Amruthatungaturthi commited on
Commit
7282f28
·
verified ·
1 Parent(s): ea2a2b8

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -0
app.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
2
+ import torch
3
+ import gradio as gr
4
+
5
+ # Load pretrained hate-speech model
6
+ MODEL_NAME = "Hate-speech-CNERG/dehatebert-mono-english"
7
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
8
+ model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
9
+
10
+ def detect_hate(text):
11
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
12
+ outputs = model(**inputs)
13
+ probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
14
+ labels = ["non-hate", "hate"]
15
+ result = {labels[i]: float(probs[0][i]) for i in range(len(labels))}
16
+ return result
17
+
18
+ # Gradio interface
19
+ demo = gr.Interface(
20
+ fn=detect_hate,
21
+ inputs=gr.Textbox(label="Enter Text", placeholder="Type something..."),
22
+ outputs=gr.Label(label="Prediction"),
23
+ title="🧠 Hate Speech Detector",
24
+ description="Classifies text as hate or non-hate using a fine-tuned BERT model.",
25
+ )
26
+
27
+ demo.launch()