Update app.py
Browse files
app.py
CHANGED
|
@@ -6,6 +6,19 @@ import re
|
|
| 6 |
import os
|
| 7 |
import gradio as gr
|
| 8 |
import requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
#url = "https://github.com/simonepri/lm-scorer/tree/master/lm_scorer/models"
|
| 11 |
#resp = requests.get(url)
|
|
@@ -30,16 +43,16 @@ from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
|
| 30 |
import numpy as np
|
| 31 |
import re
|
| 32 |
|
| 33 |
-
def Sort_Tuple(tup):
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
|
| 39 |
|
| 40 |
-
def softmax(x):
|
| 41 |
-
|
| 42 |
-
|
| 43 |
|
| 44 |
|
| 45 |
def get_sim(x):
|
|
@@ -49,56 +62,84 @@ def get_sim(x):
|
|
| 49 |
|
| 50 |
# Load pre-trained model
|
| 51 |
|
| 52 |
-
model = GPT2LMHeadModel.from_pretrained('gpt2', output_hidden_states = True, output_attentions = True)
|
| 53 |
|
| 54 |
-
#model = gr.Interface.load('huggingface/distilgpt2', output_hidden_states = True, output_attentions = True)
|
| 55 |
|
| 56 |
-
#model.eval()
|
| 57 |
-
#tokenizer = gr.Interface.load('huggingface/distilgpt2')
|
| 58 |
|
| 59 |
-
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
| 60 |
-
#tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
def cloze_prob(text):
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
|
| 89 |
-
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
|
| 104 |
|
|
|
|
| 6 |
import os
|
| 7 |
import gradio as gr
|
| 8 |
import requests
|
| 9 |
+
from doctest import OutputChecker
|
| 10 |
+
import sys
|
| 11 |
+
import torch
|
| 12 |
+
import re
|
| 13 |
+
import os
|
| 14 |
+
import gradio as gr
|
| 15 |
+
import requests
|
| 16 |
+
import torch
|
| 17 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
| 18 |
+
from torch.nn.functional import softmax
|
| 19 |
+
import numpy as np
|
| 20 |
+
|
| 21 |
+
|
| 22 |
|
| 23 |
#url = "https://github.com/simonepri/lm-scorer/tree/master/lm_scorer/models"
|
| 24 |
#resp = requests.get(url)
|
|
|
|
| 43 |
import numpy as np
|
| 44 |
import re
|
| 45 |
|
| 46 |
+
# def Sort_Tuple(tup):
|
| 47 |
|
| 48 |
+
# # (Sorts in descending order)
|
| 49 |
+
# tup.sort(key = lambda x: x[1])
|
| 50 |
+
# return tup[::-1]
|
| 51 |
|
| 52 |
|
| 53 |
+
# def softmax(x):
|
| 54 |
+
# exps = np.exp(x)
|
| 55 |
+
# return np.divide(exps, np.sum(exps))
|
| 56 |
|
| 57 |
|
| 58 |
def get_sim(x):
|
|
|
|
| 62 |
|
| 63 |
# Load pre-trained model
|
| 64 |
|
| 65 |
+
# model = GPT2LMHeadModel.from_pretrained('gpt2', output_hidden_states = True, output_attentions = True)
|
| 66 |
|
| 67 |
+
# #model = gr.Interface.load('huggingface/distilgpt2', output_hidden_states = True, output_attentions = True)
|
| 68 |
|
| 69 |
+
# #model.eval()
|
| 70 |
+
# #tokenizer = gr.Interface.load('huggingface/distilgpt2')
|
| 71 |
|
| 72 |
+
# tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
| 73 |
+
# #tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
# def cloze_prob(text):
|
| 77 |
+
|
| 78 |
+
# whole_text_encoding = tokenizer.encode(text)
|
| 79 |
+
# # Parse out the stem of the whole sentence (i.e., the part leading up to but not including the critical word)
|
| 80 |
+
# text_list = text.split()
|
| 81 |
+
# stem = ' '.join(text_list[:-1])
|
| 82 |
+
# stem_encoding = tokenizer.encode(stem)
|
| 83 |
+
# # cw_encoding is just the difference between whole_text_encoding and stem_encoding
|
| 84 |
+
# # note: this might not correspond exactly to the word itself
|
| 85 |
+
# cw_encoding = whole_text_encoding[len(stem_encoding):]
|
| 86 |
+
# # Run the entire sentence through the model. Then go "back in time" to look at what the model predicted for each token, starting at the stem.
|
| 87 |
+
# # Put the whole text encoding into a tensor, and get the model's comprehensive output
|
| 88 |
+
# tokens_tensor = torch.tensor([whole_text_encoding])
|
| 89 |
|
| 90 |
+
# with torch.no_grad():
|
| 91 |
+
# outputs = model(tokens_tensor)
|
| 92 |
+
# predictions = outputs[0]
|
| 93 |
+
|
| 94 |
+
# logprobs = []
|
| 95 |
+
# # start at the stem and get downstream probabilities incrementally from the model(see above)
|
| 96 |
+
# start = -1-len(cw_encoding)
|
| 97 |
+
# for j in range(start,-1,1):
|
| 98 |
+
# raw_output = []
|
| 99 |
+
# for i in predictions[-1][j]:
|
| 100 |
+
# raw_output.append(i.item())
|
| 101 |
|
| 102 |
+
# logprobs.append(np.log(softmax(raw_output)))
|
| 103 |
|
| 104 |
+
# # if the critical word is three tokens long, the raw_probabilities should look something like this:
|
| 105 |
+
# # [ [0.412, 0.001, ... ] ,[0.213, 0.004, ...], [0.002,0.001, 0.93 ...]]
|
| 106 |
+
# # Then for the i'th token we want to find its associated probability
|
| 107 |
+
# # this is just: raw_probabilities[i][token_index]
|
| 108 |
+
# conditional_probs = []
|
| 109 |
+
# for cw,prob in zip(cw_encoding,logprobs):
|
| 110 |
+
# conditional_probs.append(prob[cw])
|
| 111 |
+
# # now that you have all the relevant probabilities, return their product.
|
| 112 |
+
# # This is the probability of the critical word given the context before it.
|
| 113 |
+
|
| 114 |
+
# return np.exp(np.sum(conditional_probs))
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
| 118 |
+
model = GPT2LMHeadModel.from_pretrained('gpt2')
|
| 119 |
+
|
| 120 |
+
def sentence_prob_mean(text):
|
| 121 |
+
# Tokenize the input text and add special tokens
|
| 122 |
+
input_ids = tokenizer.encode(text, return_tensors='pt')
|
| 123 |
+
|
| 124 |
+
# Obtain model outputs
|
| 125 |
+
with torch.no_grad():
|
| 126 |
+
outputs = model(input_ids, labels=input_ids)
|
| 127 |
+
logits = outputs.logits # logits are the model outputs before applying softmax
|
| 128 |
+
|
| 129 |
+
# Shift logits and labels so that tokens are aligned:
|
| 130 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 131 |
+
shift_labels = input_ids[..., 1:].contiguous()
|
| 132 |
+
|
| 133 |
+
# Calculate the softmax probabilities
|
| 134 |
+
probs = softmax(shift_logits, dim=-1)
|
| 135 |
+
|
| 136 |
+
# Gather the probabilities of the actual token IDs
|
| 137 |
+
gathered_probs = torch.gather(probs, 2, shift_labels.unsqueeze(-1)).squeeze(-1)
|
| 138 |
+
|
| 139 |
+
# Compute the mean probability across the tokens
|
| 140 |
+
mean_prob = torch.mean(gathered_probs).item()
|
| 141 |
+
|
| 142 |
+
return mean_prob
|
| 143 |
|
| 144 |
|
| 145 |
|