Spaces:
Sleeping
Sleeping
Commit
·
d709b4a
1
Parent(s):
0216b15
use spaces gpu
Browse files
app.py
CHANGED
|
@@ -114,6 +114,7 @@ def load_model():
|
|
| 114 |
generator_mini = pipeline(task="text-generation", model=ankerbot_model, tokenizer=ankerbot_tokenizer, torch_dtype=torch.float16, trust_remote_code=True) # True for flash-attn2 else False
|
| 115 |
|
| 116 |
load_model()
|
|
|
|
| 117 |
def generate_response(query, context, prompts, max_tokens, temperature, top_p):
|
| 118 |
system_message_support = f"""<|im_start|>system
|
| 119 |
Rolle: Du bist der KI-Assistent für Kundenservice, der im Namen des Unternehmens und Gewürzmanufaktur Ankerkraut handelt und Antworten aus der Ich-Perspektive, basierend auf den bereitgestellten Informationen gibt.
|
|
@@ -175,12 +176,12 @@ def generate_response(query, context, prompts, max_tokens, temperature, top_p):
|
|
| 175 |
response = response.split("assistant").pop().strip()
|
| 176 |
|
| 177 |
return response
|
| 178 |
-
|
| 179 |
def get_embedding(text):
|
| 180 |
"""Generate an embedding using Sentence Transformers."""
|
| 181 |
embedding = model.encode(text, normalize_embeddings=True) # Normalize for cosine similarity
|
| 182 |
return embedding
|
| 183 |
-
|
| 184 |
def search_qdrant_with_context(query_text, collection_name, top_k=3):
|
| 185 |
"""Search Qdrant using a GPT-2 generated embedding."""
|
| 186 |
query_embedding = get_embedding(query_text) # Convert prompt to embedding
|
|
@@ -197,6 +198,7 @@ def search_qdrant_with_context(query_text, collection_name, top_k=3):
|
|
| 197 |
print("Retrieved Text ", retrieved_texts)
|
| 198 |
|
| 199 |
return retrieved_texts
|
|
|
|
| 200 |
def respond(
|
| 201 |
query,
|
| 202 |
history: list[tuple[str, str]],
|
|
|
|
| 114 |
generator_mini = pipeline(task="text-generation", model=ankerbot_model, tokenizer=ankerbot_tokenizer, torch_dtype=torch.float16, trust_remote_code=True) # True for flash-attn2 else False
|
| 115 |
|
| 116 |
load_model()
|
| 117 |
+
@spaces.GPU
|
| 118 |
def generate_response(query, context, prompts, max_tokens, temperature, top_p):
|
| 119 |
system_message_support = f"""<|im_start|>system
|
| 120 |
Rolle: Du bist der KI-Assistent für Kundenservice, der im Namen des Unternehmens und Gewürzmanufaktur Ankerkraut handelt und Antworten aus der Ich-Perspektive, basierend auf den bereitgestellten Informationen gibt.
|
|
|
|
| 176 |
response = response.split("assistant").pop().strip()
|
| 177 |
|
| 178 |
return response
|
| 179 |
+
@spaces.GPU
|
| 180 |
def get_embedding(text):
|
| 181 |
"""Generate an embedding using Sentence Transformers."""
|
| 182 |
embedding = model.encode(text, normalize_embeddings=True) # Normalize for cosine similarity
|
| 183 |
return embedding
|
| 184 |
+
@spaces.GPU
|
| 185 |
def search_qdrant_with_context(query_text, collection_name, top_k=3):
|
| 186 |
"""Search Qdrant using a GPT-2 generated embedding."""
|
| 187 |
query_embedding = get_embedding(query_text) # Convert prompt to embedding
|
|
|
|
| 198 |
print("Retrieved Text ", retrieved_texts)
|
| 199 |
|
| 200 |
return retrieved_texts
|
| 201 |
+
@spaces.GPU
|
| 202 |
def respond(
|
| 203 |
query,
|
| 204 |
history: list[tuple[str, str]],
|