Amruthatungaturthi's picture
Update app.py
d47c2ca verified
raw
history blame
971 Bytes
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import gradio as gr
# Load pretrained hate-speech model
MODEL_NAME = "Hate-speech-CNERG/dehatebert-mono-english"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
def detect_hate(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
outputs = model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
labels = ["non-hate", "hate"]
result = {labels[i]: float(probs[0][i]) for i in range(len(labels))}
return result
# Gradio interface
demo = gr.Interface(
fn=detect_hate,
inputs=gr.Textbox(label="Enter Text", placeholder="Type something..."),
outputs=gr.Label(label="Prediction"),
title="🧠 Hate Speech Detector",
description="Classifies text as hate or non-hate using a fine-tuned BERT model.",
)
demo.launch()