Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import gradio as gr | |
| import json | |
| import logging | |
| import torch | |
| from PIL import Image | |
| from os import path | |
| from torchvision import transforms | |
| from dataclasses import dataclass | |
| import math | |
| from typing import Callable | |
| import spaces | |
| from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForText2Image | |
| from diffusers import StableDiffusion3Pipeline, FlowMatchEulerDiscreteScheduler # pip install diffusers>=0.31.0 | |
| from transformers import CLIPModel, CLIPProcessor, CLIPTextModel, CLIPTokenizer, CLIPConfig, T5EncoderModel, T5Tokenizer | |
| from diffusers.models.transformers import SD3Transformer2DModel | |
| import copy | |
| import random | |
| import time | |
| import safetensors.torch | |
| from tqdm import tqdm | |
| from huggingface_hub import HfFileSystem, ModelCard | |
| from huggingface_hub import login, hf_hub_download | |
| from safetensors.torch import load_file | |
| hf_token = os.environ.get("HF_TOKEN") | |
| login(token=hf_token) | |
| cache_path = path.join(path.dirname(path.abspath(__file__)), "models") | |
| os.environ["TRANSFORMERS_CACHE"] = cache_path | |
| os.environ["HF_HUB_CACHE"] = cache_path | |
| os.environ["HF_HOME"] = cache_path | |
| #torch.set_float32_matmul_precision("medium") | |
| #torch._inductor.config.conv_1x1_as_mm = True | |
| #torch._inductor.config.coordinate_descent_tuning = True | |
| #torch._inductor.config.epilogue_fusion = False | |
| #torch._inductor.config.coordinate_descent_check_all_directions = True | |
| # Load LoRAs from JSON file | |
| with open('loras.json', 'r') as f: | |
| loras = json.load(f) | |
| # Initialize the base model | |
| #base_model = "stabilityai/stable-diffusion-3.5-large" | |
| # Initialize the base model | |
| dtype = torch.bfloat16 | |
| base_model = "ariG23498/sd-3.5-merged" | |
| pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to("cuda") | |
| #pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.float16).to("cuda") | |
| torch.cuda.empty_cache() | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| #model_id = ("zer0int/LongCLIP-GmP-ViT-L-14") | |
| #config = CLIPConfig.from_pretrained(model_id) | |
| #config.text_config.max_position_embeddings = 77 | |
| #clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=torch.bfloat16, config=config, ignore_mismatched_sizes=True) | |
| #clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", max_length=77) | |
| #pipe.tokenizer = clip_processor.tokenizer | |
| #pipe.text_encoder = clip_model.text_model | |
| #pipe.tokenizer_max_length = 77 | |
| #pipe.text_encoder.dtype = torch.bfloat16 | |
| #clipmodel = 'norm' | |
| #if clipmodel == "long": | |
| # model_id = "zer0int/LongCLIP-GmP-ViT-L-14" | |
| # config = CLIPConfig.from_pretrained(model_id) | |
| # maxtokens = 248 | |
| #if clipmodel == "norm": | |
| # model_id = "zer0int/CLIP-GmP-ViT-L-14" | |
| # config = CLIPConfig.from_pretrained(model_id) | |
| # maxtokens = 77 | |
| #clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=torch.bfloat16, config=config, ignore_mismatched_sizes=True).to("cuda") | |
| #clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", max_length=maxtokens, ignore_mismatched_sizes=True, return_tensors="pt", truncation=True) | |
| #pipe.tokenizer = clip_processor.tokenizer | |
| #pipe.text_encoder = clip_model.text_model | |
| #pipe.tokenizer_max_length = maxtokens | |
| #pipe.text_encoder.dtype = torch.bfloat16 | |
| #pipe.transformer.to(memory_format=torch.channels_last) | |
| #pipe.vae.to(memory_format=torch.channels_last) | |
| #pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True) | |
| #pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=True) | |
| MAX_SEED = 2**32-1 | |
| class calculateDuration: | |
| def __init__(self, activity_name=""): | |
| self.activity_name = activity_name | |
| def __enter__(self): | |
| self.start_time = time.time() | |
| return self | |
| def __exit__(self, exc_type, exc_value, traceback): | |
| self.end_time = time.time() | |
| self.elapsed_time = self.end_time - self.start_time | |
| if self.activity_name: | |
| print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") | |
| else: | |
| print(f"Elapsed time: {self.elapsed_time:.6f} seconds") | |
| def update_selection(evt: gr.SelectData, width, height): | |
| selected_lora = loras[evt.index] | |
| new_placeholder = f"Prompt with activator word(s): '{selected_lora['trigger_word']}'! " | |
| lora_repo = selected_lora["repo"] | |
| lora_trigger = selected_lora['trigger_word'] | |
| updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}). Prompt using: '{lora_trigger}'!" | |
| if "aspect" in selected_lora: | |
| if selected_lora["aspect"] == "portrait": | |
| width = 768 | |
| height = 1024 | |
| elif selected_lora["aspect"] == "landscape": | |
| width = 1024 | |
| height = 768 | |
| return ( | |
| gr.update(placeholder=new_placeholder), | |
| updated_text, | |
| evt.index, | |
| width, | |
| height, | |
| ) | |
| def infer(prompt, negative_prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress): | |
| pipe.to("cuda") | |
| generator = torch.Generator(device="cuda").manual_seed(seed) | |
| with calculateDuration("Generating image"): | |
| # Generate image | |
| image = pipe( | |
| prompt=f"{prompt} {trigger_word}", | |
| negative_prompt=negative_prompt, | |
| num_inference_steps=steps, | |
| guidance_scale=cfg_scale, | |
| width=width, | |
| height=height, | |
| generator=generator, | |
| joint_attention_kwargs={"scale": lora_scale}, | |
| ).images[0] | |
| return image | |
| def run_lora(prompt, negative_prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)): | |
| if selected_index is None: | |
| raise gr.Error("You must select a LoRA before proceeding.") | |
| selected_lora = loras[selected_index] | |
| lora_path = selected_lora["repo"] | |
| trigger_word = selected_lora['trigger_word'] | |
| # Load LoRA weights | |
| with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"): | |
| if "weights" in selected_lora: | |
| pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"]) | |
| else: | |
| pipe.load_lora_weights(lora_path) | |
| # Set random seed for reproducibility | |
| with calculateDuration("Randomizing seed"): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| image = infer(prompt, negative_prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress) | |
| pipe.to("cpu") | |
| pipe.unload_lora_weights() | |
| return image, seed | |
| run_lora.zerogpu = True | |
| css = ''' | |
| #gen_btn{height: 100%} | |
| #title{text-align: center} | |
| #title h1{font-size: 3em; display:inline-flex; align-items:center} | |
| #title img{width: 100px; margin-right: 0.5em} | |
| #gallery .grid-wrap{height: 10vh} | |
| ''' | |
| with gr.Blocks(theme=gr.themes.Soft(), css=css) as app: | |
| title = gr.HTML( | |
| """<h1><img src="https://huggingface.co/AlekseyCalvin/StabledHSTorY_SD3.5_LoRA_V2_rank256/resolve/main/acs62v.png" alt="LoRA">Stabled LoRAs soon® on S.D.3.5L Merged</h1>""", | |
| elem_id="title", | |
| ) | |
| # Info blob stating what the app is running | |
| info_blob = gr.HTML( | |
| """<div id="info_blob">SOON®'s curated Art Manufactory & Gallery of fine-tuned Low-Rank Adapter (LoRA) models for Stable Diffusion 3.5 Large (S.D.3.5L). Running on a base model variant averaging weights b/w slow S.D.3.5L & its turbo distillation.</div>""" | |
| ) | |
| # Info blob stating what the app is running | |
| info_blob = gr.HTML( | |
| """<div id="info_blob"> To reinforce/focus a selected adapter style, add its pre-encoded “trigger" word/phrase to your prompt. Corresponding activator info &/or prompt template appears once an adapter square is clicked. Copy/Paste these into prompt box as a starting point. </div>""" | |
| ) | |
| selected_index = gr.State(None) | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Select LoRa/Style & type prompt!") | |
| with gr.Column(scale=2): | |
| negative_prompt = gr.Textbox(label="Negative Prompt", lines=1, placeholder="What to exclude!") | |
| with gr.Column(scale=1, elem_id="gen_column"): | |
| generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn") | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| selected_info = gr.Markdown("") | |
| gallery = gr.Gallery( | |
| [(item["image"], item["title"]) for item in loras], | |
| label="LoRA Inventory", | |
| allow_preview=False, | |
| columns=3, | |
| elem_id="gallery" | |
| ) | |
| with gr.Column(scale=4): | |
| result = gr.Image(label="Generated Image") | |
| with gr.Row(): | |
| with gr.Accordion("Advanced Settings", open=True): | |
| with gr.Column(): | |
| with gr.Row(): | |
| cfg_scale = gr.Slider(label="CFG Scale", minimum=0, maximum=20, step=.1, value=1.0) | |
| steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=8) | |
| with gr.Row(): | |
| width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024) | |
| height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024) | |
| with gr.Row(): | |
| randomize_seed = gr.Checkbox(True, label="Randomize seed") | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True) | |
| lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3.0, step=0.01, value=1.0) | |
| gallery.select( | |
| update_selection, | |
| inputs=[width, height], | |
| outputs=[prompt, selected_info, selected_index, width, height] | |
| ) | |
| gr.on( | |
| triggers=[generate_button.click, prompt.submit], | |
| fn=run_lora, | |
| inputs=[prompt, negative_prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale], | |
| outputs=[result, seed] | |
| ) | |
| app.queue(default_concurrency_limit=2).launch(show_error=True) | |
| app.launch() | |