%_model_c/g-best.pth',
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
+
if model_type == 'model_a':
|
| 23 |
+
generator = GA()
|
| 24 |
+
if model_type == 'model_b':
|
| 25 |
+
generator = GB()
|
| 26 |
+
if model_type == 'model_c':
|
| 27 |
+
generator = GC()
|
| 28 |
+
|
| 29 |
+
generator = torch.nn.DataParallel(generator)
|
| 30 |
+
state_dict_Gen = torch.load(modeltype2path[model_type], map_location=torch.device('cpu'))
|
| 31 |
+
generator.load_state_dict(state_dict_Gen)
|
| 32 |
+
generator = generator.module.to(DEVICE)
|
| 33 |
+
# generator.to(DEVICE)
|
| 34 |
+
generator.eval()
|
| 35 |
+
|
| 36 |
+
preprocess = transforms.Compose([
|
| 37 |
+
transforms.Grayscale(),
|
| 38 |
+
transforms.Resize((512, 512)),
|
| 39 |
+
transforms.ToTensor()
|
| 40 |
+
])
|
| 41 |
+
input_img = Image.open('demo_imgs/fake.jpg')
|
| 42 |
+
torch_img = preprocess(input_img).to(DEVICE).unsqueeze(0).to(DEVICE)
|
| 43 |
+
with torch.no_grad():
|
| 44 |
+
output = generator(torch_img)
|
| 45 |
+
sr, sr_dem_selected = output[0], output[1]
|
| 46 |
+
sr = sr.squeeze(0).cpu()
|
| 47 |
+
|
| 48 |
+
print(sr.shape)
|
| 49 |
+
torchvision.utils.save_image(sr, 'sr.png')
|
| 50 |
+
|
| 51 |
+
sr_dem_selected = sr_dem_selected.squeeze().cpu().detach().numpy()
|
| 52 |
+
print(sr_dem_selected.shape)
|
| 53 |
+
plt.imshow(sr_dem_selected, cmap='jet', vmin=0, vmax=np.max(sr_dem_selected))
|
| 54 |
+
plt.colorbar()
|
| 55 |
+
plt.savefig('test.png')
|