Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,943 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import tempfile
|
| 2 |
+
from typing import List, Tuple, Any
|
| 3 |
+
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import soundfile as sf
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn.functional as torch_functional
|
| 8 |
+
from gtts import gTTS
|
| 9 |
+
from PIL import Image, ImageDraw
|
| 10 |
+
from transformers import (
|
| 11 |
+
AutoTokenizer,
|
| 12 |
+
CLIPModel,
|
| 13 |
+
CLIPProcessor,
|
| 14 |
+
SamModel,
|
| 15 |
+
SamProcessor,
|
| 16 |
+
VitsModel,
|
| 17 |
+
pipeline,
|
| 18 |
+
BlipForQuestionAnswering,
|
| 19 |
+
BlipProcessor,
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
MODEL_STORE = {}
|
| 24 |
+
|
| 25 |
+
def _normalize_gallery_images(gallery_value: Any) -> List[Image.Image]:
|
| 26 |
+
if not gallery_value:
|
| 27 |
+
return []
|
| 28 |
+
|
| 29 |
+
normalized_images: List[Image.Image] = []
|
| 30 |
+
|
| 31 |
+
for item in gallery_value:
|
| 32 |
+
if isinstance(item, Image.Image):
|
| 33 |
+
normalized_images.append(item)
|
| 34 |
+
continue
|
| 35 |
+
|
| 36 |
+
if isinstance(item, str):
|
| 37 |
+
try:
|
| 38 |
+
image_object = Image.open(item).convert("RGB")
|
| 39 |
+
normalized_images.append(image_object)
|
| 40 |
+
except Exception:
|
| 41 |
+
continue
|
| 42 |
+
continue
|
| 43 |
+
|
| 44 |
+
if isinstance(item, (list, tuple)) and item:
|
| 45 |
+
candidate = item[0]
|
| 46 |
+
if isinstance(candidate, Image.Image):
|
| 47 |
+
normalized_images.append(candidate)
|
| 48 |
+
continue
|
| 49 |
+
|
| 50 |
+
if isinstance(item, dict):
|
| 51 |
+
candidate = item.get("image") or item.get("value")
|
| 52 |
+
if isinstance(candidate, Image.Image):
|
| 53 |
+
normalized_images.append(candidate)
|
| 54 |
+
continue
|
| 55 |
+
|
| 56 |
+
return normalized_images
|
| 57 |
+
|
| 58 |
+
def get_audio_pipeline(model_key: str):
|
| 59 |
+
if model_key in MODEL_STORE:
|
| 60 |
+
return MODEL_STORE[model_key]
|
| 61 |
+
|
| 62 |
+
if model_key == "whisper":
|
| 63 |
+
audio_pipeline = pipeline(
|
| 64 |
+
task="automatic-speech-recognition",
|
| 65 |
+
model="distil-whisper/distil-small.en",
|
| 66 |
+
)
|
| 67 |
+
elif model_key == "wav2vec2":
|
| 68 |
+
audio_pipeline = pipeline(
|
| 69 |
+
task="automatic-speech-recognition",
|
| 70 |
+
model="openai/whisper-small",
|
| 71 |
+
)
|
| 72 |
+
elif model_key == "audio_classifier":
|
| 73 |
+
audio_pipeline = pipeline(
|
| 74 |
+
task="audio-classification",
|
| 75 |
+
model="MIT/ast-finetuned-audioset-10-10-0.4593",
|
| 76 |
+
)
|
| 77 |
+
elif model_key == "emotion_classifier":
|
| 78 |
+
audio_pipeline = pipeline(
|
| 79 |
+
task="audio-classification",
|
| 80 |
+
model="superb/hubert-large-superb-er",
|
| 81 |
+
)
|
| 82 |
+
else:
|
| 83 |
+
raise ValueError(f"Неизвестный тип аудио модели: {model_key}")
|
| 84 |
+
|
| 85 |
+
MODEL_STORE[model_key] = audio_pipeline
|
| 86 |
+
return audio_pipeline
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def get_zero_shot_audio_pipeline():
|
| 90 |
+
if "audio_zero_shot_clap" not in MODEL_STORE:
|
| 91 |
+
zero_shot_pipeline = pipeline(
|
| 92 |
+
task="zero-shot-audio-classification",
|
| 93 |
+
model="laion/clap-htsat-unfused",
|
| 94 |
+
)
|
| 95 |
+
MODEL_STORE["audio_zero_shot_clap"] = zero_shot_pipeline
|
| 96 |
+
return MODEL_STORE["audio_zero_shot_clap"]
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def get_blip_vqa_components() -> Tuple[BlipForQuestionAnswering, BlipProcessor]:
|
| 100 |
+
if "blip_vqa_model" not in MODEL_STORE or "blip_vqa_processor" not in MODEL_STORE:
|
| 101 |
+
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
| 102 |
+
blip_model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
|
| 103 |
+
MODEL_STORE["blip_vqa_model"] = blip_model
|
| 104 |
+
MODEL_STORE["blip_vqa_processor"] = blip_processor
|
| 105 |
+
|
| 106 |
+
blip_model = MODEL_STORE["blip_vqa_model"]
|
| 107 |
+
blip_processor = MODEL_STORE["blip_vqa_processor"]
|
| 108 |
+
return blip_model, blip_processor
|
| 109 |
+
|
| 110 |
+
def get_vision_pipeline(model_key: str):
|
| 111 |
+
if model_key in MODEL_STORE:
|
| 112 |
+
return MODEL_STORE[model_key]
|
| 113 |
+
|
| 114 |
+
if model_key == "object_detection_conditional_detr":
|
| 115 |
+
vision_pipeline = pipeline(
|
| 116 |
+
task="object-detection",
|
| 117 |
+
model="microsoft/conditional-detr-resnet-50",
|
| 118 |
+
)
|
| 119 |
+
elif model_key == "object_detection_yolos_small":
|
| 120 |
+
vision_pipeline = pipeline(
|
| 121 |
+
task="object-detection",
|
| 122 |
+
model="hustvl/yolos-small",
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
elif model_key == "segmentation":
|
| 126 |
+
vision_pipeline = pipeline(
|
| 127 |
+
task="image-segmentation",
|
| 128 |
+
model="nvidia/segformer-b0-finetuned-ade-512-512",
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
elif model_key == "depth_estimation":
|
| 132 |
+
vision_pipeline = pipeline(
|
| 133 |
+
task="depth-estimation",
|
| 134 |
+
model="Intel/dpt-hybrid-midas",
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
elif model_key == "captioning_blip_base":
|
| 138 |
+
vision_pipeline = pipeline(
|
| 139 |
+
task="image-to-text",
|
| 140 |
+
model="Salesforce/blip-image-captioning-base",
|
| 141 |
+
)
|
| 142 |
+
elif model_key == "captioning_blip_large":
|
| 143 |
+
vision_pipeline = pipeline(
|
| 144 |
+
task="image-to-text",
|
| 145 |
+
model="Salesforce/blip-image-captioning-large",
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
elif model_key == "vqa_blip_base":
|
| 149 |
+
vision_pipeline = pipeline(
|
| 150 |
+
task="visual-question-answering",
|
| 151 |
+
model="Salesforce/blip-vqa-base",
|
| 152 |
+
)
|
| 153 |
+
elif model_key == "vqa_vilt_b32":
|
| 154 |
+
vision_pipeline = pipeline(
|
| 155 |
+
task="visual-question-answering",
|
| 156 |
+
model="dandelin/vilt-b32-finetuned-vqa",
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
else:
|
| 160 |
+
raise ValueError(f"Неизвестный тип визуальной модели: {model_key}")
|
| 161 |
+
|
| 162 |
+
MODEL_STORE[model_key] = vision_pipeline
|
| 163 |
+
return vision_pipeline
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
def get_clip_components(clip_key: str) -> Tuple[CLIPModel, CLIPProcessor]:
|
| 167 |
+
model_store_key_model = f"clip_model_{clip_key}"
|
| 168 |
+
model_store_key_processor = f"clip_processor_{clip_key}"
|
| 169 |
+
|
| 170 |
+
if model_store_key_model not in MODEL_STORE or model_store_key_processor not in MODEL_STORE:
|
| 171 |
+
if clip_key == "clip_large_patch14":
|
| 172 |
+
clip_name = "openai/clip-vit-large-patch14"
|
| 173 |
+
elif clip_key == "clip_base_patch32":
|
| 174 |
+
clip_name = "openai/clip-vit-base-patch32"
|
| 175 |
+
else:
|
| 176 |
+
raise ValueError(f"Неизвестный вариант CLIP модели: {clip_key}")
|
| 177 |
+
|
| 178 |
+
clip_model = CLIPModel.from_pretrained(clip_name)
|
| 179 |
+
clip_processor = CLIPProcessor.from_pretrained(clip_name)
|
| 180 |
+
|
| 181 |
+
MODEL_STORE[model_store_key_model] = clip_model
|
| 182 |
+
MODEL_STORE[model_store_key_processor] = clip_processor
|
| 183 |
+
|
| 184 |
+
clip_model = MODEL_STORE[model_store_key_model]
|
| 185 |
+
clip_processor = MODEL_STORE[model_store_key_processor]
|
| 186 |
+
return clip_model, clip_processor
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
def get_silero_tts_model():
|
| 190 |
+
if "silero_tts_model" not in MODEL_STORE:
|
| 191 |
+
silero_model, _ = torch.hub.load(
|
| 192 |
+
repo_or_dir="snakers4/silero-models",
|
| 193 |
+
model="silero_tts",
|
| 194 |
+
language="ru",
|
| 195 |
+
speaker="ru_v3",
|
| 196 |
+
)
|
| 197 |
+
MODEL_STORE["silero_tts_model"] = silero_model
|
| 198 |
+
return MODEL_STORE["silero_tts_model"]
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
def get_mms_tts_components():
|
| 202 |
+
if "mms_tts_pipeline" not in MODEL_STORE:
|
| 203 |
+
tts_pipeline = pipeline(
|
| 204 |
+
task="text-to-speech",
|
| 205 |
+
model="facebook/mms-tts-rus",
|
| 206 |
+
)
|
| 207 |
+
MODEL_STORE["mms_tts_pipeline"] = tts_pipeline
|
| 208 |
+
|
| 209 |
+
return MODEL_STORE["mms_tts_pipeline"]
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
def get_sam_components() -> Tuple[SamModel, SamProcessor]:
|
| 213 |
+
if "sam_model" not in MODEL_STORE or "sam_processor" not in MODEL_STORE:
|
| 214 |
+
sam_model = SamModel.from_pretrained("Zigeng/SlimSAM-uniform-77")
|
| 215 |
+
sam_processor = SamProcessor.from_pretrained("Zigeng/SlimSAM-uniform-77")
|
| 216 |
+
MODEL_STORE["sam_model"] = sam_model
|
| 217 |
+
MODEL_STORE["sam_processor"] = sam_processor
|
| 218 |
+
|
| 219 |
+
sam_model = MODEL_STORE["sam_model"]
|
| 220 |
+
sam_processor = MODEL_STORE["sam_processor"]
|
| 221 |
+
return sam_model, sam_processor
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def classify_audio_file(audio_path: str, model_key: str) -> str:
|
| 226 |
+
audio_classifier = get_audio_pipeline(model_key)
|
| 227 |
+
prediction_list = audio_classifier(audio_path)
|
| 228 |
+
|
| 229 |
+
result_lines = ["Топ-5 предсказаний:"]
|
| 230 |
+
for prediction_index, prediction_item in enumerate(prediction_list[:5], start=1):
|
| 231 |
+
label_value = prediction_item["label"]
|
| 232 |
+
score_value = prediction_item["score"]
|
| 233 |
+
result_lines.append(
|
| 234 |
+
f"{prediction_index}. {label_value}: {score_value:.4f}"
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
return "\n".join(result_lines)
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
def classify_audio_zero_shot_clap(audio_path: str, label_texts: str) -> str:
|
| 241 |
+
|
| 242 |
+
clap_pipeline = get_zero_shot_audio_pipeline()
|
| 243 |
+
|
| 244 |
+
label_list = [
|
| 245 |
+
label_item.strip()
|
| 246 |
+
for label_item in label_texts.split(",")
|
| 247 |
+
if label_item.strip()
|
| 248 |
+
]
|
| 249 |
+
if not label_list:
|
| 250 |
+
return "Не задано ни одной текстовой метки для zero-shot классификации."
|
| 251 |
+
|
| 252 |
+
prediction_list = clap_pipeline(
|
| 253 |
+
audio_path,
|
| 254 |
+
candidate_labels=label_list,
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
result_lines = ["Zero-Shot Audio Classification (CLAP):"]
|
| 258 |
+
for prediction_index, prediction_item in enumerate(prediction_list, start=1):
|
| 259 |
+
label_value = prediction_item["label"]
|
| 260 |
+
score_value = prediction_item["score"]
|
| 261 |
+
result_lines.append(
|
| 262 |
+
f"{prediction_index}. {label_value}: {score_value:.4f}"
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
return "\n".join(result_lines)
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
def recognize_speech(audio_path: str, model_key: str) -> str:
|
| 269 |
+
speech_pipeline = get_audio_pipeline(model_key)
|
| 270 |
+
|
| 271 |
+
prediction_result = speech_pipeline(audio_path)
|
| 272 |
+
|
| 273 |
+
return prediction_result["text"]
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
def synthesize_speech(text_value: str, model_key: str):
|
| 277 |
+
if model_key == "Google TTS":
|
| 278 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as file_object:
|
| 279 |
+
text_to_speech_engine = gTTS(text=text_value, lang="ru")
|
| 280 |
+
text_to_speech_engine.save(file_object.name)
|
| 281 |
+
return file_object.name
|
| 282 |
+
elif model_key == "mms":
|
| 283 |
+
model = VitsModel.from_pretrained("facebook/mms-tts-rus")
|
| 284 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-rus")
|
| 285 |
+
|
| 286 |
+
inputs = tokenizer(text_value, return_tensors="pt")
|
| 287 |
+
with torch.no_grad():
|
| 288 |
+
output = model(**inputs).waveform
|
| 289 |
+
|
| 290 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
|
| 291 |
+
sf.write(f.name, output.numpy().squeeze(), model.config.sampling_rate)
|
| 292 |
+
return f.name
|
| 293 |
+
|
| 294 |
+
raise ValueError(f"Неизвестная модель: {model_key}")
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
def detect_objects_on_image(image_object, model_key: str):
|
| 299 |
+
detector_pipeline = get_vision_pipeline(model_key)
|
| 300 |
+
detection_results = detector_pipeline(image_object)
|
| 301 |
+
|
| 302 |
+
drawer_object = ImageDraw.Draw(image_object)
|
| 303 |
+
for detection_item in detection_results:
|
| 304 |
+
box_data = detection_item["box"]
|
| 305 |
+
label_value = detection_item["label"]
|
| 306 |
+
score_value = detection_item["score"]
|
| 307 |
+
|
| 308 |
+
drawer_object.rectangle(
|
| 309 |
+
[
|
| 310 |
+
box_data["xmin"],
|
| 311 |
+
box_data["ymin"],
|
| 312 |
+
box_data["xmax"],
|
| 313 |
+
box_data["ymax"],
|
| 314 |
+
],
|
| 315 |
+
outline="red",
|
| 316 |
+
width=3,
|
| 317 |
+
)
|
| 318 |
+
drawer_object.text(
|
| 319 |
+
(box_data["xmin"], box_data["ymin"]),
|
| 320 |
+
f"{label_value}: {score_value:.2f}",
|
| 321 |
+
fill="red",
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
return image_object
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
def segment_image(image_object):
|
| 328 |
+
segmentation_pipeline = get_vision_pipeline("segmentation")
|
| 329 |
+
segmentation_results = segmentation_pipeline(image_object)
|
| 330 |
+
return segmentation_results[0]["mask"]
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
def estimate_image_depth(image_object):
|
| 334 |
+
depth_pipeline = get_vision_pipeline("depth_estimation")
|
| 335 |
+
depth_output = depth_pipeline(image_object)
|
| 336 |
+
|
| 337 |
+
predicted_depth_tensor = depth_output["predicted_depth"]
|
| 338 |
+
|
| 339 |
+
if predicted_depth_tensor.ndim == 3:
|
| 340 |
+
predicted_depth_tensor = predicted_depth_tensor.unsqueeze(1)
|
| 341 |
+
elif predicted_depth_tensor.ndim == 2:
|
| 342 |
+
predicted_depth_tensor = predicted_depth_tensor.unsqueeze(0).unsqueeze(0)
|
| 343 |
+
else:
|
| 344 |
+
raise ValueError(
|
| 345 |
+
f"Неожиданная размерность predicted_depth: {predicted_depth_tensor.shape}"
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
resized_depth_tensor = torch_functional.interpolate(
|
| 349 |
+
predicted_depth_tensor,
|
| 350 |
+
size=image_object.size[::-1],
|
| 351 |
+
mode="bicubic",
|
| 352 |
+
align_corners=False,
|
| 353 |
+
)
|
| 354 |
+
|
| 355 |
+
depth_array = resized_depth_tensor.squeeze().cpu().numpy()
|
| 356 |
+
max_value = float(depth_array.max())
|
| 357 |
+
|
| 358 |
+
if max_value <= 0.0:
|
| 359 |
+
return Image.new("L", image_object.size, color=0)
|
| 360 |
+
|
| 361 |
+
normalized_depth_array = (depth_array * 255.0 / max_value).astype("uint8")
|
| 362 |
+
depth_image = Image.fromarray(normalized_depth_array, mode="L")
|
| 363 |
+
return depth_image
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
def generate_image_caption(image_object, model_key: str) -> str:
|
| 367 |
+
caption_pipeline = get_vision_pipeline(model_key)
|
| 368 |
+
caption_result = caption_pipeline(image_object)
|
| 369 |
+
return caption_result[0]["generated_text"]
|
| 370 |
+
|
| 371 |
+
|
| 372 |
+
def answer_visual_question(image_object, question_text: str, model_key: str) -> str:
|
| 373 |
+
if image_object is None:
|
| 374 |
+
return "Пожалуйста, сначала загрузите изображение."
|
| 375 |
+
|
| 376 |
+
if not question_text.strip():
|
| 377 |
+
return "Пожалуйста, введите вопрос об изображении."
|
| 378 |
+
|
| 379 |
+
if model_key == "vqa_blip_base":
|
| 380 |
+
blip_model, blip_processor = get_blip_vqa_components()
|
| 381 |
+
|
| 382 |
+
inputs = blip_processor(
|
| 383 |
+
images=image_object,
|
| 384 |
+
text=question_text,
|
| 385 |
+
return_tensors="pt",
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
with torch.no_grad():
|
| 389 |
+
output_ids = blip_model.generate(**inputs)
|
| 390 |
+
|
| 391 |
+
decoded_answers = blip_processor.batch_decode(
|
| 392 |
+
output_ids,
|
| 393 |
+
skip_special_tokens=True,
|
| 394 |
+
)
|
| 395 |
+
answer_text = decoded_answers[0] if decoded_answers else ""
|
| 396 |
+
|
| 397 |
+
return answer_text or "Модель не смогла сгенерировать ответ."
|
| 398 |
+
|
| 399 |
+
vqa_pipeline = get_vision_pipeline(model_key)
|
| 400 |
+
|
| 401 |
+
vqa_result = vqa_pipeline(
|
| 402 |
+
image=image_object,
|
| 403 |
+
question=question_text,
|
| 404 |
+
)
|
| 405 |
+
|
| 406 |
+
top_item = vqa_result[0]
|
| 407 |
+
answer_text = top_item["answer"]
|
| 408 |
+
confidence_value = top_item["score"]
|
| 409 |
+
|
| 410 |
+
return f"{answer_text} (confidence: {confidence_value:.3f})"
|
| 411 |
+
|
| 412 |
+
def perform_zero_shot_classification(
|
| 413 |
+
image_object,
|
| 414 |
+
class_texts: str,
|
| 415 |
+
clip_key: str,
|
| 416 |
+
) -> str:
|
| 417 |
+
clip_model, clip_processor = get_clip_components(clip_key)
|
| 418 |
+
|
| 419 |
+
class_list = [
|
| 420 |
+
class_name.strip()
|
| 421 |
+
for class_name in class_texts.split(",")
|
| 422 |
+
if class_name.strip()
|
| 423 |
+
]
|
| 424 |
+
if not class_list:
|
| 425 |
+
return "Не задано ни одного класса для классификации."
|
| 426 |
+
|
| 427 |
+
input_batch = clip_processor(
|
| 428 |
+
text=class_list,
|
| 429 |
+
images=image_object,
|
| 430 |
+
return_tensors="pt",
|
| 431 |
+
padding=True,
|
| 432 |
+
)
|
| 433 |
+
|
| 434 |
+
with torch.no_grad():
|
| 435 |
+
clip_outputs = clip_model(**input_batch)
|
| 436 |
+
logits_per_image = clip_outputs.logits_per_image
|
| 437 |
+
probability_tensor = logits_per_image.softmax(dim=1)
|
| 438 |
+
|
| 439 |
+
result_lines = ["Zero-Shot Classification Results:"]
|
| 440 |
+
for class_index, class_name in enumerate(class_list):
|
| 441 |
+
probability_value = probability_tensor[0][class_index].item()
|
| 442 |
+
result_lines.append(f"{class_name}: {probability_value:.4f}")
|
| 443 |
+
|
| 444 |
+
return "\n".join(result_lines)
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
def retrieve_best_image(
|
| 448 |
+
gallery_value: Any,
|
| 449 |
+
query_text: str,
|
| 450 |
+
clip_key: str,
|
| 451 |
+
) -> Tuple[str, Image.Image | None]:
|
| 452 |
+
image_list = _normalize_gallery_images(gallery_value)
|
| 453 |
+
|
| 454 |
+
if not image_list or not query_text.strip():
|
| 455 |
+
return "Пожалуйста, загрузите изображения и введите запрос", None
|
| 456 |
+
|
| 457 |
+
clip_model, clip_processor = get_clip_components(clip_key)
|
| 458 |
+
|
| 459 |
+
image_inputs = clip_processor(
|
| 460 |
+
images=image_list,
|
| 461 |
+
return_tensors="pt",
|
| 462 |
+
padding=True,
|
| 463 |
+
)
|
| 464 |
+
with torch.no_grad():
|
| 465 |
+
image_features = clip_model.get_image_features(**image_inputs)
|
| 466 |
+
image_features = image_features / image_features.norm(
|
| 467 |
+
dim=-1,
|
| 468 |
+
keepdim=True,
|
| 469 |
+
)
|
| 470 |
+
|
| 471 |
+
text_inputs = clip_processor(
|
| 472 |
+
text=[query_text],
|
| 473 |
+
return_tensors="pt",
|
| 474 |
+
padding=True,
|
| 475 |
+
)
|
| 476 |
+
with torch.no_grad():
|
| 477 |
+
text_features = clip_model.get_text_features(**text_inputs)
|
| 478 |
+
text_features = text_features / text_features.norm(
|
| 479 |
+
dim=-1,
|
| 480 |
+
keepdim=True,
|
| 481 |
+
)
|
| 482 |
+
|
| 483 |
+
similarity_tensor = image_features @ text_features.T
|
| 484 |
+
best_index_tensor = similarity_tensor.argmax()
|
| 485 |
+
best_index_value = best_index_tensor.item()
|
| 486 |
+
best_score_value = similarity_tensor[best_index_value].item()
|
| 487 |
+
|
| 488 |
+
description_text = (
|
| 489 |
+
f"Лучшее изображение: #{best_index_value + 1} "
|
| 490 |
+
f"(схожесть: {best_score_value:.4f})"
|
| 491 |
+
)
|
| 492 |
+
return description_text, image_list[best_index_value]
|
| 493 |
+
|
| 494 |
+
|
| 495 |
+
def segment_image_with_sam_points(
|
| 496 |
+
image_object,
|
| 497 |
+
point_coordinates_list: List[List[int]],
|
| 498 |
+
) -> Image.Image:
|
| 499 |
+
if image_object is None:
|
| 500 |
+
raise ValueError("Изображение не передано в segment_image_with_sam_points")
|
| 501 |
+
|
| 502 |
+
if not point_coordinates_list:
|
| 503 |
+
return Image.new("L", image_object.size, color=0)
|
| 504 |
+
|
| 505 |
+
sam_model, sam_processor = get_sam_components()
|
| 506 |
+
|
| 507 |
+
batched_points: List[List[List[int]]] = [point_coordinates_list]
|
| 508 |
+
batched_labels: List[List[int]] = [[1 for _ in point_coordinates_list]]
|
| 509 |
+
|
| 510 |
+
sam_inputs = sam_processor(
|
| 511 |
+
image=image_object,
|
| 512 |
+
input_points=batched_points,
|
| 513 |
+
input_labels=batched_labels,
|
| 514 |
+
return_tensors="pt",
|
| 515 |
+
)
|
| 516 |
+
|
| 517 |
+
with torch.no_grad():
|
| 518 |
+
sam_outputs = sam_model(**sam_inputs, multimask_output=True)
|
| 519 |
+
|
| 520 |
+
processed_masks_list = sam_processor.image_processor.post_process_masks(
|
| 521 |
+
sam_outputs.pred_masks.squeeze(1).cpu(),
|
| 522 |
+
sam_inputs["original_sizes"].cpu(),
|
| 523 |
+
sam_inputs["reshaped_input_sizes"].cpu(),
|
| 524 |
+
)
|
| 525 |
+
|
| 526 |
+
batch_masks_tensor = processed_masks_list[0]
|
| 527 |
+
|
| 528 |
+
if batch_masks_tensor.ndim != 3 or batch_masks_tensor.shape[0] == 0:
|
| 529 |
+
return Image.new("L", image_object.size, color=0)
|
| 530 |
+
|
| 531 |
+
first_mask_tensor = batch_masks_tensor[0]
|
| 532 |
+
mask_array = first_mask_tensor.numpy()
|
| 533 |
+
|
| 534 |
+
binary_mask_array = (mask_array > 0.5).astype("uint8") * 255
|
| 535 |
+
|
| 536 |
+
mask_image = Image.fromarray(binary_mask_array, mode="L")
|
| 537 |
+
return mask_image
|
| 538 |
+
|
| 539 |
+
|
| 540 |
+
def segment_image_with_sam_points_ui(image_object, coordinates_text: str) -> Image.Image:
|
| 541 |
+
|
| 542 |
+
if image_object is None:
|
| 543 |
+
return None
|
| 544 |
+
|
| 545 |
+
coordinates_text_clean = coordinates_text.strip()
|
| 546 |
+
if not coordinates_text_clean:
|
| 547 |
+
return Image.new("L", image_object.size, color=0)
|
| 548 |
+
|
| 549 |
+
point_coordinates_list: List[List[int]] = []
|
| 550 |
+
|
| 551 |
+
for raw_pair in coordinates_text_clean.replace("\n", ";").split(";"):
|
| 552 |
+
raw_pair_clean = raw_pair.strip()
|
| 553 |
+
if not raw_pair_clean:
|
| 554 |
+
continue
|
| 555 |
+
|
| 556 |
+
parts = raw_pair_clean.split(",")
|
| 557 |
+
if len(parts) != 2:
|
| 558 |
+
continue
|
| 559 |
+
|
| 560 |
+
try:
|
| 561 |
+
x_value = int(parts[0].strip())
|
| 562 |
+
y_value = int(parts[1].strip())
|
| 563 |
+
except ValueError:
|
| 564 |
+
continue
|
| 565 |
+
|
| 566 |
+
point_coordinates_list.append([x_value, y_value])
|
| 567 |
+
|
| 568 |
+
if not point_coordinates_list:
|
| 569 |
+
return Image.new("L", image_object.size, color=0)
|
| 570 |
+
|
| 571 |
+
return segment_image_with_sam_points(image_object, point_coordinates_list)
|
| 572 |
+
|
| 573 |
+
|
| 574 |
+
def parse_point_coordinates_text(coordinates_text: str) -> List[List[int]]:
|
| 575 |
+
if not coordinates_text.strip():
|
| 576 |
+
return []
|
| 577 |
+
|
| 578 |
+
point_list: List[List[int]] = []
|
| 579 |
+
for raw_pair in coordinates_text.split(";"):
|
| 580 |
+
cleaned_pair = raw_pair.strip()
|
| 581 |
+
if not cleaned_pair:
|
| 582 |
+
continue
|
| 583 |
+
coordinate_parts = cleaned_pair.split(",")
|
| 584 |
+
if len(coordinate_parts) != 2:
|
| 585 |
+
continue
|
| 586 |
+
try:
|
| 587 |
+
x_value = int(coordinate_parts[0].strip())
|
| 588 |
+
y_value = int(coordinate_parts[1].strip())
|
| 589 |
+
except ValueError:
|
| 590 |
+
continue
|
| 591 |
+
point_list.append([x_value, y_value])
|
| 592 |
+
|
| 593 |
+
return point_list
|
| 594 |
+
|
| 595 |
+
def build_interface():
|
| 596 |
+
with gr.Blocks(title="Multimodal AI Demo", theme=gr.themes.Soft()) as demo_block:
|
| 597 |
+
gr.Markdown("# AI модели")
|
| 598 |
+
|
| 599 |
+
with gr.Tab("Классификация аудио"):
|
| 600 |
+
gr.Markdown("## Классификация аудио")
|
| 601 |
+
with gr.Row():
|
| 602 |
+
audio_input_component = gr.Audio(
|
| 603 |
+
label="Загрузите аудиофайл",
|
| 604 |
+
type="filepath",
|
| 605 |
+
)
|
| 606 |
+
audio_model_selector = gr.Dropdown(
|
| 607 |
+
choices=["audio_classifier", "emotion_classifier"],
|
| 608 |
+
label="Выберите модель",
|
| 609 |
+
value="audio_classifier",
|
| 610 |
+
info=(
|
| 611 |
+
"audio_classifier - общая классификация (курс)"
|
| 612 |
+
"emotion_classifier - эмоции в речи "
|
| 613 |
+
),
|
| 614 |
+
)
|
| 615 |
+
audio_classify_button = gr.Button("Применить")
|
| 616 |
+
|
| 617 |
+
audio_output_component = gr.Textbox(
|
| 618 |
+
label="Результаты классификации",
|
| 619 |
+
lines=10,
|
| 620 |
+
)
|
| 621 |
+
|
| 622 |
+
audio_classify_button.click(
|
| 623 |
+
fn=classify_audio_file,
|
| 624 |
+
inputs=[audio_input_component, audio_model_selector],
|
| 625 |
+
outputs=audio_output_component,
|
| 626 |
+
)
|
| 627 |
+
|
| 628 |
+
with gr.Tab("Zero-Shot аудио"):
|
| 629 |
+
gr.Markdown("## Zero-Shot аудио классификатор")
|
| 630 |
+
with gr.Row():
|
| 631 |
+
clap_audio_input_component = gr.Audio(
|
| 632 |
+
label="Загрузите аудиофайл",
|
| 633 |
+
type="filepath",
|
| 634 |
+
)
|
| 635 |
+
clap_label_texts_component = gr.Textbox(
|
| 636 |
+
label="Кандидатные метки (через запятую)",
|
| 637 |
+
placeholder="лай собаки, шум дождя, музыка, разговор",
|
| 638 |
+
lines=2,
|
| 639 |
+
)
|
| 640 |
+
clap_button = gr.Button("Применить")
|
| 641 |
+
|
| 642 |
+
clap_output_component = gr.Textbox(
|
| 643 |
+
label="Результаты zero-shot классификации",
|
| 644 |
+
lines=10,
|
| 645 |
+
)
|
| 646 |
+
|
| 647 |
+
clap_button.click(
|
| 648 |
+
fn=classify_audio_zero_shot_clap,
|
| 649 |
+
inputs=[clap_audio_input_component, clap_label_texts_component],
|
| 650 |
+
outputs=clap_output_component,
|
| 651 |
+
)
|
| 652 |
+
|
| 653 |
+
with gr.Tab("Распознавание речи"):
|
| 654 |
+
gr.Markdown("## Распознавание реч")
|
| 655 |
+
with gr.Row():
|
| 656 |
+
asr_audio_input_component = gr.Audio(
|
| 657 |
+
label="Загрузите аудио с речью",
|
| 658 |
+
type="filepath",
|
| 659 |
+
)
|
| 660 |
+
asr_model_selector = gr.Dropdown(
|
| 661 |
+
choices=["whisper", "wav2vec2"],
|
| 662 |
+
label="Выберите модель",
|
| 663 |
+
value="whisper",
|
| 664 |
+
info=(
|
| 665 |
+
"whisper - distil-whisper/distil-small.en (курс),\n"
|
| 666 |
+
"wav2vec2 - openai/whisper-small"
|
| 667 |
+
),
|
| 668 |
+
)
|
| 669 |
+
asr_button = gr.Button("Применить")
|
| 670 |
+
|
| 671 |
+
asr_output_component = gr.Textbox(
|
| 672 |
+
label="Транскрипция",
|
| 673 |
+
lines=5,
|
| 674 |
+
)
|
| 675 |
+
|
| 676 |
+
asr_button.click(
|
| 677 |
+
fn=recognize_speech,
|
| 678 |
+
inputs=[asr_audio_input_component, asr_model_selector],
|
| 679 |
+
outputs=asr_output_component,
|
| 680 |
+
)
|
| 681 |
+
with gr.Tab("Синтез речи"):
|
| 682 |
+
gr.Markdown("## Text-to-Speech")
|
| 683 |
+
with gr.Row():
|
| 684 |
+
tts_text_component = gr.Textbox(
|
| 685 |
+
label="Введите текст для синтеза",
|
| 686 |
+
placeholder="Введите текст на русском или английском языке...",
|
| 687 |
+
lines=3,
|
| 688 |
+
)
|
| 689 |
+
tts_model_selector = gr.Dropdown(
|
| 690 |
+
choices=["mms", "Google TTS"],
|
| 691 |
+
label="Выберите модель",
|
| 692 |
+
value="mms",
|
| 693 |
+
info=(
|
| 694 |
+
"facebook/mms-tts-rus\n"
|
| 695 |
+
"Google TTS"
|
| 696 |
+
),
|
| 697 |
+
)
|
| 698 |
+
tts_button = gr.Button("Применить")
|
| 699 |
+
|
| 700 |
+
tts_audio_output_component = gr.Audio(
|
| 701 |
+
label="Синтезированная речь",
|
| 702 |
+
type="filepath",
|
| 703 |
+
)
|
| 704 |
+
|
| 705 |
+
tts_button.click(
|
| 706 |
+
fn=synthesize_speech,
|
| 707 |
+
inputs=[tts_text_component, tts_model_selector],
|
| 708 |
+
outputs=tts_audio_output_component,
|
| 709 |
+
)
|
| 710 |
+
|
| 711 |
+
with gr.Tab("Детекция объектов"):
|
| 712 |
+
gr.Markdown("## Детекция объектов")
|
| 713 |
+
with gr.Row():
|
| 714 |
+
object_input_image = gr.Image(
|
| 715 |
+
label="Загрузите изображение",
|
| 716 |
+
type="pil",
|
| 717 |
+
)
|
| 718 |
+
object_model_selector = gr.Dropdown(
|
| 719 |
+
choices=[
|
| 720 |
+
"object_detection_conditional_detr",
|
| 721 |
+
"object_detection_yolos_small",
|
| 722 |
+
],
|
| 723 |
+
label="Модель",
|
| 724 |
+
value="object_detection_conditional_detr",
|
| 725 |
+
info=(
|
| 726 |
+
"object_detection_conditional_detr - microsoft/conditional-detr-resnet-50\n"
|
| 727 |
+
"object_detection_yolos_small - hustvl/yolos-small"
|
| 728 |
+
),
|
| 729 |
+
)
|
| 730 |
+
object_detect_button = gr.Button("Применить")
|
| 731 |
+
|
| 732 |
+
object_output_image = gr.Image(
|
| 733 |
+
label="Результат",
|
| 734 |
+
)
|
| 735 |
+
|
| 736 |
+
object_detect_button.click(
|
| 737 |
+
fn=detect_objects_on_image,
|
| 738 |
+
inputs=[object_input_image, object_model_selector],
|
| 739 |
+
outputs=object_output_image,
|
| 740 |
+
)
|
| 741 |
+
|
| 742 |
+
with gr.Tab("Сегментация"):
|
| 743 |
+
gr.Markdown("## Сегментация")
|
| 744 |
+
with gr.Row():
|
| 745 |
+
segmentation_input_image = gr.Image(
|
| 746 |
+
label="Загрузите изображение",
|
| 747 |
+
type="pil",
|
| 748 |
+
)
|
| 749 |
+
segmentation_button = gr.Button("Применить")
|
| 750 |
+
|
| 751 |
+
segmentation_output_image = gr.Image(
|
| 752 |
+
label="Маска",
|
| 753 |
+
)
|
| 754 |
+
|
| 755 |
+
segmentation_button.click(
|
| 756 |
+
fn=segment_image,
|
| 757 |
+
inputs=segmentation_input_image,
|
| 758 |
+
outputs=segmentation_output_image,
|
| 759 |
+
)
|
| 760 |
+
|
| 761 |
+
with gr.Tab("Глубина"):
|
| 762 |
+
gr.Markdown("## Глубина (Depth Estimation)")
|
| 763 |
+
with gr.Row():
|
| 764 |
+
|
| 765 |
+
depth_input_image = gr.Image(
|
| 766 |
+
label="Загрузите изображение",
|
| 767 |
+
type="pil",
|
| 768 |
+
)
|
| 769 |
+
depth_button = gr.Button("Применить")
|
| 770 |
+
|
| 771 |
+
depth_output_image = gr.Image(
|
| 772 |
+
label="Глубины",
|
| 773 |
+
)
|
| 774 |
+
|
| 775 |
+
depth_button.click(
|
| 776 |
+
fn=estimate_image_depth,
|
| 777 |
+
inputs=depth_input_image,
|
| 778 |
+
outputs=depth_output_image,
|
| 779 |
+
)
|
| 780 |
+
|
| 781 |
+
with gr.Tab("Описание изображений"):
|
| 782 |
+
gr.Markdown("## Описание изображений")
|
| 783 |
+
with gr.Row():
|
| 784 |
+
caption_input_image = gr.Image(
|
| 785 |
+
label="Загрузите изображение",
|
| 786 |
+
type="pil",
|
| 787 |
+
)
|
| 788 |
+
caption_model_selector = gr.Dropdown(
|
| 789 |
+
choices=[
|
| 790 |
+
"captioning_blip_base",
|
| 791 |
+
"captioning_blip_large",
|
| 792 |
+
],
|
| 793 |
+
label="Модель",
|
| 794 |
+
value="captioning_blip_base",
|
| 795 |
+
info=(
|
| 796 |
+
"captioning_blip_base - Salesforce/blip-image-captioning-base (курс)\n"
|
| 797 |
+
"captioning_blip_large - Salesforce/blip-image-captioning-large"
|
| 798 |
+
),
|
| 799 |
+
)
|
| 800 |
+
caption_button = gr.Button("Применить")
|
| 801 |
+
|
| 802 |
+
caption_output_text = gr.Textbox(
|
| 803 |
+
label="Описание изображения",
|
| 804 |
+
lines=3,
|
| 805 |
+
)
|
| 806 |
+
|
| 807 |
+
caption_button.click(
|
| 808 |
+
fn=generate_image_caption,
|
| 809 |
+
inputs=[caption_input_image, caption_model_selector],
|
| 810 |
+
outputs=caption_output_text,
|
| 811 |
+
)
|
| 812 |
+
|
| 813 |
+
with gr.Tab("Визуальные вопросы"):
|
| 814 |
+
gr.Markdown("## Visual Question Answering")
|
| 815 |
+
with gr.Row():
|
| 816 |
+
vqa_input_image = gr.Image(
|
| 817 |
+
label="Загрузите изображение",
|
| 818 |
+
type="pil",
|
| 819 |
+
)
|
| 820 |
+
vqa_question_text = gr.Textbox(
|
| 821 |
+
label="Вопрос",
|
| 822 |
+
placeholder="Вопрос",
|
| 823 |
+
lines=2,
|
| 824 |
+
)
|
| 825 |
+
vqa_model_selector = gr.Dropdown(
|
| 826 |
+
choices=[
|
| 827 |
+
"vqa_blip_base",
|
| 828 |
+
"vqa_vilt_b32",
|
| 829 |
+
],
|
| 830 |
+
label="Модель",
|
| 831 |
+
value="vqa_blip_base",
|
| 832 |
+
info=(
|
| 833 |
+
"vqa_blip_base - Salesforce/blip-vqa-base (курс)\n"
|
| 834 |
+
"vqa_vilt_b32 - dandelin/vilt-b32-finetuned-vqa"
|
| 835 |
+
),
|
| 836 |
+
)
|
| 837 |
+
vqa_button = gr.Button("Ответить на вопрос")
|
| 838 |
+
|
| 839 |
+
vqa_output_text = gr.Textbox(
|
| 840 |
+
label="Ответ",
|
| 841 |
+
lines=3,
|
| 842 |
+
)
|
| 843 |
+
|
| 844 |
+
vqa_button.click(
|
| 845 |
+
fn=answer_visual_question,
|
| 846 |
+
inputs=[vqa_input_image, vqa_question_text, vqa_model_selector],
|
| 847 |
+
outputs=vqa_output_text,
|
| 848 |
+
)
|
| 849 |
+
|
| 850 |
+
with gr.Tab("Zero-Shot классификация"):
|
| 851 |
+
gr.Markdown("## Zero-Shot классификация")
|
| 852 |
+
with gr.Row():
|
| 853 |
+
zero_shot_input_image = gr.Image(
|
| 854 |
+
label="Загрузите изображение",
|
| 855 |
+
type="pil",
|
| 856 |
+
)
|
| 857 |
+
zero_shot_classes_text = gr.Textbox(
|
| 858 |
+
label="Классы для классификации (через запятую)",
|
| 859 |
+
placeholder="человек, машина, дерево, здание, животное",
|
| 860 |
+
lines=2,
|
| 861 |
+
)
|
| 862 |
+
clip_model_selector = gr.Dropdown(
|
| 863 |
+
choices=[
|
| 864 |
+
"clip_large_patch14",
|
| 865 |
+
"clip_base_patch32",
|
| 866 |
+
],
|
| 867 |
+
label="модель",
|
| 868 |
+
value="clip_large_patch14",
|
| 869 |
+
info=(
|
| 870 |
+
"clip_large_patch14 - openai/clip-vit-large-patch14 (курс)\n"
|
| 871 |
+
"clip_base_patch32 - openai/clip-vit-base-patch32"
|
| 872 |
+
),
|
| 873 |
+
)
|
| 874 |
+
zero_shot_button = gr.Button("Применить")
|
| 875 |
+
|
| 876 |
+
zero_shot_output_text = gr.Textbox(
|
| 877 |
+
label="Результаты",
|
| 878 |
+
lines=10,
|
| 879 |
+
)
|
| 880 |
+
|
| 881 |
+
zero_shot_button.click(
|
| 882 |
+
fn=perform_zero_shot_classification,
|
| 883 |
+
inputs=[zero_shot_input_image, zero_shot_classes_text, clip_model_selector],
|
| 884 |
+
outputs=zero_shot_output_text,
|
| 885 |
+
)
|
| 886 |
+
|
| 887 |
+
with gr.Tab("Поиск изображений"):
|
| 888 |
+
gr.Markdown("## Поиск изображений")
|
| 889 |
+
with gr.Row():
|
| 890 |
+
|
| 891 |
+
retrieval_dir = gr.File(
|
| 892 |
+
label="Загрузите папку с изображениями",
|
| 893 |
+
file_count="directory",
|
| 894 |
+
file_types=["image"],
|
| 895 |
+
type="filepath",
|
| 896 |
+
)
|
| 897 |
+
retrieval_query_text = gr.Textbox(
|
| 898 |
+
label="Текстовый запрос",
|
| 899 |
+
placeholder="описание того, что вы ищете...",
|
| 900 |
+
lines=2,
|
| 901 |
+
)
|
| 902 |
+
retrieval_clip_selector = gr.Dropdown(
|
| 903 |
+
choices=[
|
| 904 |
+
"clip_large_patch14",
|
| 905 |
+
"clip_base_patch32",
|
| 906 |
+
],
|
| 907 |
+
label="модель",
|
| 908 |
+
value="clip_large_patch14",
|
| 909 |
+
info=(
|
| 910 |
+
"clip_large_patch14 - openai/clip-vit-large-patch14 (курс)\n"
|
| 911 |
+
"clip_base_patch32 - openai/clip-vit-base-patch32 (альтернатива)"
|
| 912 |
+
),
|
| 913 |
+
)
|
| 914 |
+
retrieval_button = gr.Button("Поиск")
|
| 915 |
+
|
| 916 |
+
retrieval_output_text = gr.Textbox(
|
| 917 |
+
label="Результат",
|
| 918 |
+
)
|
| 919 |
+
retrieval_output_image = gr.Image(
|
| 920 |
+
label="Наиболее подходящее изображение",
|
| 921 |
+
)
|
| 922 |
+
|
| 923 |
+
retrieval_button.click(
|
| 924 |
+
fn=retrieve_best_image,
|
| 925 |
+
inputs=[retrieval_dir, retrieval_query_text, retrieval_clip_selector],
|
| 926 |
+
outputs=[retrieval_output_text, retrieval_output_image],
|
| 927 |
+
)
|
| 928 |
+
|
| 929 |
+
gr.Markdown("---")
|
| 930 |
+
gr.Markdown("### Задачи:")
|
| 931 |
+
gr.Markdown(
|
| 932 |
+
"""
|
| 933 |
+
- Аудио: классификация, распознавание речи, синтез речи
|
| 934 |
+
- Компьютерное зрение: детекция объектов, сегментация, оценка глубины, генерация описаний изображений
|
| 935 |
+
- Мультимодальные задачи: вопросы к изображению, zero-shot классификация изображений, поиск по изображениям по текстовому запросу
|
| 936 |
+
"""
|
| 937 |
+
)
|
| 938 |
+
return demo_block
|
| 939 |
+
|
| 940 |
+
|
| 941 |
+
if __name__ == "__main__":
|
| 942 |
+
interface_block = build_interface()
|
| 943 |
+
interface_block.launch(share=True)
|