Update app.py
Browse files
app.py
CHANGED
|
@@ -1,57 +1,45 @@
|
|
| 1 |
-
# app.py – encoder-only demo
|
| 2 |
-
#
|
| 3 |
-
# launch: python app.py
|
| 4 |
-
|
| 5 |
-
import json, re, sys
|
| 6 |
from pathlib import Path, PurePosixPath
|
| 7 |
|
| 8 |
-
import
|
| 9 |
-
import
|
|
|
|
| 10 |
from huggingface_hub import snapshot_download
|
| 11 |
-
|
| 12 |
from bert_handler import create_handler_from_checkpoint
|
| 13 |
|
| 14 |
# ------------------------------------------------------------------
|
| 15 |
-
# 0.
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
)
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
cfg = json.loads(cfg_path.read_text())
|
| 29 |
-
auto_map = cfg.get("auto_map", {})
|
| 30 |
-
changed = False
|
| 31 |
-
for k, v in auto_map.items():
|
| 32 |
-
if "--" in v: # strip “repo--”
|
| 33 |
-
auto_map[k] = PurePosixPath(v.split("--", 1)[1]).as_posix()
|
| 34 |
-
changed = True
|
| 35 |
-
if changed:
|
| 36 |
-
cfg_path.write_text(json.dumps(cfg, indent=2))
|
| 37 |
-
print("🛠️ Patched config.json → auto_map points to local modules")
|
| 38 |
|
| 39 |
# ------------------------------------------------------------------
|
| 40 |
-
# 1.
|
| 41 |
-
|
| 42 |
-
handler, full_model, tokenizer = create_handler_from_checkpoint(LOCAL_CKPT)
|
| 43 |
full_model = full_model.eval().cuda()
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
|
| 52 |
# ------------------------------------------------------------------
|
| 53 |
-
# 2.
|
| 54 |
-
# ------------------------------------------------------------------
|
| 55 |
SYMBOLIC_ROLES = [
|
| 56 |
"<subject>", "<subject1>", "<subject2>", "<pose>", "<emotion>",
|
| 57 |
"<surface>", "<lighting>", "<material>", "<accessory>", "<footwear>",
|
|
@@ -60,108 +48,96 @@ SYMBOLIC_ROLES = [
|
|
| 60 |
"<object_left>", "<object_right>", "<relation>", "<intent>", "<style>",
|
| 61 |
"<fabric>", "<jewelry>",
|
| 62 |
]
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
if
|
| 66 |
-
sys.exit(f"❌ Tokenizer missing {
|
| 67 |
-
|
| 68 |
-
MASK_ID = tokenizer.mask_token_id
|
| 69 |
-
MASK_TOK = tokenizer.mask_token
|
| 70 |
|
| 71 |
# ------------------------------------------------------------------
|
| 72 |
-
#
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
return encoder(x, attention_mask=ext).squeeze(0) # (S,H)
|
| 78 |
-
|
| 79 |
-
def pool_accuracy(ids, mask, pool_positions):
|
| 80 |
-
"""mask positions in pool, predict, calc accuracy"""
|
| 81 |
-
masked = ids.clone()
|
| 82 |
-
masked[0, pool_positions] = MASK_ID
|
| 83 |
-
with torch.no_grad():
|
| 84 |
-
logits = full_model(masked, attention_mask=mask).logits[0]
|
| 85 |
-
preds = logits.argmax(-1)
|
| 86 |
-
gold = ids.squeeze(0)
|
| 87 |
-
correct = (preds[pool_positions] == gold[pool_positions]).sum().item()
|
| 88 |
-
return correct / len(pool_positions) if pool_positions else 0.0
|
| 89 |
|
| 90 |
-
#
|
| 91 |
-
|
|
|
|
| 92 |
|
| 93 |
-
#
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
#
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
if
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
accepted = ["(none hit 50 %)"]
|
| 138 |
-
|
| 139 |
-
return ", ".join(accepted), f"{len(present)} roles analysed", f"{text[:80]}…"
|
| 140 |
|
| 141 |
# ------------------------------------------------------------------
|
| 142 |
-
# 4. UI
|
| 143 |
-
def
|
| 144 |
with gr.Blocks(title="🧠 Symbolic Encoder Inspector") as demo:
|
| 145 |
gr.Markdown(
|
| 146 |
"## 🧠 Symbolic Encoder Inspector \n"
|
| 147 |
-
"
|
|
|
|
| 148 |
)
|
| 149 |
with gr.Row():
|
| 150 |
with gr.Column():
|
| 151 |
-
txt = gr.Textbox(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
roles = gr.CheckboxGroup(
|
| 153 |
-
SYMBOLIC_ROLES,
|
| 154 |
-
value=SYMBOLIC_ROLES,
|
| 155 |
-
label="Roles to
|
| 156 |
)
|
| 157 |
-
|
| 158 |
with gr.Column():
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
|
| 163 |
-
|
| 164 |
return demo
|
| 165 |
|
| 166 |
if __name__ == "__main__":
|
| 167 |
-
|
|
|
|
| 1 |
+
# app.py – encoder-only + masking accuracy demo for bert-beatrix-2048
|
| 2 |
+
# -----------------------------------------------------------------
|
| 3 |
+
# launch: python app.py (UI at http://localhost:7860)
|
| 4 |
+
|
| 5 |
+
import json, re, sys
|
| 6 |
from pathlib import Path, PurePosixPath
|
| 7 |
|
| 8 |
+
import gradio as gr
|
| 9 |
+
import spaces
|
| 10 |
+
import torch
|
| 11 |
from huggingface_hub import snapshot_download
|
|
|
|
| 12 |
from bert_handler import create_handler_from_checkpoint
|
| 13 |
|
| 14 |
# ------------------------------------------------------------------
|
| 15 |
+
# 0. download repo + patch auto_map --------------------------------
|
| 16 |
+
REPO_ID = "AbstractPhil/bert-beatrix-2048"
|
| 17 |
+
LOCAL_CK = "bert-beatrix-2048"
|
| 18 |
+
snapshot_download(repo_id=REPO_ID, local_dir=LOCAL_CK, local_dir_use_symlinks=False)
|
| 19 |
+
|
| 20 |
+
cfg_p = Path(LOCAL_CK) / "config.json"
|
| 21 |
+
with cfg_p.open() as f:
|
| 22 |
+
cfg = json.load(f)
|
| 23 |
+
for k, v in cfg.get("auto_map", {}).items():
|
| 24 |
+
if "--" in v:
|
| 25 |
+
cfg["auto_map"][k] = PurePosixPath(v.split("--", 1)[1]).as_posix()
|
| 26 |
+
with cfg_p.open("w") as f:
|
| 27 |
+
json.dump(cfg, f, indent=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
# ------------------------------------------------------------------
|
| 30 |
+
# 1. load model / tokenizer ---------------------------------------
|
| 31 |
+
handler, full_model, tokenizer = create_handler_from_checkpoint(LOCAL_CK)
|
|
|
|
| 32 |
full_model = full_model.eval().cuda()
|
| 33 |
|
| 34 |
+
encoder = full_model.bert.encoder
|
| 35 |
+
embeddings = full_model.bert.embeddings
|
| 36 |
+
emb_ln = full_model.bert.emb_ln
|
| 37 |
+
emb_drop = full_model.bert.emb_drop
|
| 38 |
+
|
| 39 |
+
MASK = tokenizer.mask_token or "[MASK]"
|
| 40 |
|
| 41 |
# ------------------------------------------------------------------
|
| 42 |
+
# 2. symbolic role list -------------------------------------------
|
|
|
|
| 43 |
SYMBOLIC_ROLES = [
|
| 44 |
"<subject>", "<subject1>", "<subject2>", "<pose>", "<emotion>",
|
| 45 |
"<surface>", "<lighting>", "<material>", "<accessory>", "<footwear>",
|
|
|
|
| 48 |
"<object_left>", "<object_right>", "<relation>", "<intent>", "<style>",
|
| 49 |
"<fabric>", "<jewelry>",
|
| 50 |
]
|
| 51 |
+
miss = [t for t in SYMBOLIC_ROLES
|
| 52 |
+
if tokenizer.convert_tokens_to_ids(t) == tokenizer.unk_token_id]
|
| 53 |
+
if miss:
|
| 54 |
+
sys.exit(f"❌ Tokenizer missing {miss}")
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
# ------------------------------------------------------------------
|
| 57 |
+
# 3. inference util ----------------------------------------------
|
| 58 |
+
@spaces.GPU
|
| 59 |
+
def encode_and_trace(text: str, selected_roles: list[str]):
|
| 60 |
+
# ----- 3-A. build masked version & encode original --------------
|
| 61 |
+
sel_ids = {tokenizer.convert_tokens_to_ids(t) for t in selected_roles}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
+
# tokenised “plain” text
|
| 64 |
+
plain = tokenizer(text, return_tensors="pt").to("cuda")
|
| 65 |
+
ids_plain = plain.input_ids
|
| 66 |
|
| 67 |
+
# make masked string (regex to avoid partial hits)
|
| 68 |
+
masked_txt = text
|
| 69 |
+
for tok in selected_roles:
|
| 70 |
+
masked_txt = re.sub(re.escape(tok), MASK, masked_txt)
|
| 71 |
+
|
| 72 |
+
masked = tokenizer(masked_txt, return_tensors="pt").to("cuda")
|
| 73 |
+
ids_masked = masked.input_ids
|
| 74 |
+
|
| 75 |
+
# ----- 3-B. run model on masked text ----------------------------
|
| 76 |
+
with torch.no_grad():
|
| 77 |
+
logits = full_model(**masked).logits[0] # (S, V)
|
| 78 |
+
preds = logits.argmax(-1) # (S,)
|
| 79 |
+
|
| 80 |
+
# ----- 3-C. gather stats per masked role ------------------------
|
| 81 |
+
found_tokens, correct = [], 0
|
| 82 |
+
role_flags = []
|
| 83 |
+
for i, (orig_id, pred_id) in enumerate(zip(ids_plain[0], preds)):
|
| 84 |
+
if orig_id.item() in sel_ids and ids_masked[0, i].item() == tokenizer.mask_token_id:
|
| 85 |
+
found_tokens.append(tokenizer.convert_ids_to_tokens([orig_id])[0])
|
| 86 |
+
correct += int(orig_id.item() == pred_id.item())
|
| 87 |
+
role_flags.append(i)
|
| 88 |
+
|
| 89 |
+
total = len(role_flags)
|
| 90 |
+
acc = correct / total if total else 0.0
|
| 91 |
+
|
| 92 |
+
# ----- 3-D. encoder rep pooling for *all* selected roles --------
|
| 93 |
+
with torch.no_grad():
|
| 94 |
+
# embeddings -> normed reps
|
| 95 |
+
x = emb_drop(emb_ln(embeddings(ids_plain)))
|
| 96 |
+
attn = full_model.bert.get_extended_attention_mask(
|
| 97 |
+
plain.attention_mask, x.shape[:-1]
|
| 98 |
+
)
|
| 99 |
+
enc = encoder(x, attention_mask=attn) # (1,S,H)
|
| 100 |
+
mask_vec = torch.tensor(
|
| 101 |
+
[tid in sel_ids for tid in ids_plain[0].tolist()], device=enc.device
|
| 102 |
+
)
|
| 103 |
+
if mask_vec.any():
|
| 104 |
+
pooled = enc[0][mask_vec].mean(0)
|
| 105 |
+
norm = f"{pooled.norm().item():.4f}"
|
| 106 |
+
else:
|
| 107 |
+
norm = "0.0000"
|
| 108 |
+
|
| 109 |
+
tokens_str = ", ".join(found_tokens) or "(none)"
|
| 110 |
+
return tokens_str, norm, f"{acc*100:.1f}%"
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
# ------------------------------------------------------------------
|
| 113 |
+
# 4. gradio UI ----------------------------------------------------
|
| 114 |
+
def app():
|
| 115 |
with gr.Blocks(title="🧠 Symbolic Encoder Inspector") as demo:
|
| 116 |
gr.Markdown(
|
| 117 |
"## 🧠 Symbolic Encoder Inspector \n"
|
| 118 |
+
"1. Model side: we *mask* every chosen role token, run the LM, and report how often it recovers the original. \n"
|
| 119 |
+
"2. Encoder side: we also pool hidden-state vectors for those roles and give their mean L2-norm."
|
| 120 |
)
|
| 121 |
with gr.Row():
|
| 122 |
with gr.Column():
|
| 123 |
+
txt = gr.Textbox(
|
| 124 |
+
label="Input with Symbolic Tokens",
|
| 125 |
+
lines=3,
|
| 126 |
+
placeholder="Example: A <subject> wearing <upper_body_clothing> …",
|
| 127 |
+
)
|
| 128 |
roles = gr.CheckboxGroup(
|
| 129 |
+
choices=SYMBOLIC_ROLES,
|
| 130 |
+
value=SYMBOLIC_ROLES, # <- all pre-selected
|
| 131 |
+
label="Roles to mask & trace",
|
| 132 |
)
|
| 133 |
+
run = gr.Button("Run")
|
| 134 |
with gr.Column():
|
| 135 |
+
o_tok = gr.Textbox(label="Masked-role tokens found")
|
| 136 |
+
o_norm = gr.Textbox(label="Mean hidden-state L2-norm")
|
| 137 |
+
o_acc = gr.Textbox(label="Recovery accuracy")
|
| 138 |
|
| 139 |
+
run.click(encode_and_trace, [txt, roles], [o_tok, o_norm, o_acc])
|
| 140 |
return demo
|
| 141 |
|
| 142 |
if __name__ == "__main__":
|
| 143 |
+
app().launch()
|