Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,17 +7,23 @@ from PIL import Image
|
|
| 7 |
# Ensure using GPU if available
|
| 8 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 9 |
|
| 10 |
-
# Load the model and processor
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
|
| 16 |
-
#
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
def predict_image(img, confidence_threshold):
|
| 20 |
-
|
| 21 |
if not isinstance(img, Image.Image):
|
| 22 |
raise ValueError(f"Expected a PIL Image, but got {type(img)}")
|
| 23 |
|
|
@@ -30,33 +36,63 @@ def predict_image(img, confidence_threshold):
|
|
| 30 |
# Resize the image
|
| 31 |
img_pil = transforms.Resize((256, 256))(img_pil)
|
| 32 |
|
| 33 |
-
#
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
-
#
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
#
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
return f"⚠️ AI Generated Image, Confidence: {result['artificial']:.4f}"
|
| 47 |
-
elif result['real'] >= confidence_threshold:
|
| 48 |
-
return f"✅ Real Photo, Confidence: {result['real']:.4f}"
|
| 49 |
-
else:
|
| 50 |
-
return "🤷♂️ Uncertain, not confident enough to call."
|
| 51 |
-
|
| 52 |
# Define the Gradio interface
|
| 53 |
image = gr.Image(label="Image to Analyze", sources=['upload'], type='pil') # Ensure the image type is PIL
|
| 54 |
confidence_slider = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Confidence Threshold")
|
| 55 |
-
label = gr.
|
| 56 |
|
| 57 |
gr.Interface(
|
| 58 |
fn=predict_image,
|
| 59 |
inputs=[image, confidence_slider],
|
| 60 |
outputs=label,
|
| 61 |
-
title="AI Generated Classification"
|
|
|
|
| 62 |
).launch()
|
|
|
|
| 7 |
# Ensure using GPU if available
|
| 8 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 9 |
|
| 10 |
+
# Load the first model and processor
|
| 11 |
+
image_processor_1 = AutoImageProcessor.from_pretrained("haywoodsloan/ai-image-detector-deploy")
|
| 12 |
+
model_1 = Swinv2ForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy")
|
| 13 |
+
model_1 = model_1.to(device)
|
| 14 |
+
clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device)
|
| 15 |
|
| 16 |
+
# Load the second model
|
| 17 |
+
hfUser = "Heem2"
|
| 18 |
+
modelName = "AI-vs-Real-Image-Detection"
|
| 19 |
+
clf_2 = pipeline("image-classification", model=f"{hfUser}/{modelName}")
|
| 20 |
+
|
| 21 |
+
# Define class names for both models
|
| 22 |
+
class_names_1 = ['artificial', 'real']
|
| 23 |
+
class_names_2 = ['artificial', 'real'] # Adjust if the second model has different classes
|
| 24 |
|
| 25 |
def predict_image(img, confidence_threshold):
|
| 26 |
+
# Ensure the image is a PIL Image
|
| 27 |
if not isinstance(img, Image.Image):
|
| 28 |
raise ValueError(f"Expected a PIL Image, but got {type(img)}")
|
| 29 |
|
|
|
|
| 36 |
# Resize the image
|
| 37 |
img_pil = transforms.Resize((256, 256))(img_pil)
|
| 38 |
|
| 39 |
+
# Predict using the first model
|
| 40 |
+
try:
|
| 41 |
+
prediction_1 = clf_1(img_pil)
|
| 42 |
+
result_1 = {pred['label']: pred['score'] for pred in prediction_1}
|
| 43 |
+
|
| 44 |
+
# Ensure the result dictionary contains all class names
|
| 45 |
+
for class_name in class_names_1:
|
| 46 |
+
if class_name not in result_1:
|
| 47 |
+
result_1[class_name] = 0.0
|
| 48 |
+
|
| 49 |
+
# Check if either class meets the confidence threshold
|
| 50 |
+
if result_1['artificial'] >= confidence_threshold:
|
| 51 |
+
label_1 = f"Label: artificial, Confidence: {result_1['artificial']:.4f}"
|
| 52 |
+
elif result_1['real'] >= confidence_threshold:
|
| 53 |
+
label_1 = f"Label: real, Confidence: {result_1['real']:.4f}"
|
| 54 |
+
else:
|
| 55 |
+
label_1 = "Uncertain Classification"
|
| 56 |
+
except Exception as e:
|
| 57 |
+
label_1 = f"Error: {str(e)}"
|
| 58 |
|
| 59 |
+
# Predict using the second model
|
| 60 |
+
try:
|
| 61 |
+
prediction_2 = clf_2(img_pil)
|
| 62 |
+
result_2 = {pred['label']: pred['score'] for pred in prediction_2}
|
| 63 |
+
|
| 64 |
+
# Ensure the result dictionary contains all class names
|
| 65 |
+
for class_name in class_names_2:
|
| 66 |
+
if class_name not in result_2:
|
| 67 |
+
result_2[class_name] = 0.0
|
| 68 |
+
|
| 69 |
+
# Check if either class meets the confidence threshold
|
| 70 |
+
if result_2['artificial'] >= confidence_threshold:
|
| 71 |
+
label_2 = f"Label: artificial, Confidence: {result_2['artificial']:.4f}"
|
| 72 |
+
elif result_2['real'] >= confidence_threshold:
|
| 73 |
+
label_2 = f"Label: real, Confidence: {result_2['real']:.4f}"
|
| 74 |
+
else:
|
| 75 |
+
label_2 = "Uncertain Classification"
|
| 76 |
+
except Exception as e:
|
| 77 |
+
label_2 = f"Error: {str(e)}"
|
| 78 |
|
| 79 |
+
# Combine results
|
| 80 |
+
combined_results = {
|
| 81 |
+
"SwinV2": label_1,
|
| 82 |
+
"AI-vs-Real-Image-Detection": label_2
|
| 83 |
+
}
|
| 84 |
|
| 85 |
+
return combined_results
|
| 86 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
# Define the Gradio interface
|
| 88 |
image = gr.Image(label="Image to Analyze", sources=['upload'], type='pil') # Ensure the image type is PIL
|
| 89 |
confidence_slider = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Confidence Threshold")
|
| 90 |
+
label = gr.JSON(label="Model Predictions")
|
| 91 |
|
| 92 |
gr.Interface(
|
| 93 |
fn=predict_image,
|
| 94 |
inputs=[image, confidence_slider],
|
| 95 |
outputs=label,
|
| 96 |
+
title="AI Generated Classification",
|
| 97 |
+
queue=True # Enable queuing to handle multiple predictions efficiently
|
| 98 |
).launch()
|