Spaces:
Sleeping
Sleeping
Commit
·
d3077b7
1
Parent(s):
4c9753f
remove unneccesary functions
Browse files
app.py
CHANGED
|
@@ -1,42 +1,12 @@
|
|
| 1 |
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
from huggingface_hub import InferenceClient
|
| 4 |
-
from qdrant_client import QdrantClient, models
|
| 5 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 6 |
from sentence_transformers import SentenceTransformer
|
| 7 |
from huggingface_hub import login
|
| 8 |
import torch
|
| 9 |
-
import json
|
| 10 |
-
import bs4
|
| 11 |
import os
|
| 12 |
os.environ["USE_FLASH_ATTENTION"] = "0"
|
| 13 |
-
|
| 14 |
-
product_strings = []
|
| 15 |
-
recipe_strings = []
|
| 16 |
-
with open('./Data/product_strings.json', 'r', encoding='utf-8') as f:
|
| 17 |
-
product_strings = [product for product in json.load(f)["product_strings"]]
|
| 18 |
-
with open('./Data/recipe_strings.json', 'r', encoding='utf-8') as f:
|
| 19 |
-
recipe_strings = [recipe for recipe in json.load(f)["recipe_strings"]]
|
| 20 |
-
|
| 21 |
-
client = QdrantClient(":memory:") #QdrantClient("localhost:6333")
|
| 22 |
-
client.set_model("sentence-transformers/all-MiniLM-L6-v2")
|
| 23 |
-
client.set_sparse_model("prithivida/Splade_PP_en_v1")
|
| 24 |
-
client.delete_collection(collection_name="products")
|
| 25 |
-
client.create_collection(
|
| 26 |
-
collection_name="products",
|
| 27 |
-
vectors_config=client.get_fastembed_vector_params(),
|
| 28 |
-
sparse_vectors_config=client.get_fastembed_sparse_vector_params(),
|
| 29 |
-
)
|
| 30 |
-
client.delete_collection(collection_name="recipes")
|
| 31 |
-
client.create_collection(
|
| 32 |
-
collection_name="recipes",
|
| 33 |
-
vectors_config=client.get_fastembed_vector_params(),
|
| 34 |
-
sparse_vectors_config=client.get_fastembed_sparse_vector_params(),
|
| 35 |
-
)
|
| 36 |
-
client.add(collection_name="products",
|
| 37 |
-
documents=product_strings)
|
| 38 |
-
client.add(collection_name="recipes",
|
| 39 |
-
documents=recipe_strings)
|
| 40 |
model_name = "LeoLM/leo-hessianai-13b-chat"
|
| 41 |
|
| 42 |
last_messages = []
|
|
@@ -84,7 +54,7 @@ def generate_response(query, context, prompts, max_tokens, temperature, top_p, g
|
|
| 84 |
<|im_end|>
|
| 85 |
{"".join(last_messages)}
|
| 86 |
<|im_start|>user
|
| 87 |
-
|
| 88 |
<|im_end|>
|
| 89 |
<|im_start|>assistant"""
|
| 90 |
|
|
@@ -100,7 +70,7 @@ def generate_response(query, context, prompts, max_tokens, temperature, top_p, g
|
|
| 100 |
<|im_end|>
|
| 101 |
{"".join(last_messages)}
|
| 102 |
<|im_start|>user
|
| 103 |
-
|
| 104 |
<|im_end|>
|
| 105 |
<|im_start|>assistant"""
|
| 106 |
|
|
@@ -116,98 +86,28 @@ def generate_response(query, context, prompts, max_tokens, temperature, top_p, g
|
|
| 116 |
<|im_end|>
|
| 117 |
{"".join(last_messages)}
|
| 118 |
<|im_start|>user
|
| 119 |
-
|
| 120 |
<|im_end|>
|
| 121 |
<|im_start|>assistant"""
|
| 122 |
|
| 123 |
system_message = system_message_products
|
| 124 |
-
|
| 125 |
-
if collection_name =="recipes":
|
| 126 |
system_message = system_message_recipes
|
| 127 |
-
elif collection_name =="
|
| 128 |
system_message = system_message_support
|
| 129 |
-
|
| 130 |
|
| 131 |
print("Prompt: ", system_message)
|
| 132 |
|
| 133 |
response = generator(system_message, do_sample=True, top_p=top_p, max_new_tokens=max_tokens, temperature=temperature)[0]["generated_text"]
|
| 134 |
-
|
| 135 |
# Extract only the assistant's response
|
| 136 |
if "assistant" in response:
|
| 137 |
response = response.split("assistant").pop().strip()
|
| 138 |
|
| 139 |
return response
|
| 140 |
|
| 141 |
-
def search_qdrant_with_context(query_text, collection_name, top_k=3):
|
| 142 |
-
"""Search Qdrant using a GPT-2 generated embedding."""
|
| 143 |
-
print(collection_name)
|
| 144 |
-
# print(query_embedding)
|
| 145 |
-
search_results = client.query(
|
| 146 |
-
collection_name=collection_name,
|
| 147 |
-
query_text=query_text,
|
| 148 |
-
query_filter=None,
|
| 149 |
-
limit=top_k # Number of top results to return
|
| 150 |
-
)
|
| 151 |
-
retrieved_texts = [result.metadata for result in search_results if result.score > 0.3]
|
| 152 |
-
|
| 153 |
-
if not retrieved_texts:
|
| 154 |
-
retrieved_texts = "Keinen passenden Kontext gefunden."
|
| 155 |
-
print("Retrieved Text ", retrieved_texts)
|
| 156 |
-
|
| 157 |
-
return retrieved_texts
|
| 158 |
-
|
| 159 |
-
@spaces.GPU
|
| 160 |
-
def interactive_chat(query):
|
| 161 |
-
generator = get_model()
|
| 162 |
-
collection_name = "products"
|
| 163 |
-
if "rezept" in query.lower() or "gericht" in query.lower():
|
| 164 |
-
collection_name = "recipes"
|
| 165 |
-
elif "bestellung" in query.lower() or "order" in query.lower():
|
| 166 |
-
collection_name = "products"
|
| 167 |
-
print(collection_name)
|
| 168 |
-
print(query)
|
| 169 |
-
if len(query.split()) < 3:
|
| 170 |
-
return generate_response(query, "Der Kunde muss womöglich detailliertere Angaben machen, entscheide, was du sagst.", last_messages, 512, 0.2, 0.95, generator[0])
|
| 171 |
-
context = [document["document"] for document in search_qdrant_with_context(query, collection_name)]
|
| 172 |
-
|
| 173 |
-
system_message = f"""<|im_start|>system Rolle: Du bist ein KI-Assistent der die Informationen in Relation zum Kontext bewertet.
|
| 174 |
-
Oberstes Ziel: Bewerte die die Ergebnisse und stufe sie nach Relevanz in Bezug auf die Konversation ein.
|
| 175 |
-
Meta-Anweisung: Analysiere die Konversation und mache Vorschläge für Suchbegriffe in Stichpunkten.
|
| 176 |
-
Suchergebnisse: {context}
|
| 177 |
-
<|im_end|>
|
| 178 |
-
{"".join(last_messages)}
|
| 179 |
-
<|im_start|>user
|
| 180 |
-
{query}
|
| 181 |
-
<|im_end|>
|
| 182 |
-
<|im_start|>assistant"""
|
| 183 |
-
refined_context = generator[1](system_message, do_sample=True, padding=True, truncation=True, top_p=0.95, max_new_tokens=100)
|
| 184 |
-
# Retrieve relevant context from Qdrant
|
| 185 |
-
print(f"""Refined context: {refined_context[0]["generated_text"].split("assistant").pop()}""")
|
| 186 |
-
|
| 187 |
-
context = [document["document"] for document in search_qdrant_with_context(query + " " + refined_context[0]["generated_text"].split("assistant\n").pop(), collection_name)]
|
| 188 |
-
answer = generate_response(query, context, last_messages, 512, 0.2, 0.95, generator)
|
| 189 |
-
full_conv = f"<|im_start|>user {query}<|im_end|><|im_start|>assistent {answer}<|im_end|>"
|
| 190 |
-
# if len(last_messages) > 5:
|
| 191 |
-
# last_messages.pop(0)
|
| 192 |
-
# last_messages.append(full_conv)
|
| 193 |
-
print(f"last messages: {last_messages}")
|
| 194 |
-
print()
|
| 195 |
-
return answer
|
| 196 |
-
@spaces.GPU(duration=1500)
|
| 197 |
-
def get_answers():
|
| 198 |
-
answers = []
|
| 199 |
-
last_messages = []
|
| 200 |
-
with open("./Data/questions.json", "r", encoding="utf-8")as f:
|
| 201 |
-
json_data = json.load(f)["questions"]
|
| 202 |
-
for (index, question) in enumerate(json_data):
|
| 203 |
-
if index <= 5:
|
| 204 |
-
continue
|
| 205 |
-
answer = interactive_chat(question)
|
| 206 |
-
answers.append(answer)
|
| 207 |
-
with open("./Data/answers.json", "w", encoding="utf-8") as file:
|
| 208 |
-
json.dump({"answers": answers}, file, ensure_ascii=False, indent=4)
|
| 209 |
-
|
| 210 |
-
@spaces.GPU
|
| 211 |
def respond(
|
| 212 |
query,
|
| 213 |
history: list[tuple[str, str]],
|
|
|
|
| 1 |
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
from huggingface_hub import InferenceClient
|
|
|
|
| 4 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 5 |
from sentence_transformers import SentenceTransformer
|
| 6 |
from huggingface_hub import login
|
| 7 |
import torch
|
|
|
|
|
|
|
| 8 |
import os
|
| 9 |
os.environ["USE_FLASH_ATTENTION"] = "0"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
model_name = "LeoLM/leo-hessianai-13b-chat"
|
| 11 |
|
| 12 |
last_messages = []
|
|
|
|
| 54 |
<|im_end|>
|
| 55 |
{"".join(last_messages)}
|
| 56 |
<|im_start|>user
|
| 57 |
+
{query}
|
| 58 |
<|im_end|>
|
| 59 |
<|im_start|>assistant"""
|
| 60 |
|
|
|
|
| 70 |
<|im_end|>
|
| 71 |
{"".join(last_messages)}
|
| 72 |
<|im_start|>user
|
| 73 |
+
{query}
|
| 74 |
<|im_end|>
|
| 75 |
<|im_start|>assistant"""
|
| 76 |
|
|
|
|
| 86 |
<|im_end|>
|
| 87 |
{"".join(last_messages)}
|
| 88 |
<|im_start|>user
|
| 89 |
+
{query}
|
| 90 |
<|im_end|>
|
| 91 |
<|im_start|>assistant"""
|
| 92 |
|
| 93 |
system_message = system_message_products
|
| 94 |
+
|
| 95 |
+
if collection_name == "recipes":
|
| 96 |
system_message = system_message_recipes
|
| 97 |
+
elif collection_name == "services":
|
| 98 |
system_message = system_message_support
|
| 99 |
+
|
| 100 |
|
| 101 |
print("Prompt: ", system_message)
|
| 102 |
|
| 103 |
response = generator(system_message, do_sample=True, top_p=top_p, max_new_tokens=max_tokens, temperature=temperature)[0]["generated_text"]
|
| 104 |
+
print(f"""-----Response: {response}-----""")
|
| 105 |
# Extract only the assistant's response
|
| 106 |
if "assistant" in response:
|
| 107 |
response = response.split("assistant").pop().strip()
|
| 108 |
|
| 109 |
return response
|
| 110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
def respond(
|
| 112 |
query,
|
| 113 |
history: list[tuple[str, str]],
|