Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,8 +2,10 @@ import tempfile
|
|
| 2 |
from typing import List, Tuple, Any
|
| 3 |
|
| 4 |
import gradio as gr
|
|
|
|
| 5 |
import torch
|
| 6 |
import torch.nn.functional as torch_functional
|
|
|
|
| 7 |
from PIL import Image, ImageDraw
|
| 8 |
from transformers import (
|
| 9 |
AutoTokenizer,
|
|
@@ -11,22 +13,26 @@ from transformers import (
|
|
| 11 |
CLIPProcessor,
|
| 12 |
SamModel,
|
| 13 |
SamProcessor,
|
|
|
|
| 14 |
pipeline,
|
| 15 |
BlipForQuestionAnswering,
|
| 16 |
BlipProcessor,
|
| 17 |
)
|
| 18 |
|
| 19 |
-
MODEL_STORE = {}
|
| 20 |
|
|
|
|
| 21 |
|
| 22 |
def _normalize_gallery_images(gallery_value: Any) -> List[Image.Image]:
|
| 23 |
if not gallery_value:
|
| 24 |
return []
|
|
|
|
| 25 |
normalized_images: List[Image.Image] = []
|
|
|
|
| 26 |
for item in gallery_value:
|
| 27 |
if isinstance(item, Image.Image):
|
| 28 |
normalized_images.append(item)
|
| 29 |
continue
|
|
|
|
| 30 |
if isinstance(item, str):
|
| 31 |
try:
|
| 32 |
image_object = Image.open(item).convert("RGB")
|
|
@@ -34,18 +40,61 @@ def _normalize_gallery_images(gallery_value: Any) -> List[Image.Image]:
|
|
| 34 |
except Exception:
|
| 35 |
continue
|
| 36 |
continue
|
|
|
|
| 37 |
if isinstance(item, (list, tuple)) and item:
|
| 38 |
candidate = item[0]
|
| 39 |
if isinstance(candidate, Image.Image):
|
| 40 |
normalized_images.append(candidate)
|
| 41 |
continue
|
|
|
|
| 42 |
if isinstance(item, dict):
|
| 43 |
candidate = item.get("image") or item.get("value")
|
| 44 |
if isinstance(candidate, Image.Image):
|
| 45 |
normalized_images.append(candidate)
|
| 46 |
continue
|
|
|
|
| 47 |
return normalized_images
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
def get_blip_vqa_components() -> Tuple[BlipForQuestionAnswering, BlipProcessor]:
|
| 51 |
if "blip_vqa_model" not in MODEL_STORE or "blip_vqa_processor" not in MODEL_STORE:
|
|
@@ -53,11 +102,11 @@ def get_blip_vqa_components() -> Tuple[BlipForQuestionAnswering, BlipProcessor]:
|
|
| 53 |
blip_model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
|
| 54 |
MODEL_STORE["blip_vqa_model"] = blip_model
|
| 55 |
MODEL_STORE["blip_vqa_processor"] = blip_processor
|
|
|
|
| 56 |
blip_model = MODEL_STORE["blip_vqa_model"]
|
| 57 |
blip_processor = MODEL_STORE["blip_vqa_processor"]
|
| 58 |
return blip_model, blip_processor
|
| 59 |
|
| 60 |
-
|
| 61 |
def get_vision_pipeline(model_key: str):
|
| 62 |
if model_key in MODEL_STORE:
|
| 63 |
return MODEL_STORE[model_key]
|
|
@@ -72,16 +121,19 @@ def get_vision_pipeline(model_key: str):
|
|
| 72 |
task="object-detection",
|
| 73 |
model="hustvl/yolos-small",
|
| 74 |
)
|
|
|
|
| 75 |
elif model_key == "segmentation":
|
| 76 |
vision_pipeline = pipeline(
|
| 77 |
task="image-segmentation",
|
| 78 |
model="nvidia/segformer-b0-finetuned-ade-512-512",
|
| 79 |
)
|
|
|
|
| 80 |
elif model_key == "depth_estimation":
|
| 81 |
vision_pipeline = pipeline(
|
| 82 |
task="depth-estimation",
|
| 83 |
model="Intel/dpt-hybrid-midas",
|
| 84 |
)
|
|
|
|
| 85 |
elif model_key == "captioning_blip_base":
|
| 86 |
vision_pipeline = pipeline(
|
| 87 |
task="image-to-text",
|
|
@@ -92,6 +144,7 @@ def get_vision_pipeline(model_key: str):
|
|
| 92 |
task="image-to-text",
|
| 93 |
model="Salesforce/blip-image-captioning-large",
|
| 94 |
)
|
|
|
|
| 95 |
elif model_key == "vqa_blip_base":
|
| 96 |
vision_pipeline = pipeline(
|
| 97 |
task="visual-question-answering",
|
|
@@ -102,6 +155,7 @@ def get_vision_pipeline(model_key: str):
|
|
| 102 |
task="visual-question-answering",
|
| 103 |
model="dandelin/vilt-b32-finetuned-vqa",
|
| 104 |
)
|
|
|
|
| 105 |
else:
|
| 106 |
raise ValueError(f"Неизвестный тип визуальной модели: {model_key}")
|
| 107 |
|
|
@@ -123,6 +177,7 @@ def get_clip_components(clip_key: str) -> Tuple[CLIPModel, CLIPProcessor]:
|
|
| 123 |
|
| 124 |
clip_model = CLIPModel.from_pretrained(clip_name)
|
| 125 |
clip_processor = CLIPProcessor.from_pretrained(clip_name)
|
|
|
|
| 126 |
MODEL_STORE[model_store_key_model] = clip_model
|
| 127 |
MODEL_STORE[model_store_key_processor] = clip_processor
|
| 128 |
|
|
@@ -131,26 +186,125 @@ def get_clip_components(clip_key: str) -> Tuple[CLIPModel, CLIPProcessor]:
|
|
| 131 |
return clip_model, clip_processor
|
| 132 |
|
| 133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
def get_sam_components() -> Tuple[SamModel, SamProcessor]:
|
| 135 |
if "sam_model" not in MODEL_STORE or "sam_processor" not in MODEL_STORE:
|
| 136 |
sam_model = SamModel.from_pretrained("Zigeng/SlimSAM-uniform-77")
|
| 137 |
sam_processor = SamProcessor.from_pretrained("Zigeng/SlimSAM-uniform-77")
|
| 138 |
MODEL_STORE["sam_model"] = sam_model
|
| 139 |
MODEL_STORE["sam_processor"] = sam_processor
|
|
|
|
| 140 |
sam_model = MODEL_STORE["sam_model"]
|
| 141 |
sam_processor = MODEL_STORE["sam_processor"]
|
| 142 |
return sam_model, sam_processor
|
| 143 |
|
| 144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
def detect_objects_on_image(image_object, model_key: str):
|
| 146 |
detector_pipeline = get_vision_pipeline(model_key)
|
| 147 |
detection_results = detector_pipeline(image_object)
|
| 148 |
-
drawer_object = ImageDraw.Draw(image_object)
|
| 149 |
|
|
|
|
| 150 |
for detection_item in detection_results:
|
| 151 |
box_data = detection_item["box"]
|
| 152 |
label_value = detection_item["label"]
|
| 153 |
score_value = detection_item["score"]
|
|
|
|
| 154 |
drawer_object.rectangle(
|
| 155 |
[
|
| 156 |
box_data["xmin"],
|
|
@@ -166,6 +320,7 @@ def detect_objects_on_image(image_object, model_key: str):
|
|
| 166 |
f"{label_value}: {score_value:.2f}",
|
| 167 |
fill="red",
|
| 168 |
)
|
|
|
|
| 169 |
return image_object
|
| 170 |
|
| 171 |
|
|
@@ -178,6 +333,7 @@ def segment_image(image_object):
|
|
| 178 |
def estimate_image_depth(image_object):
|
| 179 |
depth_pipeline = get_vision_pipeline("depth_estimation")
|
| 180 |
depth_output = depth_pipeline(image_object)
|
|
|
|
| 181 |
predicted_depth_tensor = depth_output["predicted_depth"]
|
| 182 |
|
| 183 |
if predicted_depth_tensor.ndim == 3:
|
|
@@ -195,8 +351,10 @@ def estimate_image_depth(image_object):
|
|
| 195 |
mode="bicubic",
|
| 196 |
align_corners=False,
|
| 197 |
)
|
|
|
|
| 198 |
depth_array = resized_depth_tensor.squeeze().cpu().numpy()
|
| 199 |
max_value = float(depth_array.max())
|
|
|
|
| 200 |
if max_value <= 0.0:
|
| 201 |
return Image.new("L", image_object.size, color=0)
|
| 202 |
|
|
@@ -214,35 +372,42 @@ def generate_image_caption(image_object, model_key: str) -> str:
|
|
| 214 |
def answer_visual_question(image_object, question_text: str, model_key: str) -> str:
|
| 215 |
if image_object is None:
|
| 216 |
return "Пожалуйста, сначала загрузите изображение."
|
|
|
|
| 217 |
if not question_text.strip():
|
| 218 |
return "Пожалуйста, введите вопрос об изображении."
|
| 219 |
|
| 220 |
if model_key == "vqa_blip_base":
|
| 221 |
blip_model, blip_processor = get_blip_vqa_components()
|
|
|
|
| 222 |
inputs = blip_processor(
|
| 223 |
images=image_object,
|
| 224 |
text=question_text,
|
| 225 |
return_tensors="pt",
|
| 226 |
)
|
|
|
|
| 227 |
with torch.no_grad():
|
| 228 |
output_ids = blip_model.generate(**inputs)
|
|
|
|
| 229 |
decoded_answers = blip_processor.batch_decode(
|
| 230 |
output_ids,
|
| 231 |
skip_special_tokens=True,
|
| 232 |
)
|
| 233 |
answer_text = decoded_answers[0] if decoded_answers else ""
|
|
|
|
| 234 |
return answer_text or "Модель не смогла сгенерировать ответ."
|
| 235 |
|
| 236 |
vqa_pipeline = get_vision_pipeline(model_key)
|
|
|
|
| 237 |
vqa_result = vqa_pipeline(
|
| 238 |
image=image_object,
|
| 239 |
question=question_text,
|
| 240 |
)
|
|
|
|
| 241 |
top_item = vqa_result[0]
|
| 242 |
answer_text = top_item["answer"]
|
| 243 |
confidence_value = top_item["score"]
|
| 244 |
-
return f"{answer_text} (confidence: {confidence_value:.3f})"
|
| 245 |
|
|
|
|
| 246 |
|
| 247 |
def perform_zero_shot_classification(
|
| 248 |
image_object,
|
|
@@ -250,6 +415,7 @@ def perform_zero_shot_classification(
|
|
| 250 |
clip_key: str,
|
| 251 |
) -> str:
|
| 252 |
clip_model, clip_processor = get_clip_components(clip_key)
|
|
|
|
| 253 |
class_list = [
|
| 254 |
class_name.strip()
|
| 255 |
for class_name in class_texts.split(",")
|
|
@@ -264,6 +430,7 @@ def perform_zero_shot_classification(
|
|
| 264 |
return_tensors="pt",
|
| 265 |
padding=True,
|
| 266 |
)
|
|
|
|
| 267 |
with torch.no_grad():
|
| 268 |
clip_outputs = clip_model(**input_batch)
|
| 269 |
logits_per_image = clip_outputs.logits_per_image
|
|
@@ -273,6 +440,7 @@ def perform_zero_shot_classification(
|
|
| 273 |
for class_index, class_name in enumerate(class_list):
|
| 274 |
probability_value = probability_tensor[0][class_index].item()
|
| 275 |
result_lines.append(f"{class_name}: {probability_value:.4f}")
|
|
|
|
| 276 |
return "\n".join(result_lines)
|
| 277 |
|
| 278 |
|
|
@@ -282,10 +450,12 @@ def retrieve_best_image(
|
|
| 282 |
clip_key: str,
|
| 283 |
) -> Tuple[str, Image.Image | None]:
|
| 284 |
image_list = _normalize_gallery_images(gallery_value)
|
|
|
|
| 285 |
if not image_list or not query_text.strip():
|
| 286 |
return "Пожалуйста, загрузите изображения и введите запрос", None
|
| 287 |
|
| 288 |
clip_model, clip_processor = get_clip_components(clip_key)
|
|
|
|
| 289 |
image_inputs = clip_processor(
|
| 290 |
images=image_list,
|
| 291 |
return_tensors="pt",
|
|
@@ -293,10 +463,10 @@ def retrieve_best_image(
|
|
| 293 |
)
|
| 294 |
with torch.no_grad():
|
| 295 |
image_features = clip_model.get_image_features(**image_inputs)
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
|
| 301 |
text_inputs = clip_processor(
|
| 302 |
text=[query_text],
|
|
@@ -305,10 +475,10 @@ def retrieve_best_image(
|
|
| 305 |
)
|
| 306 |
with torch.no_grad():
|
| 307 |
text_features = clip_model.get_text_features(**text_inputs)
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
|
| 313 |
similarity_tensor = image_features @ text_features.T
|
| 314 |
best_index_tensor = similarity_tensor.argmax()
|
|
@@ -328,10 +498,12 @@ def segment_image_with_sam_points(
|
|
| 328 |
) -> Image.Image:
|
| 329 |
if image_object is None:
|
| 330 |
raise ValueError("Изображение не передано в segment_image_with_sam_points")
|
|
|
|
| 331 |
if not point_coordinates_list:
|
| 332 |
return Image.new("L", image_object.size, color=0)
|
| 333 |
|
| 334 |
sam_model, sam_processor = get_sam_components()
|
|
|
|
| 335 |
batched_points: List[List[List[int]]] = [point_coordinates_list]
|
| 336 |
batched_labels: List[List[int]] = [[1 for _ in point_coordinates_list]]
|
| 337 |
|
|
@@ -341,6 +513,7 @@ def segment_image_with_sam_points(
|
|
| 341 |
input_labels=batched_labels,
|
| 342 |
return_tensors="pt",
|
| 343 |
)
|
|
|
|
| 344 |
with torch.no_grad():
|
| 345 |
sam_outputs = sam_model(**sam_inputs, multimask_output=True)
|
| 346 |
|
|
@@ -349,37 +522,47 @@ def segment_image_with_sam_points(
|
|
| 349 |
sam_inputs["original_sizes"].cpu(),
|
| 350 |
sam_inputs["reshaped_input_sizes"].cpu(),
|
| 351 |
)
|
|
|
|
| 352 |
batch_masks_tensor = processed_masks_list[0]
|
|
|
|
| 353 |
if batch_masks_tensor.ndim != 3 or batch_masks_tensor.shape[0] == 0:
|
| 354 |
return Image.new("L", image_object.size, color=0)
|
| 355 |
|
| 356 |
first_mask_tensor = batch_masks_tensor[0]
|
| 357 |
mask_array = first_mask_tensor.numpy()
|
|
|
|
| 358 |
binary_mask_array = (mask_array > 0.5).astype("uint8") * 255
|
|
|
|
| 359 |
mask_image = Image.fromarray(binary_mask_array, mode="L")
|
| 360 |
return mask_image
|
| 361 |
|
| 362 |
|
| 363 |
def segment_image_with_sam_points_ui(image_object, coordinates_text: str) -> Image.Image:
|
|
|
|
| 364 |
if image_object is None:
|
| 365 |
return None
|
|
|
|
| 366 |
coordinates_text_clean = coordinates_text.strip()
|
| 367 |
if not coordinates_text_clean:
|
| 368 |
return Image.new("L", image_object.size, color=0)
|
| 369 |
|
| 370 |
point_coordinates_list: List[List[int]] = []
|
|
|
|
| 371 |
for raw_pair in coordinates_text_clean.replace("\n", ";").split(";"):
|
| 372 |
raw_pair_clean = raw_pair.strip()
|
| 373 |
if not raw_pair_clean:
|
| 374 |
continue
|
|
|
|
| 375 |
parts = raw_pair_clean.split(",")
|
| 376 |
if len(parts) != 2:
|
| 377 |
continue
|
|
|
|
| 378 |
try:
|
| 379 |
x_value = int(parts[0].strip())
|
| 380 |
y_value = int(parts[1].strip())
|
| 381 |
except ValueError:
|
| 382 |
continue
|
|
|
|
| 383 |
point_coordinates_list.append([x_value, y_value])
|
| 384 |
|
| 385 |
if not point_coordinates_list:
|
|
@@ -391,6 +574,7 @@ def segment_image_with_sam_points_ui(image_object, coordinates_text: str) -> Ima
|
|
| 391 |
def parse_point_coordinates_text(coordinates_text: str) -> List[List[int]]:
|
| 392 |
if not coordinates_text.strip():
|
| 393 |
return []
|
|
|
|
| 394 |
point_list: List[List[int]] = []
|
| 395 |
for raw_pair in coordinates_text.split(";"):
|
| 396 |
cleaned_pair = raw_pair.strip()
|
|
@@ -405,13 +589,13 @@ def parse_point_coordinates_text(coordinates_text: str) -> List[List[int]]:
|
|
| 405 |
except ValueError:
|
| 406 |
continue
|
| 407 |
point_list.append([x_value, y_value])
|
| 408 |
-
return point_list
|
| 409 |
|
|
|
|
| 410 |
|
| 411 |
def build_interface():
|
| 412 |
with gr.Blocks(title="Multimodal AI Demo", theme=gr.themes.Soft()) as demo_block:
|
| 413 |
gr.Markdown("# AI модели")
|
| 414 |
-
|
| 415 |
with gr.Tab("Детекция объектов"):
|
| 416 |
gr.Markdown("## Детекция объектов")
|
| 417 |
with gr.Row():
|
|
@@ -428,13 +612,15 @@ def build_interface():
|
|
| 428 |
value="object_detection_conditional_detr",
|
| 429 |
info=(
|
| 430 |
"object_detection_conditional_detr - microsoft/conditional-detr-resnet-50\n"
|
| 431 |
-
"object_detection_yolos_small
|
| 432 |
),
|
| 433 |
)
|
| 434 |
object_detect_button = gr.Button("Применить")
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
|
|
|
|
|
|
| 438 |
object_detect_button.click(
|
| 439 |
fn=detect_objects_on_image,
|
| 440 |
inputs=[object_input_image, object_model_selector],
|
|
@@ -449,9 +635,11 @@ def build_interface():
|
|
| 449 |
type="pil",
|
| 450 |
)
|
| 451 |
segmentation_button = gr.Button("Применить")
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
|
|
|
|
|
|
| 455 |
segmentation_button.click(
|
| 456 |
fn=segment_image,
|
| 457 |
inputs=segmentation_input_image,
|
|
@@ -461,14 +649,17 @@ def build_interface():
|
|
| 461 |
with gr.Tab("Глубина"):
|
| 462 |
gr.Markdown("## Глубина (Depth Estimation)")
|
| 463 |
with gr.Row():
|
|
|
|
| 464 |
depth_input_image = gr.Image(
|
| 465 |
label="Загрузите изображение",
|
| 466 |
type="pil",
|
| 467 |
)
|
| 468 |
depth_button = gr.Button("Применить")
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
|
|
|
|
|
|
| 472 |
depth_button.click(
|
| 473 |
fn=estimate_image_depth,
|
| 474 |
inputs=depth_input_image,
|
|
@@ -490,15 +681,17 @@ def build_interface():
|
|
| 490 |
label="Модель",
|
| 491 |
value="captioning_blip_base",
|
| 492 |
info=(
|
| 493 |
-
"captioning_blip_base
|
| 494 |
"captioning_blip_large - Salesforce/blip-image-captioning-large"
|
| 495 |
),
|
| 496 |
)
|
| 497 |
caption_button = gr.Button("Применить")
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
|
|
|
|
|
|
| 502 |
caption_button.click(
|
| 503 |
fn=generate_image_caption,
|
| 504 |
inputs=[caption_input_image, caption_model_selector],
|
|
@@ -526,14 +719,16 @@ def build_interface():
|
|
| 526 |
value="vqa_blip_base",
|
| 527 |
info=(
|
| 528 |
"vqa_blip_base - Salesforce/blip-vqa-base (курс)\n"
|
| 529 |
-
"vqa_vilt_b32
|
| 530 |
),
|
| 531 |
)
|
| 532 |
vqa_button = gr.Button("Ответить на вопрос")
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
|
|
|
|
|
|
| 537 |
vqa_button.click(
|
| 538 |
fn=answer_visual_question,
|
| 539 |
inputs=[vqa_input_image, vqa_question_text, vqa_model_selector],
|
|
@@ -561,14 +756,16 @@ def build_interface():
|
|
| 561 |
value="clip_large_patch14",
|
| 562 |
info=(
|
| 563 |
"clip_large_patch14 - openai/clip-vit-large-patch14 (курс)\n"
|
| 564 |
-
"clip_base_patch32
|
| 565 |
),
|
| 566 |
)
|
| 567 |
zero_shot_button = gr.Button("Применить")
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
|
|
|
|
|
|
| 572 |
zero_shot_button.click(
|
| 573 |
fn=perform_zero_shot_classification,
|
| 574 |
inputs=[zero_shot_input_image, zero_shot_classes_text, clip_model_selector],
|
|
@@ -578,6 +775,7 @@ def build_interface():
|
|
| 578 |
with gr.Tab("Поиск изображений"):
|
| 579 |
gr.Markdown("## Поиск изображений")
|
| 580 |
with gr.Row():
|
|
|
|
| 581 |
retrieval_dir = gr.File(
|
| 582 |
label="Загрузите папку с изображениями",
|
| 583 |
file_count="directory",
|
|
@@ -598,16 +796,18 @@ def build_interface():
|
|
| 598 |
value="clip_large_patch14",
|
| 599 |
info=(
|
| 600 |
"clip_large_patch14 - openai/clip-vit-large-patch14 (курс)\n"
|
| 601 |
-
"clip_base_patch32
|
| 602 |
),
|
| 603 |
)
|
| 604 |
retrieval_button = gr.Button("Поиск")
|
| 605 |
-
|
| 606 |
-
|
| 607 |
-
|
| 608 |
-
|
| 609 |
-
|
| 610 |
-
|
|
|
|
|
|
|
| 611 |
retrieval_button.click(
|
| 612 |
fn=retrieve_best_image,
|
| 613 |
inputs=[retrieval_dir, retrieval_query_text, retrieval_clip_selector],
|
|
@@ -618,14 +818,15 @@ def build_interface():
|
|
| 618 |
gr.Markdown("### Задачи:")
|
| 619 |
gr.Markdown(
|
| 620 |
"""
|
| 621 |
-
-
|
|
|
|
| 622 |
- Мультимодальные задачи: вопросы к изображению, zero-shot классификация изображений, поиск по изображениям по текстовому запросу
|
| 623 |
-
"""
|
| 624 |
)
|
| 625 |
-
|
| 626 |
return demo_block
|
| 627 |
|
| 628 |
|
| 629 |
if __name__ == "__main__":
|
| 630 |
interface_block = build_interface()
|
| 631 |
interface_block.launch(share=True)
|
|
|
|
|
|
| 2 |
from typing import List, Tuple, Any
|
| 3 |
|
| 4 |
import gradio as gr
|
| 5 |
+
import soundfile as sf
|
| 6 |
import torch
|
| 7 |
import torch.nn.functional as torch_functional
|
| 8 |
+
from gtts import gTTS
|
| 9 |
from PIL import Image, ImageDraw
|
| 10 |
from transformers import (
|
| 11 |
AutoTokenizer,
|
|
|
|
| 13 |
CLIPProcessor,
|
| 14 |
SamModel,
|
| 15 |
SamProcessor,
|
| 16 |
+
VitsModel,
|
| 17 |
pipeline,
|
| 18 |
BlipForQuestionAnswering,
|
| 19 |
BlipProcessor,
|
| 20 |
)
|
| 21 |
|
|
|
|
| 22 |
|
| 23 |
+
MODEL_STORE = {}
|
| 24 |
|
| 25 |
def _normalize_gallery_images(gallery_value: Any) -> List[Image.Image]:
|
| 26 |
if not gallery_value:
|
| 27 |
return []
|
| 28 |
+
|
| 29 |
normalized_images: List[Image.Image] = []
|
| 30 |
+
|
| 31 |
for item in gallery_value:
|
| 32 |
if isinstance(item, Image.Image):
|
| 33 |
normalized_images.append(item)
|
| 34 |
continue
|
| 35 |
+
|
| 36 |
if isinstance(item, str):
|
| 37 |
try:
|
| 38 |
image_object = Image.open(item).convert("RGB")
|
|
|
|
| 40 |
except Exception:
|
| 41 |
continue
|
| 42 |
continue
|
| 43 |
+
|
| 44 |
if isinstance(item, (list, tuple)) and item:
|
| 45 |
candidate = item[0]
|
| 46 |
if isinstance(candidate, Image.Image):
|
| 47 |
normalized_images.append(candidate)
|
| 48 |
continue
|
| 49 |
+
|
| 50 |
if isinstance(item, dict):
|
| 51 |
candidate = item.get("image") or item.get("value")
|
| 52 |
if isinstance(candidate, Image.Image):
|
| 53 |
normalized_images.append(candidate)
|
| 54 |
continue
|
| 55 |
+
|
| 56 |
return normalized_images
|
| 57 |
|
| 58 |
+
def get_audio_pipeline(model_key: str):
|
| 59 |
+
if model_key in MODEL_STORE:
|
| 60 |
+
return MODEL_STORE[model_key]
|
| 61 |
+
|
| 62 |
+
if model_key == "whisper":
|
| 63 |
+
audio_pipeline = pipeline(
|
| 64 |
+
task="automatic-speech-recognition",
|
| 65 |
+
model="distil-whisper/distil-small.en",
|
| 66 |
+
)
|
| 67 |
+
elif model_key == "wav2vec2":
|
| 68 |
+
audio_pipeline = pipeline(
|
| 69 |
+
task="automatic-speech-recognition",
|
| 70 |
+
model="openai/whisper-small",
|
| 71 |
+
)
|
| 72 |
+
elif model_key == "audio_classifier":
|
| 73 |
+
audio_pipeline = pipeline(
|
| 74 |
+
task="audio-classification",
|
| 75 |
+
model="MIT/ast-finetuned-audioset-10-10-0.4593",
|
| 76 |
+
)
|
| 77 |
+
elif model_key == "emotion_classifier":
|
| 78 |
+
audio_pipeline = pipeline(
|
| 79 |
+
task="audio-classification",
|
| 80 |
+
model="superb/hubert-large-superb-er",
|
| 81 |
+
)
|
| 82 |
+
else:
|
| 83 |
+
raise ValueError(f"Неизвестный тип аудио модели: {model_key}")
|
| 84 |
+
|
| 85 |
+
MODEL_STORE[model_key] = audio_pipeline
|
| 86 |
+
return audio_pipeline
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def get_zero_shot_audio_pipeline():
|
| 90 |
+
if "audio_zero_shot_clap" not in MODEL_STORE:
|
| 91 |
+
zero_shot_pipeline = pipeline(
|
| 92 |
+
task="zero-shot-audio-classification",
|
| 93 |
+
model="laion/clap-htsat-unfused",
|
| 94 |
+
)
|
| 95 |
+
MODEL_STORE["audio_zero_shot_clap"] = zero_shot_pipeline
|
| 96 |
+
return MODEL_STORE["audio_zero_shot_clap"]
|
| 97 |
+
|
| 98 |
|
| 99 |
def get_blip_vqa_components() -> Tuple[BlipForQuestionAnswering, BlipProcessor]:
|
| 100 |
if "blip_vqa_model" not in MODEL_STORE or "blip_vqa_processor" not in MODEL_STORE:
|
|
|
|
| 102 |
blip_model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
|
| 103 |
MODEL_STORE["blip_vqa_model"] = blip_model
|
| 104 |
MODEL_STORE["blip_vqa_processor"] = blip_processor
|
| 105 |
+
|
| 106 |
blip_model = MODEL_STORE["blip_vqa_model"]
|
| 107 |
blip_processor = MODEL_STORE["blip_vqa_processor"]
|
| 108 |
return blip_model, blip_processor
|
| 109 |
|
|
|
|
| 110 |
def get_vision_pipeline(model_key: str):
|
| 111 |
if model_key in MODEL_STORE:
|
| 112 |
return MODEL_STORE[model_key]
|
|
|
|
| 121 |
task="object-detection",
|
| 122 |
model="hustvl/yolos-small",
|
| 123 |
)
|
| 124 |
+
|
| 125 |
elif model_key == "segmentation":
|
| 126 |
vision_pipeline = pipeline(
|
| 127 |
task="image-segmentation",
|
| 128 |
model="nvidia/segformer-b0-finetuned-ade-512-512",
|
| 129 |
)
|
| 130 |
+
|
| 131 |
elif model_key == "depth_estimation":
|
| 132 |
vision_pipeline = pipeline(
|
| 133 |
task="depth-estimation",
|
| 134 |
model="Intel/dpt-hybrid-midas",
|
| 135 |
)
|
| 136 |
+
|
| 137 |
elif model_key == "captioning_blip_base":
|
| 138 |
vision_pipeline = pipeline(
|
| 139 |
task="image-to-text",
|
|
|
|
| 144 |
task="image-to-text",
|
| 145 |
model="Salesforce/blip-image-captioning-large",
|
| 146 |
)
|
| 147 |
+
|
| 148 |
elif model_key == "vqa_blip_base":
|
| 149 |
vision_pipeline = pipeline(
|
| 150 |
task="visual-question-answering",
|
|
|
|
| 155 |
task="visual-question-answering",
|
| 156 |
model="dandelin/vilt-b32-finetuned-vqa",
|
| 157 |
)
|
| 158 |
+
|
| 159 |
else:
|
| 160 |
raise ValueError(f"Неизвестный тип визуальной модели: {model_key}")
|
| 161 |
|
|
|
|
| 177 |
|
| 178 |
clip_model = CLIPModel.from_pretrained(clip_name)
|
| 179 |
clip_processor = CLIPProcessor.from_pretrained(clip_name)
|
| 180 |
+
|
| 181 |
MODEL_STORE[model_store_key_model] = clip_model
|
| 182 |
MODEL_STORE[model_store_key_processor] = clip_processor
|
| 183 |
|
|
|
|
| 186 |
return clip_model, clip_processor
|
| 187 |
|
| 188 |
|
| 189 |
+
def get_silero_tts_model():
|
| 190 |
+
if "silero_tts_model" not in MODEL_STORE:
|
| 191 |
+
silero_model, _ = torch.hub.load(
|
| 192 |
+
repo_or_dir="snakers4/silero-models",
|
| 193 |
+
model="silero_tts",
|
| 194 |
+
language="ru",
|
| 195 |
+
speaker="ru_v3",
|
| 196 |
+
)
|
| 197 |
+
MODEL_STORE["silero_tts_model"] = silero_model
|
| 198 |
+
return MODEL_STORE["silero_tts_model"]
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
def get_mms_tts_components():
|
| 202 |
+
if "mms_tts_pipeline" not in MODEL_STORE:
|
| 203 |
+
tts_pipeline = pipeline(
|
| 204 |
+
task="text-to-speech",
|
| 205 |
+
model="facebook/mms-tts-rus",
|
| 206 |
+
)
|
| 207 |
+
MODEL_STORE["mms_tts_pipeline"] = tts_pipeline
|
| 208 |
+
|
| 209 |
+
return MODEL_STORE["mms_tts_pipeline"]
|
| 210 |
+
|
| 211 |
+
|
| 212 |
def get_sam_components() -> Tuple[SamModel, SamProcessor]:
|
| 213 |
if "sam_model" not in MODEL_STORE or "sam_processor" not in MODEL_STORE:
|
| 214 |
sam_model = SamModel.from_pretrained("Zigeng/SlimSAM-uniform-77")
|
| 215 |
sam_processor = SamProcessor.from_pretrained("Zigeng/SlimSAM-uniform-77")
|
| 216 |
MODEL_STORE["sam_model"] = sam_model
|
| 217 |
MODEL_STORE["sam_processor"] = sam_processor
|
| 218 |
+
|
| 219 |
sam_model = MODEL_STORE["sam_model"]
|
| 220 |
sam_processor = MODEL_STORE["sam_processor"]
|
| 221 |
return sam_model, sam_processor
|
| 222 |
|
| 223 |
|
| 224 |
+
|
| 225 |
+
def classify_audio_file(audio_path: str, model_key: str) -> str:
|
| 226 |
+
audio_classifier = get_audio_pipeline(model_key)
|
| 227 |
+
prediction_list = audio_classifier(audio_path)
|
| 228 |
+
|
| 229 |
+
result_lines = ["Топ-5 предсказаний:"]
|
| 230 |
+
for prediction_index, prediction_item in enumerate(prediction_list[:5], start=1):
|
| 231 |
+
label_value = prediction_item["label"]
|
| 232 |
+
score_value = prediction_item["score"]
|
| 233 |
+
result_lines.append(
|
| 234 |
+
f"{prediction_index}. {label_value}: {score_value:.4f}"
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
return "\n".join(result_lines)
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
def classify_audio_zero_shot_clap(audio_path: str, label_texts: str) -> str:
|
| 241 |
+
|
| 242 |
+
clap_pipeline = get_zero_shot_audio_pipeline()
|
| 243 |
+
|
| 244 |
+
label_list = [
|
| 245 |
+
label_item.strip()
|
| 246 |
+
for label_item in label_texts.split(",")
|
| 247 |
+
if label_item.strip()
|
| 248 |
+
]
|
| 249 |
+
if not label_list:
|
| 250 |
+
return "Не задано ни одной текстовой метки для zero-shot классификации."
|
| 251 |
+
|
| 252 |
+
prediction_list = clap_pipeline(
|
| 253 |
+
audio_path,
|
| 254 |
+
candidate_labels=label_list,
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
result_lines = ["Zero-Shot Audio Classification (CLAP):"]
|
| 258 |
+
for prediction_index, prediction_item in enumerate(prediction_list, start=1):
|
| 259 |
+
label_value = prediction_item["label"]
|
| 260 |
+
score_value = prediction_item["score"]
|
| 261 |
+
result_lines.append(
|
| 262 |
+
f"{prediction_index}. {label_value}: {score_value:.4f}"
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
return "\n".join(result_lines)
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
def recognize_speech(audio_path: str, model_key: str) -> str:
|
| 269 |
+
speech_pipeline = get_audio_pipeline(model_key)
|
| 270 |
+
|
| 271 |
+
prediction_result = speech_pipeline(audio_path)
|
| 272 |
+
|
| 273 |
+
return prediction_result["text"]
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
def synthesize_speech(text_value: str, model_key: str):
|
| 277 |
+
if model_key == "Google TTS":
|
| 278 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as file_object:
|
| 279 |
+
text_to_speech_engine = gTTS(text=text_value, lang="ru")
|
| 280 |
+
text_to_speech_engine.save(file_object.name)
|
| 281 |
+
return file_object.name
|
| 282 |
+
elif model_key == "mms":
|
| 283 |
+
model = VitsModel.from_pretrained("facebook/mms-tts-rus")
|
| 284 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-rus")
|
| 285 |
+
|
| 286 |
+
inputs = tokenizer(text_value, return_tensors="pt")
|
| 287 |
+
with torch.no_grad():
|
| 288 |
+
output = model(**inputs).waveform
|
| 289 |
+
|
| 290 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
|
| 291 |
+
sf.write(f.name, output.numpy().squeeze(), model.config.sampling_rate)
|
| 292 |
+
return f.name
|
| 293 |
+
|
| 294 |
+
raise ValueError(f"Неизвестная модель: {model_key}")
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
|
| 298 |
def detect_objects_on_image(image_object, model_key: str):
|
| 299 |
detector_pipeline = get_vision_pipeline(model_key)
|
| 300 |
detection_results = detector_pipeline(image_object)
|
|
|
|
| 301 |
|
| 302 |
+
drawer_object = ImageDraw.Draw(image_object)
|
| 303 |
for detection_item in detection_results:
|
| 304 |
box_data = detection_item["box"]
|
| 305 |
label_value = detection_item["label"]
|
| 306 |
score_value = detection_item["score"]
|
| 307 |
+
|
| 308 |
drawer_object.rectangle(
|
| 309 |
[
|
| 310 |
box_data["xmin"],
|
|
|
|
| 320 |
f"{label_value}: {score_value:.2f}",
|
| 321 |
fill="red",
|
| 322 |
)
|
| 323 |
+
|
| 324 |
return image_object
|
| 325 |
|
| 326 |
|
|
|
|
| 333 |
def estimate_image_depth(image_object):
|
| 334 |
depth_pipeline = get_vision_pipeline("depth_estimation")
|
| 335 |
depth_output = depth_pipeline(image_object)
|
| 336 |
+
|
| 337 |
predicted_depth_tensor = depth_output["predicted_depth"]
|
| 338 |
|
| 339 |
if predicted_depth_tensor.ndim == 3:
|
|
|
|
| 351 |
mode="bicubic",
|
| 352 |
align_corners=False,
|
| 353 |
)
|
| 354 |
+
|
| 355 |
depth_array = resized_depth_tensor.squeeze().cpu().numpy()
|
| 356 |
max_value = float(depth_array.max())
|
| 357 |
+
|
| 358 |
if max_value <= 0.0:
|
| 359 |
return Image.new("L", image_object.size, color=0)
|
| 360 |
|
|
|
|
| 372 |
def answer_visual_question(image_object, question_text: str, model_key: str) -> str:
|
| 373 |
if image_object is None:
|
| 374 |
return "Пожалуйста, сначала загрузите изображение."
|
| 375 |
+
|
| 376 |
if not question_text.strip():
|
| 377 |
return "Пожалуйста, введите вопрос об изображении."
|
| 378 |
|
| 379 |
if model_key == "vqa_blip_base":
|
| 380 |
blip_model, blip_processor = get_blip_vqa_components()
|
| 381 |
+
|
| 382 |
inputs = blip_processor(
|
| 383 |
images=image_object,
|
| 384 |
text=question_text,
|
| 385 |
return_tensors="pt",
|
| 386 |
)
|
| 387 |
+
|
| 388 |
with torch.no_grad():
|
| 389 |
output_ids = blip_model.generate(**inputs)
|
| 390 |
+
|
| 391 |
decoded_answers = blip_processor.batch_decode(
|
| 392 |
output_ids,
|
| 393 |
skip_special_tokens=True,
|
| 394 |
)
|
| 395 |
answer_text = decoded_answers[0] if decoded_answers else ""
|
| 396 |
+
|
| 397 |
return answer_text or "Модель не смогла сгенерировать ответ."
|
| 398 |
|
| 399 |
vqa_pipeline = get_vision_pipeline(model_key)
|
| 400 |
+
|
| 401 |
vqa_result = vqa_pipeline(
|
| 402 |
image=image_object,
|
| 403 |
question=question_text,
|
| 404 |
)
|
| 405 |
+
|
| 406 |
top_item = vqa_result[0]
|
| 407 |
answer_text = top_item["answer"]
|
| 408 |
confidence_value = top_item["score"]
|
|
|
|
| 409 |
|
| 410 |
+
return f"{answer_text} (confidence: {confidence_value:.3f})"
|
| 411 |
|
| 412 |
def perform_zero_shot_classification(
|
| 413 |
image_object,
|
|
|
|
| 415 |
clip_key: str,
|
| 416 |
) -> str:
|
| 417 |
clip_model, clip_processor = get_clip_components(clip_key)
|
| 418 |
+
|
| 419 |
class_list = [
|
| 420 |
class_name.strip()
|
| 421 |
for class_name in class_texts.split(",")
|
|
|
|
| 430 |
return_tensors="pt",
|
| 431 |
padding=True,
|
| 432 |
)
|
| 433 |
+
|
| 434 |
with torch.no_grad():
|
| 435 |
clip_outputs = clip_model(**input_batch)
|
| 436 |
logits_per_image = clip_outputs.logits_per_image
|
|
|
|
| 440 |
for class_index, class_name in enumerate(class_list):
|
| 441 |
probability_value = probability_tensor[0][class_index].item()
|
| 442 |
result_lines.append(f"{class_name}: {probability_value:.4f}")
|
| 443 |
+
|
| 444 |
return "\n".join(result_lines)
|
| 445 |
|
| 446 |
|
|
|
|
| 450 |
clip_key: str,
|
| 451 |
) -> Tuple[str, Image.Image | None]:
|
| 452 |
image_list = _normalize_gallery_images(gallery_value)
|
| 453 |
+
|
| 454 |
if not image_list or not query_text.strip():
|
| 455 |
return "Пожалуйста, загрузите изображения и введите запрос", None
|
| 456 |
|
| 457 |
clip_model, clip_processor = get_clip_components(clip_key)
|
| 458 |
+
|
| 459 |
image_inputs = clip_processor(
|
| 460 |
images=image_list,
|
| 461 |
return_tensors="pt",
|
|
|
|
| 463 |
)
|
| 464 |
with torch.no_grad():
|
| 465 |
image_features = clip_model.get_image_features(**image_inputs)
|
| 466 |
+
image_features = image_features / image_features.norm(
|
| 467 |
+
dim=-1,
|
| 468 |
+
keepdim=True,
|
| 469 |
+
)
|
| 470 |
|
| 471 |
text_inputs = clip_processor(
|
| 472 |
text=[query_text],
|
|
|
|
| 475 |
)
|
| 476 |
with torch.no_grad():
|
| 477 |
text_features = clip_model.get_text_features(**text_inputs)
|
| 478 |
+
text_features = text_features / text_features.norm(
|
| 479 |
+
dim=-1,
|
| 480 |
+
keepdim=True,
|
| 481 |
+
)
|
| 482 |
|
| 483 |
similarity_tensor = image_features @ text_features.T
|
| 484 |
best_index_tensor = similarity_tensor.argmax()
|
|
|
|
| 498 |
) -> Image.Image:
|
| 499 |
if image_object is None:
|
| 500 |
raise ValueError("Изображение не передано в segment_image_with_sam_points")
|
| 501 |
+
|
| 502 |
if not point_coordinates_list:
|
| 503 |
return Image.new("L", image_object.size, color=0)
|
| 504 |
|
| 505 |
sam_model, sam_processor = get_sam_components()
|
| 506 |
+
|
| 507 |
batched_points: List[List[List[int]]] = [point_coordinates_list]
|
| 508 |
batched_labels: List[List[int]] = [[1 for _ in point_coordinates_list]]
|
| 509 |
|
|
|
|
| 513 |
input_labels=batched_labels,
|
| 514 |
return_tensors="pt",
|
| 515 |
)
|
| 516 |
+
|
| 517 |
with torch.no_grad():
|
| 518 |
sam_outputs = sam_model(**sam_inputs, multimask_output=True)
|
| 519 |
|
|
|
|
| 522 |
sam_inputs["original_sizes"].cpu(),
|
| 523 |
sam_inputs["reshaped_input_sizes"].cpu(),
|
| 524 |
)
|
| 525 |
+
|
| 526 |
batch_masks_tensor = processed_masks_list[0]
|
| 527 |
+
|
| 528 |
if batch_masks_tensor.ndim != 3 or batch_masks_tensor.shape[0] == 0:
|
| 529 |
return Image.new("L", image_object.size, color=0)
|
| 530 |
|
| 531 |
first_mask_tensor = batch_masks_tensor[0]
|
| 532 |
mask_array = first_mask_tensor.numpy()
|
| 533 |
+
|
| 534 |
binary_mask_array = (mask_array > 0.5).astype("uint8") * 255
|
| 535 |
+
|
| 536 |
mask_image = Image.fromarray(binary_mask_array, mode="L")
|
| 537 |
return mask_image
|
| 538 |
|
| 539 |
|
| 540 |
def segment_image_with_sam_points_ui(image_object, coordinates_text: str) -> Image.Image:
|
| 541 |
+
|
| 542 |
if image_object is None:
|
| 543 |
return None
|
| 544 |
+
|
| 545 |
coordinates_text_clean = coordinates_text.strip()
|
| 546 |
if not coordinates_text_clean:
|
| 547 |
return Image.new("L", image_object.size, color=0)
|
| 548 |
|
| 549 |
point_coordinates_list: List[List[int]] = []
|
| 550 |
+
|
| 551 |
for raw_pair in coordinates_text_clean.replace("\n", ";").split(";"):
|
| 552 |
raw_pair_clean = raw_pair.strip()
|
| 553 |
if not raw_pair_clean:
|
| 554 |
continue
|
| 555 |
+
|
| 556 |
parts = raw_pair_clean.split(",")
|
| 557 |
if len(parts) != 2:
|
| 558 |
continue
|
| 559 |
+
|
| 560 |
try:
|
| 561 |
x_value = int(parts[0].strip())
|
| 562 |
y_value = int(parts[1].strip())
|
| 563 |
except ValueError:
|
| 564 |
continue
|
| 565 |
+
|
| 566 |
point_coordinates_list.append([x_value, y_value])
|
| 567 |
|
| 568 |
if not point_coordinates_list:
|
|
|
|
| 574 |
def parse_point_coordinates_text(coordinates_text: str) -> List[List[int]]:
|
| 575 |
if not coordinates_text.strip():
|
| 576 |
return []
|
| 577 |
+
|
| 578 |
point_list: List[List[int]] = []
|
| 579 |
for raw_pair in coordinates_text.split(";"):
|
| 580 |
cleaned_pair = raw_pair.strip()
|
|
|
|
| 589 |
except ValueError:
|
| 590 |
continue
|
| 591 |
point_list.append([x_value, y_value])
|
|
|
|
| 592 |
|
| 593 |
+
return point_list
|
| 594 |
|
| 595 |
def build_interface():
|
| 596 |
with gr.Blocks(title="Multimodal AI Demo", theme=gr.themes.Soft()) as demo_block:
|
| 597 |
gr.Markdown("# AI модели")
|
| 598 |
+
|
| 599 |
with gr.Tab("Детекция объектов"):
|
| 600 |
gr.Markdown("## Детекция объектов")
|
| 601 |
with gr.Row():
|
|
|
|
| 612 |
value="object_detection_conditional_detr",
|
| 613 |
info=(
|
| 614 |
"object_detection_conditional_detr - microsoft/conditional-detr-resnet-50\n"
|
| 615 |
+
"object_detection_yolos_small - hustvl/yolos-small"
|
| 616 |
),
|
| 617 |
)
|
| 618 |
object_detect_button = gr.Button("Применить")
|
| 619 |
+
|
| 620 |
+
object_output_image = gr.Image(
|
| 621 |
+
label="Результат",
|
| 622 |
+
)
|
| 623 |
+
|
| 624 |
object_detect_button.click(
|
| 625 |
fn=detect_objects_on_image,
|
| 626 |
inputs=[object_input_image, object_model_selector],
|
|
|
|
| 635 |
type="pil",
|
| 636 |
)
|
| 637 |
segmentation_button = gr.Button("Применить")
|
| 638 |
+
|
| 639 |
+
segmentation_output_image = gr.Image(
|
| 640 |
+
label="Маска",
|
| 641 |
+
)
|
| 642 |
+
|
| 643 |
segmentation_button.click(
|
| 644 |
fn=segment_image,
|
| 645 |
inputs=segmentation_input_image,
|
|
|
|
| 649 |
with gr.Tab("Глубина"):
|
| 650 |
gr.Markdown("## Глубина (Depth Estimation)")
|
| 651 |
with gr.Row():
|
| 652 |
+
|
| 653 |
depth_input_image = gr.Image(
|
| 654 |
label="Загрузите изображение",
|
| 655 |
type="pil",
|
| 656 |
)
|
| 657 |
depth_button = gr.Button("Применить")
|
| 658 |
+
|
| 659 |
+
depth_output_image = gr.Image(
|
| 660 |
+
label="Глубины",
|
| 661 |
+
)
|
| 662 |
+
|
| 663 |
depth_button.click(
|
| 664 |
fn=estimate_image_depth,
|
| 665 |
inputs=depth_input_image,
|
|
|
|
| 681 |
label="Модель",
|
| 682 |
value="captioning_blip_base",
|
| 683 |
info=(
|
| 684 |
+
"captioning_blip_base - Salesforce/blip-image-captioning-base (курс)\n"
|
| 685 |
"captioning_blip_large - Salesforce/blip-image-captioning-large"
|
| 686 |
),
|
| 687 |
)
|
| 688 |
caption_button = gr.Button("Применить")
|
| 689 |
+
|
| 690 |
+
caption_output_text = gr.Textbox(
|
| 691 |
+
label="Описание изображения",
|
| 692 |
+
lines=3,
|
| 693 |
+
)
|
| 694 |
+
|
| 695 |
caption_button.click(
|
| 696 |
fn=generate_image_caption,
|
| 697 |
inputs=[caption_input_image, caption_model_selector],
|
|
|
|
| 719 |
value="vqa_blip_base",
|
| 720 |
info=(
|
| 721 |
"vqa_blip_base - Salesforce/blip-vqa-base (курс)\n"
|
| 722 |
+
"vqa_vilt_b32 - dandelin/vilt-b32-finetuned-vqa"
|
| 723 |
),
|
| 724 |
)
|
| 725 |
vqa_button = gr.Button("Ответить на вопрос")
|
| 726 |
+
|
| 727 |
+
vqa_output_text = gr.Textbox(
|
| 728 |
+
label="Ответ",
|
| 729 |
+
lines=3,
|
| 730 |
+
)
|
| 731 |
+
|
| 732 |
vqa_button.click(
|
| 733 |
fn=answer_visual_question,
|
| 734 |
inputs=[vqa_input_image, vqa_question_text, vqa_model_selector],
|
|
|
|
| 756 |
value="clip_large_patch14",
|
| 757 |
info=(
|
| 758 |
"clip_large_patch14 - openai/clip-vit-large-patch14 (курс)\n"
|
| 759 |
+
"clip_base_patch32 - openai/clip-vit-base-patch32"
|
| 760 |
),
|
| 761 |
)
|
| 762 |
zero_shot_button = gr.Button("Применить")
|
| 763 |
+
|
| 764 |
+
zero_shot_output_text = gr.Textbox(
|
| 765 |
+
label="Результаты",
|
| 766 |
+
lines=10,
|
| 767 |
+
)
|
| 768 |
+
|
| 769 |
zero_shot_button.click(
|
| 770 |
fn=perform_zero_shot_classification,
|
| 771 |
inputs=[zero_shot_input_image, zero_shot_classes_text, clip_model_selector],
|
|
|
|
| 775 |
with gr.Tab("Поиск изображений"):
|
| 776 |
gr.Markdown("## Поиск изображений")
|
| 777 |
with gr.Row():
|
| 778 |
+
|
| 779 |
retrieval_dir = gr.File(
|
| 780 |
label="Загрузите папку с изображениями",
|
| 781 |
file_count="directory",
|
|
|
|
| 796 |
value="clip_large_patch14",
|
| 797 |
info=(
|
| 798 |
"clip_large_patch14 - openai/clip-vit-large-patch14 (курс)\n"
|
| 799 |
+
"clip_base_patch32 - openai/clip-vit-base-patch32 (альтернатива)"
|
| 800 |
),
|
| 801 |
)
|
| 802 |
retrieval_button = gr.Button("Поиск")
|
| 803 |
+
|
| 804 |
+
retrieval_output_text = gr.Textbox(
|
| 805 |
+
label="Результат",
|
| 806 |
+
)
|
| 807 |
+
retrieval_output_image = gr.Image(
|
| 808 |
+
label="Наиболее подходящее изображение",
|
| 809 |
+
)
|
| 810 |
+
|
| 811 |
retrieval_button.click(
|
| 812 |
fn=retrieve_best_image,
|
| 813 |
inputs=[retrieval_dir, retrieval_query_text, retrieval_clip_selector],
|
|
|
|
| 818 |
gr.Markdown("### Задачи:")
|
| 819 |
gr.Markdown(
|
| 820 |
"""
|
| 821 |
+
- Аудио: классификация, распознавание речи, синтез речи
|
| 822 |
+
- Компьютерное зрение: детекция объектов, сегментация, оценка глубины, генерация описаний изображений
|
| 823 |
- Мультимодальные задачи: вопросы к изображению, zero-shot классификация изображений, поиск по изображениям по текстовому запросу
|
| 824 |
+
"""
|
| 825 |
)
|
|
|
|
| 826 |
return demo_block
|
| 827 |
|
| 828 |
|
| 829 |
if __name__ == "__main__":
|
| 830 |
interface_block = build_interface()
|
| 831 |
interface_block.launch(share=True)
|
| 832 |
+
|