Spaces:
Sleeping
Sleeping
testing dynamic onnx
Browse files- app.py +4 -1
- requirements.txt +6 -1
- tasks/image.py +24 -11
app.py
CHANGED
|
@@ -4,7 +4,7 @@ from tasks import text, image, audio
|
|
| 4 |
|
| 5 |
# Load environment variables
|
| 6 |
load_dotenv()
|
| 7 |
-
|
| 8 |
app = FastAPI(
|
| 9 |
title="Frugal AI Challenge API",
|
| 10 |
description="API for the Frugal AI Challenge evaluation endpoints"
|
|
@@ -12,8 +12,11 @@ app = FastAPI(
|
|
| 12 |
|
| 13 |
# Include all routers
|
| 14 |
app.include_router(text.router)
|
|
|
|
| 15 |
app.include_router(image.router)
|
|
|
|
| 16 |
app.include_router(audio.router)
|
|
|
|
| 17 |
|
| 18 |
@app.get("/")
|
| 19 |
async def root():
|
|
|
|
| 4 |
|
| 5 |
# Load environment variables
|
| 6 |
load_dotenv()
|
| 7 |
+
print(1)
|
| 8 |
app = FastAPI(
|
| 9 |
title="Frugal AI Challenge API",
|
| 10 |
description="API for the Frugal AI Challenge evaluation endpoints"
|
|
|
|
| 12 |
|
| 13 |
# Include all routers
|
| 14 |
app.include_router(text.router)
|
| 15 |
+
print(2)
|
| 16 |
app.include_router(image.router)
|
| 17 |
+
print(3)
|
| 18 |
app.include_router(audio.router)
|
| 19 |
+
print(4)
|
| 20 |
|
| 21 |
@app.get("/")
|
| 22 |
async def root():
|
requirements.txt
CHANGED
|
@@ -14,4 +14,9 @@ ultralytics-thop==2.0.14
|
|
| 14 |
#opencv-python==4.11.0.86
|
| 15 |
python-dotenv==1.0.0
|
| 16 |
onnxruntime==1.19.2
|
| 17 |
-
matplotlib==3.8.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
#opencv-python==4.11.0.86
|
| 15 |
python-dotenv==1.0.0
|
| 16 |
onnxruntime==1.19.2
|
| 17 |
+
matplotlib==3.8.1
|
| 18 |
+
onnx==1.17.0
|
| 19 |
+
tensorrt==10.8.0.43
|
| 20 |
+
tensorrt_cu12==10.8.0.43
|
| 21 |
+
tensorrt_cu12_bindings==10.8.0.43
|
| 22 |
+
tensorrt_cu12_libs==10.8.0.43
|
tasks/image.py
CHANGED
|
@@ -1,25 +1,38 @@
|
|
| 1 |
from fastapi import APIRouter
|
|
|
|
| 2 |
from datetime import datetime
|
|
|
|
| 3 |
from datasets import load_dataset
|
|
|
|
| 4 |
import numpy as np
|
|
|
|
| 5 |
from sklearn.metrics import accuracy_score, precision_score, recall_score
|
|
|
|
| 6 |
import random
|
|
|
|
| 7 |
import os
|
|
|
|
| 8 |
from ultralytics import YOLO
|
|
|
|
| 9 |
|
| 10 |
from .utils.evaluation import ImageEvaluationRequest
|
|
|
|
| 11 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
|
|
|
| 12 |
|
| 13 |
from dotenv import load_dotenv
|
|
|
|
| 14 |
load_dotenv()
|
|
|
|
| 15 |
|
| 16 |
router = APIRouter()
|
|
|
|
| 17 |
|
| 18 |
#MODEL_TYPE = "YOLOv11n"
|
| 19 |
DESCRIPTION = f"YOLOv8n model with batch 128 inference on CPU"
|
| 20 |
-
|
| 21 |
ROUTE = "/image"
|
| 22 |
-
|
| 23 |
def parse_boxes(annotation_string):
|
| 24 |
"""Parse multiple boxes from a single annotation string.
|
| 25 |
Each box has 5 values: class_id, x_center, y_center, width, height"""
|
|
@@ -32,7 +45,7 @@ def parse_boxes(annotation_string):
|
|
| 32 |
box = values[i+1:i+5]
|
| 33 |
boxes.append(box)
|
| 34 |
return boxes
|
| 35 |
-
|
| 36 |
def compute_iou(box1, box2):
|
| 37 |
"""Compute Intersection over Union (IoU) between two YOLO format boxes."""
|
| 38 |
# Convert YOLO format (x_center, y_center, width, height) to corners
|
|
@@ -61,7 +74,7 @@ def compute_iou(box1, box2):
|
|
| 61 |
union = box1_area + box2_area - intersection
|
| 62 |
|
| 63 |
return intersection / (union + 1e-6)
|
| 64 |
-
|
| 65 |
def compute_max_iou(true_boxes, pred_box):
|
| 66 |
"""Compute maximum IoU between a predicted box and all true boxes"""
|
| 67 |
max_iou = 0
|
|
@@ -69,17 +82,17 @@ def compute_max_iou(true_boxes, pred_box):
|
|
| 69 |
iou = compute_iou(true_box, pred_box)
|
| 70 |
max_iou = max(max_iou, iou)
|
| 71 |
return max_iou
|
| 72 |
-
|
| 73 |
def load_model(path_to_model, model_type="YOLO"):
|
| 74 |
if model_type == "YOLO":
|
| 75 |
model = YOLO(path_to_model)
|
| 76 |
else:
|
| 77 |
raise NotImplementedError
|
| 78 |
return model
|
| 79 |
-
|
| 80 |
def get_boxes_list(predictions):
|
| 81 |
return [box.tolist() for box in predictions.boxes.xywhn]
|
| 82 |
-
|
| 83 |
@router.post(ROUTE, tags=["Image Task"],
|
| 84 |
description=DESCRIPTION)
|
| 85 |
async def evaluate_image(request: ImageEvaluationRequest):
|
|
@@ -120,11 +133,11 @@ async def evaluate_image(request: ImageEvaluationRequest):
|
|
| 120 |
#PATH_TO_MODEL = 'models/best_YOLOv11n_1280.onnx'
|
| 121 |
#PATH_TO_MODEL = 'models/best_yolov6n_1280.pt'
|
| 122 |
#PATH_TO_MODEL = 'models/best_YOLOv11n_1280_real_half.onnx'
|
| 123 |
-
PATH_TO_MODEL = 'models/
|
| 124 |
INFERENCE_ENGINE_TYPE = 'pt'
|
| 125 |
INPUT_SIZE = 640
|
| 126 |
N_TEST_BATCHES = 2
|
| 127 |
-
BATCH_SIZE =
|
| 128 |
|
| 129 |
def preprocessor(frame):
|
| 130 |
#frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # Only when read from file
|
|
@@ -136,8 +149,8 @@ async def evaluate_image(request: ImageEvaluationRequest):
|
|
| 136 |
|
| 137 |
class Inference:
|
| 138 |
def __init__(self, model, image):
|
| 139 |
-
self.session = onnxruntime.InferenceSession(model
|
| 140 |
-
providers=["CUDAExecutionProvider"]
|
| 141 |
)
|
| 142 |
model_inputs = self.session.get_inputs()
|
| 143 |
input_shape = model_inputs[0].shape
|
|
|
|
| 1 |
from fastapi import APIRouter
|
| 2 |
+
print(1)
|
| 3 |
from datetime import datetime
|
| 4 |
+
print(2)
|
| 5 |
from datasets import load_dataset
|
| 6 |
+
print(3)
|
| 7 |
import numpy as np
|
| 8 |
+
print(4)
|
| 9 |
from sklearn.metrics import accuracy_score, precision_score, recall_score
|
| 10 |
+
print(5)
|
| 11 |
import random
|
| 12 |
+
print(6)
|
| 13 |
import os
|
| 14 |
+
print(7)
|
| 15 |
from ultralytics import YOLO
|
| 16 |
+
print(8)
|
| 17 |
|
| 18 |
from .utils.evaluation import ImageEvaluationRequest
|
| 19 |
+
print(9)
|
| 20 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
| 21 |
+
print(10)
|
| 22 |
|
| 23 |
from dotenv import load_dotenv
|
| 24 |
+
print(11)
|
| 25 |
load_dotenv()
|
| 26 |
+
print(12)
|
| 27 |
|
| 28 |
router = APIRouter()
|
| 29 |
+
print(13)
|
| 30 |
|
| 31 |
#MODEL_TYPE = "YOLOv11n"
|
| 32 |
DESCRIPTION = f"YOLOv8n model with batch 128 inference on CPU"
|
| 33 |
+
print(14)
|
| 34 |
ROUTE = "/image"
|
| 35 |
+
print(15)
|
| 36 |
def parse_boxes(annotation_string):
|
| 37 |
"""Parse multiple boxes from a single annotation string.
|
| 38 |
Each box has 5 values: class_id, x_center, y_center, width, height"""
|
|
|
|
| 45 |
box = values[i+1:i+5]
|
| 46 |
boxes.append(box)
|
| 47 |
return boxes
|
| 48 |
+
print(16)
|
| 49 |
def compute_iou(box1, box2):
|
| 50 |
"""Compute Intersection over Union (IoU) between two YOLO format boxes."""
|
| 51 |
# Convert YOLO format (x_center, y_center, width, height) to corners
|
|
|
|
| 74 |
union = box1_area + box2_area - intersection
|
| 75 |
|
| 76 |
return intersection / (union + 1e-6)
|
| 77 |
+
print(17)
|
| 78 |
def compute_max_iou(true_boxes, pred_box):
|
| 79 |
"""Compute maximum IoU between a predicted box and all true boxes"""
|
| 80 |
max_iou = 0
|
|
|
|
| 82 |
iou = compute_iou(true_box, pred_box)
|
| 83 |
max_iou = max(max_iou, iou)
|
| 84 |
return max_iou
|
| 85 |
+
print(18)
|
| 86 |
def load_model(path_to_model, model_type="YOLO"):
|
| 87 |
if model_type == "YOLO":
|
| 88 |
model = YOLO(path_to_model)
|
| 89 |
else:
|
| 90 |
raise NotImplementedError
|
| 91 |
return model
|
| 92 |
+
print(19)
|
| 93 |
def get_boxes_list(predictions):
|
| 94 |
return [box.tolist() for box in predictions.boxes.xywhn]
|
| 95 |
+
print(20)
|
| 96 |
@router.post(ROUTE, tags=["Image Task"],
|
| 97 |
description=DESCRIPTION)
|
| 98 |
async def evaluate_image(request: ImageEvaluationRequest):
|
|
|
|
| 133 |
#PATH_TO_MODEL = 'models/best_YOLOv11n_1280.onnx'
|
| 134 |
#PATH_TO_MODEL = 'models/best_yolov6n_1280.pt'
|
| 135 |
#PATH_TO_MODEL = 'models/best_YOLOv11n_1280_real_half.onnx'
|
| 136 |
+
PATH_TO_MODEL = 'models/best_YOLOv8n_dynamic.onnx'
|
| 137 |
INFERENCE_ENGINE_TYPE = 'pt'
|
| 138 |
INPUT_SIZE = 640
|
| 139 |
N_TEST_BATCHES = 2
|
| 140 |
+
BATCH_SIZE = 64 # Can be adjusted as needed
|
| 141 |
|
| 142 |
def preprocessor(frame):
|
| 143 |
#frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # Only when read from file
|
|
|
|
| 149 |
|
| 150 |
class Inference:
|
| 151 |
def __init__(self, model, image):
|
| 152 |
+
self.session = onnxruntime.InferenceSession(model, providers=["CPUExecutionProvider"]
|
| 153 |
+
#providers=["CUDAExecutionProvider"]
|
| 154 |
)
|
| 155 |
model_inputs = self.session.get_inputs()
|
| 156 |
input_shape = model_inputs[0].shape
|