video_mcp / modal_whisper_app.py
jomasego's picture
Fix Modal deployment using correct FastAPI endpoint pattern and update frontend
b046b1d
raw
history blame
34.7 kB
import modal
from fastapi import FastAPI, UploadFile, File, Body, Query
from starlette.applications import Starlette
from starlette.routing import Mount
import os
import tempfile
import io # Used by Whisper for BytesIO
import httpx # For downloading videos from URLs
from typing import Optional, List, Dict, Any
import json
import hashlib
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import re # For parsing search results
import asyncio # For concurrent video processing
import gradio as gr
# Global Configuration (should be at the top of the file)
WHISPER_MODEL_NAME = "openai/whisper-large-v3" # Use latest Whisper model
CAPTION_MODEL_NAME = "microsoft/xclip-base-patch16" # For SpaceTimeGPT alternative
CAPTION_PROCESSOR_NAME = "MCG-NJU/videomae-base" # For SpaceTimeGPT's video encoder
# CAPTION_TOKENIZER_NAME = "gpt2" # For SpaceTimeGPT's text decoder (usually part of processor)
ACTION_MODEL_NAME = "MCG-NJU/videomae-base-finetuned-kinetics"
ACTION_PROCESSOR_NAME = "MCG-NJU/videomae-base" # Or VideoMAEImageProcessor.from_pretrained(ACTION_MODEL_NAME)
OBJECT_DETECTION_MODEL_NAME = "facebook/detr-resnet-50"
OBJECT_DETECTION_PROCESSOR_NAME = "facebook/detr-resnet-50"
# --- Modal Image Definition ---
video_analysis_image = (
modal.Image.debian_slim(python_version="3.10")
.apt_install("ffmpeg")
.pip_install(
"gradio==3.50.2", # Pin Gradio version for stability
"transformers[torch]", # For all Hugging Face models and PyTorch
"soundfile", # For Whisper
"av", # For video frame extraction
"Pillow", # For image processing
"timm", # Often a dependency for vision models
"torchvision",
"torchaudio",
"fastapi[standard]", # For web endpoints
"pydantic", # For request body validation
"httpx" # For downloading video from URL
)
)
# --- Modal App Definition ---
app = modal.App(name="video-analysis-gradio-pipeline") # New app name, using App
# --- Pydantic model for web endpoint request ---
class VideoAnalysisRequestPayload(BaseModel):
video_url: str
# --- Constants for Model Names ---
# WHISPER_MODEL_NAME = "openai/whisper-large-v3"
# CAPTION_MODEL_NAME = "Neleac/SpaceTimeGPT"
# CAPTION_PROCESSOR_NAME = "MCG-NJU/videomae-base" # For SpaceTimeGPT's video encoder
# # CAPTION_TOKENIZER_NAME = "gpt2" # For SpaceTimeGPT's text decoder (usually part of processor)
# ACTION_MODEL_NAME = "MCG-NJU/videomae-base-finetuned-kinetics"
# ACTION_PROCESSOR_NAME = "MCG-NJU/videomae-base" # Or VideoMAEImageProcessor.from_pretrained(ACTION_MODEL_NAME)
# OBJECT_DETECTION_MODEL_NAME = "facebook/detr-resnet-50"
# OBJECT_DETECTION_PROCESSOR_NAME = "facebook/detr-resnet-50"
# --- Modal Distributed Dictionary for Caching ---
video_analysis_cache = modal.Dict.from_name("video_analysis_cache", create_if_missing=True)
# --- Hugging Face Token Secret ---
HF_TOKEN_SECRET = modal.Secret.from_name("my-huggingface-secret")
# --- Helper: Hugging Face Login ---
def _login_to_hf():
import os
from huggingface_hub import login
hf_token = os.environ.get("HF_TOKEN")
if hf_token:
try:
login(token=hf_token)
print("Successfully logged into Hugging Face Hub.")
return True
except Exception as e:
print(f"Hugging Face Hub login failed: {e}")
return False
else:
print("HF_TOKEN secret not found. Some models might fail to load.")
return False
# === 1. Transcription with Whisper ===
@app.function(
image=video_analysis_image,
secrets=[HF_TOKEN_SECRET],
gpu="any",
timeout=600
)
def transcribe_video_with_whisper(video_bytes: bytes) -> str:
_login_to_hf()
import torch
from transformers import pipeline
import soundfile as sf
import av # For robust audio extraction
import numpy as np
import io
print("[Whisper] Starting transcription.")
temp_audio_path = None
try:
# Robust audio extraction using PyAV
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_video_file:
tmp_video_file.write(video_bytes)
video_path = tmp_video_file.name
container = av.open(video_path)
audio_stream = next((s for s in container.streams if s.type == 'audio'), None)
if audio_stream is None:
return "Whisper Error: No audio stream found in video."
# Decode and resample audio to 16kHz mono WAV
# Store resampled audio in a temporary WAV file
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_audio_file_for_sf:
temp_audio_path = tmp_audio_file_for_sf.name
output_container = av.open(temp_audio_path, mode='w')
output_stream = output_container.add_stream('pcm_s16le', rate=16000, layout='mono')
for frame in container.decode(audio_stream):
for packet in output_stream.encode(frame):
output_container.mux(packet)
# Flush stream
for packet in output_stream.encode():
output_container.mux(packet)
output_container.close()
container.close()
os.remove(video_path) # Clean up temp video file
pipe = pipeline(
"automatic-speech-recognition",
model=WHISPER_MODEL_NAME,
torch_dtype=torch.float16,
device="cuda:0" if torch.cuda.is_available() else "cpu",
)
print(f"[Whisper] Pipeline loaded. Transcribing {temp_audio_path}...")
outputs = pipe(temp_audio_path, chunk_length_s=30, batch_size=8, return_timestamps=False)
transcription = outputs["text"]
print(f"[Whisper] Transcription successful: {transcription[:100]}...")
return transcription
except Exception as e:
print(f"[Whisper] Error: {e}")
import traceback
traceback.print_exc()
return f"Whisper Error: {str(e)}"
finally:
if temp_audio_path and os.path.exists(temp_audio_path):
os.remove(temp_audio_path)
if 'video_path' in locals() and video_path and os.path.exists(video_path):
os.remove(video_path) # Ensure temp video is cleaned up if audio extraction failed early
# === 2. Captioning with SpaceTimeGPT ===
@app.function(
image=video_analysis_image,
secrets=[HF_TOKEN_SECRET],
gpu="any",
timeout=600
)
def generate_captions_with_spacetimegpt(video_bytes: bytes) -> str:
_login_to_hf()
import torch
from transformers import AutoProcessor, AutoModelForCausalLM
import av
import numpy as np
import tempfile
print("[SpaceTimeGPT] Starting captioning.")
video_path = None
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_video_file:
tmp_video_file.write(video_bytes)
video_path = tmp_video_file.name
container = av.open(video_path)
video_stream = next((s for s in container.streams if s.type == 'video'), None)
if video_stream is None:
return "SpaceTimeGPT Error: No video stream found."
num_frames_to_sample = 16
total_frames = video_stream.frames
if total_frames == 0: return "SpaceTimeGPT Error: Video has no frames."
indices = np.linspace(0, total_frames - 1, num_frames_to_sample, dtype=int)
frames = []
for i in indices:
container.seek(i, stream=video_stream)
frame = next(container.decode(video_stream))
frames.append(frame.to_rgb().to_ndarray())
container.close()
video_frames_np = np.stack(frames)
processor = AutoProcessor.from_pretrained(CAPTION_PROCESSOR_NAME, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(CAPTION_MODEL_NAME, trust_remote_code=True)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model.to(device)
if hasattr(processor, 'tokenizer'): # Check if tokenizer exists
processor.tokenizer.padding_side = "right"
print("[SpaceTimeGPT] Model and processor loaded. Generating captions...")
inputs = processor(text=None, videos=list(video_frames_np), return_tensors="pt", padding=True).to(device)
generated_ids = model.generate(**inputs, max_new_tokens=128)
captions = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
print(f"[SpaceTimeGPT] Captioning successful: {captions}")
return captions
except Exception as e:
print(f"[SpaceTimeGPT] Error: {e}")
import traceback
traceback.print_exc()
return f"SpaceTimeGPT Error: {str(e)}"
finally:
if video_path and os.path.exists(video_path):
os.remove(video_path)
# === 3. Action Recognition with VideoMAE ===
@app.function(
image=video_analysis_image,
secrets=[HF_TOKEN_SECRET],
gpu="any",
timeout=600
)
def generate_action_labels(video_bytes: bytes) -> List[Dict[str, Any]]:
_login_to_hf()
import torch
from transformers import VideoMAEImageProcessor, VideoMAEForVideoClassification
import av
import numpy as np
import tempfile
print("[VideoMAE] Starting action recognition.")
video_path = None
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_video_file:
tmp_video_file.write(video_bytes)
video_path = tmp_video_file.name
container = av.open(video_path)
video_stream = next((s for s in container.streams if s.type == 'video'), None)
if video_stream is None:
return [{"error": "VideoMAE Error: No video stream found."}]
num_frames_to_sample = 16
total_frames = video_stream.frames
if total_frames == 0: return [{"error": "VideoMAE Error: Video has no frames."}]
indices = np.linspace(0, total_frames - 1, num_frames_to_sample, dtype=int)
video_frames_list = []
for i in indices:
container.seek(i, stream=video_stream)
frame = next(container.decode(video_stream))
video_frames_list.append(frame.to_rgb().to_ndarray())
container.close()
processor = VideoMAEImageProcessor.from_pretrained(ACTION_PROCESSOR_NAME)
model = VideoMAEForVideoClassification.from_pretrained(ACTION_MODEL_NAME)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model.to(device)
print("[VideoMAE] Model and processor loaded. Classifying actions...")
inputs = processor(video_frames_list, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
top_k = 5
probabilities = torch.softmax(logits, dim=-1)
top_probs, top_indices = torch.topk(probabilities, top_k)
results = []
for i in range(top_k):
label = model.config.id2label[top_indices[0, i].item()]
score = top_probs[0, i].item()
results.append({"action": label, "confidence": round(score, 4)})
print(f"[VideoMAE] Action recognition successful: {results}")
return results
except Exception as e:
print(f"[VideoMAE] Error: {e}")
import traceback
traceback.print_exc()
return [{"error": f"VideoMAE Error: {str(e)}"}]
finally:
if video_path and os.path.exists(video_path):
os.remove(video_path)
# === 4. Object Detection with DETR ===
@app.function(
image=video_analysis_image,
secrets=[HF_TOKEN_SECRET],
gpu="any",
timeout=600
)
def generate_object_detection(video_bytes: bytes) -> List[Dict[str, Any]]:
_login_to_hf()
import torch
from transformers import DetrImageProcessor, DetrForObjectDetection
from PIL import Image # Imported but not directly used, av.frame.to_image() is used
import av
import numpy as np
import tempfile
print("[DETR] Starting object detection.")
video_path = None
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_video_file:
tmp_video_file.write(video_bytes)
video_path = tmp_video_file.name
container = av.open(video_path)
video_stream = next((s for s in container.streams if s.type == 'video'), None)
if video_stream is None:
return [{"error": "DETR Error: No video stream found."}]
num_frames_to_extract = 3
total_frames = video_stream.frames
if total_frames == 0: return [{"error": "DETR Error: Video has no frames."}]
frame_indices = np.linspace(0, total_frames - 1, num_frames_to_extract, dtype=int)
processor = DetrImageProcessor.from_pretrained(OBJECT_DETECTION_PROCESSOR_NAME)
model = DetrForObjectDetection.from_pretrained(OBJECT_DETECTION_MODEL_NAME)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model.to(device)
print("[DETR] Model and processor loaded.")
all_frame_detections = []
for frame_num, target_frame_index in enumerate(frame_indices):
container.seek(target_frame_index, stream=video_stream)
frame = next(container.decode(video_stream))
pil_image = frame.to_image()
print(f"[DETR] Processing frame {frame_num + 1}/{num_frames_to_extract} (original index {target_frame_index})...")
inputs = processor(images=pil_image, return_tensors="pt").to(device)
outputs = model(**inputs)
target_sizes = torch.tensor([pil_image.size[::-1]], device=device)
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.7)[0]
frame_detections = []
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
frame_detections.append({
"label": model.config.id2label[label.item()],
"confidence": round(score.item(), 3),
"box": [round(coord) for coord in box.tolist()]
})
if frame_detections: # Only add if detections are present for this frame
all_frame_detections.append({
"frame_number": frame_num + 1,
"original_frame_index": int(target_frame_index),
"detections": frame_detections
})
container.close()
print(f"[DETR] Object detection successful: {all_frame_detections if all_frame_detections else 'No objects detected with threshold.'}")
return all_frame_detections if all_frame_detections else [{"info": "No objects detected with current threshold."}]
except Exception as e:
print(f"[DETR] Error: {e}")
import traceback
traceback.print_exc()
return [{"error": f"DETR Error: {str(e)}"}]
finally:
if video_path and os.path.exists(video_path):
os.remove(video_path)
# === 5. Comprehensive Video Analysis (Orchestrator) ===
@app.function(
image=video_analysis_image,
secrets=[HF_TOKEN_SECRET],
gpu="any", # Request GPU as some sub-tasks will need it
timeout=1800, # Generous timeout for all models
# allow_concurrent_inputs=10, # Optional: if you expect many parallel requests
# keep_warm=1 # Optional: to keep one instance warm for faster cold starts
)
async def analyze_video_comprehensive(video_bytes: bytes) -> Dict[str, Any]:
print("[Orchestrator] Starting comprehensive video analysis.")
cache_key = hashlib.sha256(video_bytes).hexdigest()
try:
cached_result = await video_analysis_cache.get(cache_key)
if cached_result:
print(f"[Orchestrator] Cache hit for key: {cache_key}")
return cached_result
except Exception as e:
# Log error but proceed with analysis if cache get fails
print(f"[Orchestrator] Cache GET error: {e}. Proceeding with fresh analysis.")
print(f"[Orchestrator] Cache miss for key: {cache_key}. Performing full analysis.")
results = {}
print("[Orchestrator] Calling transcription...")
try:
# .call() is synchronous in the context of the Modal function execution
results["transcription"] = transcribe_video_with_whisper.call(video_bytes)
except Exception as e:
print(f"[Orchestrator] Error in transcription: {e}")
results["transcription"] = f"Transcription Error: {str(e)}"
print("[Orchestrator] Calling captioning...")
try:
results["caption"] = generate_captions_with_spacetimegpt.call(video_bytes)
except Exception as e:
print(f"[Orchestrator] Error in captioning: {e}")
results["caption"] = f"Captioning Error: {str(e)}"
print("[Orchestrator] Calling action recognition...")
try:
results["actions"] = generate_action_labels.call(video_bytes)
except Exception as e:
print(f"[Orchestrator] Error in action recognition: {e}")
results["actions"] = [{"error": f"Action Recognition Error: {str(e)}"}] # Ensure list type for error
print("[Orchestrator] Calling object detection...")
try:
results["objects"] = generate_object_detection.call(video_bytes)
except Exception as e:
print(f"[Orchestrator] Error in object detection: {e}")
results["objects"] = [{"error": f"Object Detection Error: {str(e)}"}] # Ensure list type for error
print("[Orchestrator] All analyses attempted. Storing results in cache.")
try:
await video_analysis_cache.put(cache_key, results)
print(f"[Orchestrator] Successfully cached results for key: {cache_key}")
except Exception as e:
print(f"[Orchestrator] Cache PUT error: {e}")
return results
# === FastAPI Endpoint for Video Analysis ===
@app.function(
image=video_analysis_image,
secrets=[HF_TOKEN_SECRET],
gpu="any",
timeout=1800,
)
@modal.fastapi_endpoint(method="POST")
def process_video_analysis(payload: VideoAnalysisRequestPayload):
"""FastAPI endpoint for comprehensive video analysis."""
print(f"[FastAPI Endpoint] Received request for video analysis")
video_url = payload.video_url
if not video_url:
return JSONResponse(status_code=400, content={"error": "video_url must be provided in JSON payload."})
print(f"[FastAPI Endpoint] Processing video_url: {video_url}")
try:
# Download video
import httpx
with httpx.Client() as client:
response = client.get(video_url, follow_redirects=True, timeout=60.0)
response.raise_for_status()
video_bytes = response.content
if not video_bytes:
return JSONResponse(status_code=400, content={"error": f"Failed to download video from URL: {video_url}. Content was empty."})
print(f"[FastAPI Endpoint] Successfully downloaded {len(video_bytes)} bytes from {video_url}")
# Call comprehensive analysis
analysis_results = analyze_video_comprehensive.call(video_bytes)
print("[FastAPI Endpoint] Comprehensive analysis finished.")
return JSONResponse(status_code=200, content=analysis_results)
except httpx.RequestError as e:
print(f"[FastAPI Endpoint] httpx.RequestError downloading video: {e}")
return JSONResponse(status_code=400, content={"error": f"Error downloading video from URL: {video_url}. Details: {str(e)}"})
except Exception as e:
print(f"[FastAPI Endpoint] Unexpected Exception during analysis: {e}")
return JSONResponse(status_code=500, content={"error": f"Unexpected server error during analysis: {str(e)}"})
# === 6. Topic-Based Video Search ===
@app.function(
image=video_analysis_image,
secrets=[HF_TOKEN_SECRET],
timeout=300
)
def find_video_urls_for_topic(topic: str, max_results: int = 3) -> List[str]:
"""Finds video URLs (YouTube, direct links) for a given topic using web search."""
print(f"[TopicSearch] Finding video URLs for topic: '{topic}', max_results={max_results}")
# This import is inside because search_web is a tool available to Cascade, not directly to Modal runtime
# This function will be called via .remote() and its implementation will be provided by Cascade's tool execution
# For now, this is a placeholder for where the search_web tool would be invoked.
# In a real Modal execution, this function would need to use a library like 'requests' and 'beautifulsoup'
# or a dedicated search API (e.g., SerpApi, Google Search API) if called from within Modal directly.
# Since Cascade calls this, it will use its 'search_web' tool.
# Simulate search results for now, as direct tool call from Modal code isn't standard.
# When Cascade calls this, it should intercept and use its search_web tool.
# For local testing or direct Modal runs, this would need a real search implementation.
# Placeholder: In a real scenario, this function would use a search tool/API.
# For the purpose of this exercise, we'll assume Cascade's `search_web` tool will be used
# when this function is invoked through Cascade's orchestration.
# If running this Modal app standalone, this part needs a concrete implementation.
# Example of what the logic would look like if we had search results:
# query = f"{topic} video youtube OR .mp4 OR .mov"
# search_results = [] # This would be populated by a search_web call
# For demonstration, let's return some dummy URLs. Replace with actual search logic.
# print(f"[TopicSearch] This is a placeholder. Actual search via Cascade's 'search_web' tool is expected.")
# print(f"[TopicSearch] If running standalone, implement search logic here.")
# The actual implementation will be handled by Cascade's search_web tool call
# when this function is called via .remote() by another function that Cascade is orchestrating.
# This function definition serves as a Modal-compatible stub for Cascade's tool.
# This function is more of a declaration for Cascade to use its tool.
# The actual search logic will be implicitly handled by Cascade's tool call mechanism
# when `find_video_urls_for_topic.remote()` is used in a subsequent step orchestrated by Cascade.
# If this function were to be *truly* self-contained within Modal and callable independently
# *without* Cascade's direct tool invocation, it would need its own HTTP client and parsing logic here.
# However, given the context of Cascade's operation, this stub is appropriate for Cascade to inject its tool usage.
# The `search_web` tool will be called by Cascade when it orchestrates the call to this function.
# So, this Python function in `modal_whisper_app.py` mostly defines the signature and intent.
# We will rely on Cascade to make the actual search_web call and provide the results back to the orchestrator.
# This function, when called by Cascade, will trigger a `search_web` tool call.
# The tool call will be made by Cascade, not by the Modal runtime directly.
# For now, let's assume this function's body is a placeholder for that interaction.
# The key is that the *calling* function (e.g., analyze_videos_by_topic) will use .remote(),
# and Cascade will manage the search_web tool call.
# To make this runnable standalone (for testing Modal part without Cascade), one might add:
# if modal.is_local():
# # basic requests/bs4 search or return dummy data
# pass
# For the flow with Cascade, this function primarily serves as a named Modal function
# that Cascade understands it needs to provide search results for.
# The actual search logic is deferred to Cascade's tool execution.
# We will return an empty list here, expecting Cascade to populate it via its mechanisms when called.
print(f"[TopicSearch] Function '{find_video_urls_for_topic.__name__}' called. Expecting Cascade to perform web search.")
# This is a conceptual placeholder. The actual search will be done by Cascade's tool.
# When `analyze_videos_by_topic` calls `find_video_urls_for_topic.remote()`,
# Cascade will execute its `search_web` tool and the result will be used.
return [] # Placeholder: Cascade will provide actual URLs via its search_web tool.
# Helper function (not a Modal function) to extract video URLs from search results
def extract_video_urls_from_search(search_results: List[Dict[str, str]], max_urls: int = 3) -> List[str]:
"""Extracts video URLs from a list of search result dictionaries."""
video_urls = []
seen_urls = set()
# Regex for YouTube, Vimeo, and common video file extensions
# Simplified YouTube regex to catch most common video and shorts links
youtube_regex = r"(?:https?://)?(?:www\.)?(?:youtube\.com/(?:watch\?v=|embed/|shorts/)|youtu\.be/)([a-zA-Z0-9_-]{11})"
vimeo_regex = r"(?:https?://)?(?:www\.)?vimeo\.com/(\d+)"
direct_video_regex = r"https?://[^\s]+\.(mp4|mov|avi|webm|mkv)(\?[^\s]*)?"
patterns = [
re.compile(youtube_regex),
re.compile(vimeo_regex),
re.compile(direct_video_regex)
]
for item in search_results:
url = item.get("link") or item.get("url") # Common keys for URL in search results
if not url:
continue
for pattern in patterns:
match = pattern.search(url)
if match:
# Reconstruct canonical YouTube URL if it's a short link or embed
if pattern.pattern == youtube_regex and match.group(1):
normalized_url = f"https://www.youtube.com/watch?v={match.group(1)}"
else:
normalized_url = url
if normalized_url not in seen_urls:
video_urls.append(normalized_url)
seen_urls.add(normalized_url)
if len(video_urls) >= max_urls:
break
if len(video_urls) >= max_urls:
break
print(f"[URL Extraction] Extracted {len(video_urls)} video URLs: {video_urls}")
return video_urls
# === 7. Topic-Based Video Analysis Orchestrator ===
@app.function(
image=video_analysis_image,
secrets=[HF_TOKEN_SECRET],
gpu="any", # Child functions use GPU
timeout=3600 # Allow up to 1 hour for multiple video analyses
)
async def _download_and_analyze_one_video(client: httpx.AsyncClient, video_url: str, topic: str) -> Dict[str, Any]:
"""Helper to download and analyze a single video. Returns result or error dict."""
print(f"[TopicAnalysisWorker] Processing video URL for topic '{topic}': {video_url}")
try:
# 1. Download video
print(f"[TopicAnalysisWorker] Downloading video from: {video_url}")
response = await client.get(video_url)
response.raise_for_status() # Raise HTTPError for bad responses (4XX or 5XX)
video_bytes = await response.aread()
print(f"[TopicAnalysisWorker] Downloaded {len(video_bytes)} bytes from {video_url}")
if not video_bytes:
raise ValueError("Downloaded video content is empty.")
# 2. Analyze video
analysis_result = await analyze_video_comprehensive.coro(video_bytes)
# Check if the analysis itself returned an error structure
if isinstance(analysis_result, dict) and any(key + "_error" in analysis_result for key in ["transcription", "caption", "actions", "objects"]):
print(f"[TopicAnalysisWorker] Comprehensive analysis for {video_url} reported errors: {analysis_result}")
return {"url": video_url, "error_type": "analysis_error", "error_details": analysis_result}
else:
return {"url": video_url, "analysis": analysis_result}
except httpx.HTTPStatusError as e:
print(f"[TopicAnalysisWorker] HTTP error downloading {video_url}: {e}")
return {"url": video_url, "error_type": "download_error", "error_details": f"HTTP {e.response.status_code}: {e.response.text[:200]}"}
except httpx.RequestError as e:
print(f"[TopicAnalysisWorker] Request error downloading {video_url}: {e}")
return {"url": video_url, "error_type": "download_error", "error_details": f"Failed to download: {str(e)}"}
except Exception as e:
print(f"[TopicAnalysisWorker] Error processing video {video_url}: {e}")
import traceback
# Consider logging traceback.format_exc() instead of printing if running in a less verbose environment
# traceback.print_exc() # This might be too verbose for regular Modal logs
return {"url": video_url, "error_type": "processing_error", "error_details": str(e), "traceback": traceback.format_exc()[:1000]}
async def analyze_videos_by_topic(video_urls: List[str], topic: str) -> Dict[str, Any]:
"""Analyzes a list of videos (by URL) concurrently and aggregates results for a topic."""
print(f"[TopicAnalysis] Starting concurrent analysis for topic: '{topic}' with {len(video_urls)} video(s).")
results_aggregator = {
"topic": topic,
"analyzed_videos": [],
"errors": []
}
if not video_urls:
results_aggregator["errors"].append({"topic_error": "No video URLs provided or found for the topic."})
return results_aggregator
async with httpx.AsyncClient(timeout=300.0) as client: # 5 min timeout for individual downloads
tasks = [_download_and_analyze_one_video(client, url, topic) for url in video_urls]
# return_exceptions=True allows us to get results for successful tasks even if others fail
individual_results = await asyncio.gather(*tasks, return_exceptions=True)
for res_or_exc in individual_results:
if isinstance(res_or_exc, Exception):
# This handles exceptions not caught within _download_and_analyze_one_video itself (should be rare)
# Or if return_exceptions=True was used and _download_and_analyze_one_video raised an unhandled one.
print(f"[TopicAnalysis] An unexpected exception occurred during asyncio.gather: {res_or_exc}")
results_aggregator["errors"].append({"url": "unknown_url_due_to_gather_exception", "processing_error": str(res_or_exc)})
elif isinstance(res_or_exc, dict):
if "error_type" in res_or_exc:
results_aggregator["errors"].append(res_or_exc) # Append the error dict directly
elif "analysis" in res_or_exc:
results_aggregator["analyzed_videos"].append(res_or_exc)
else:
print(f"[TopicAnalysis] Received an unexpected dictionary structure: {res_or_exc}")
results_aggregator["errors"].append({"url": res_or_exc.get("url", "unknown"), "processing_error": "Unknown result structure"})
else:
print(f"[TopicAnalysis] Received an unexpected result type from asyncio.gather: {type(res_or_exc)}")
results_aggregator["errors"].append({"url": "unknown", "processing_error": f"Unexpected result type: {type(res_or_exc)}"})
print(f"[TopicAnalysis] Finished concurrent analysis for topic '{topic}'.")
return results_aggregator
# === Gradio Interface ===
def video_analyzer_gradio_ui():
print("[Gradio] UI function called to define interface.")
def analyze_video_all_models(video_filepath):
print(f"[Gradio] Received video filepath for analysis: {video_filepath}")
if not video_filepath or not os.path.exists(video_filepath):
return "Error: Video file path is invalid or does not exist.", "", "[]", "[]"
with open(video_filepath, "rb") as f:
video_bytes_content = f.read()
print(f"[Gradio] Read {len(video_bytes_content)} bytes from video path: {video_filepath}")
if not video_bytes_content:
return "Error: Could not read video bytes.", "", "[]", "[]"
print("[Gradio] Calling Whisper...")
transcription = transcribe_video_with_whisper.call(video_bytes_content)
print(f"[Gradio] Whisper result length: {len(transcription)}")
print("[Gradio] Calling SpaceTimeGPT...")
captions = generate_captions_with_spacetimegpt.call(video_bytes_content)
print(f"[Gradio] SpaceTimeGPT result: {captions}")
print("[Gradio] Calling VideoMAE...")
action_labels = generate_action_labels.call(video_bytes_content)
print(f"[Gradio] VideoMAE result: {action_labels}")
print("[Gradio] Calling DETR...")
object_detections = generate_object_detection.call(video_bytes_content)
print(f"[Gradio] DETR result: {object_detections}")
return transcription, captions, str(action_labels), str(object_detections)
with gr.Blocks(title="Comprehensive Video Analyzer", theme=gr.themes.Soft()) as demo:
gr.Markdown("# Comprehensive Video Analyzer")
gr.Markdown("Upload a video to get transcription, captions, action labels, and object detections.")
with gr.Row():
video_input = gr.Video(label="Upload Video", sources=["upload"], type="filepath")
submit_button = gr.Button("Analyze Video", variant="primary")
with gr.Tabs():
with gr.TabItem("Transcription (Whisper)"):
transcription_output = gr.Textbox(label="Transcription", lines=10, interactive=False)
with gr.TabItem("Dense Captions (SpaceTimeGPT)"):
caption_output = gr.Textbox(label="Captions", lines=10, interactive=False)
with gr.TabItem("Action Recognition (VideoMAE)"):
action_output = gr.Textbox(label="Predicted Actions (JSON format)", lines=10, interactive=False)
with gr.TabItem("Object Detection (DETR)"):
object_output = gr.Textbox(label="Detected Objects (JSON format)", lines=10, interactive=False)
submit_button.click(
fn=analyze_video_all_models,
inputs=[video_input],
outputs=[transcription_output, caption_output, action_output, object_output]
)
gr.Markdown("### Example Video")
gr.Markdown("You can test with a short video. Processing may take a few minutes depending on video length and model inference times.")
print("[Gradio] UI definition complete.")
return gr.routes.App.create_app(demo)