Commit
·
631e9fa
1
Parent(s):
c1b5ee4
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,33 +3,29 @@ import numpy as np
|
|
| 3 |
import torch
|
| 4 |
from datasets import load_dataset
|
| 5 |
|
| 6 |
-
from transformers import
|
| 7 |
|
| 8 |
|
| 9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 10 |
|
| 11 |
-
# load speech translation checkpoint
|
| 12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
| 18 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
| 19 |
-
|
| 20 |
-
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
| 21 |
-
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
| 22 |
|
| 23 |
|
| 24 |
def translate(audio):
|
| 25 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "
|
| 26 |
return outputs["text"]
|
| 27 |
|
| 28 |
|
| 29 |
def synthesise(text):
|
| 30 |
-
inputs =
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
|
| 35 |
def speech_to_speech_translation(audio):
|
|
@@ -41,10 +37,7 @@ def speech_to_speech_translation(audio):
|
|
| 41 |
|
| 42 |
title = "Cascaded STST"
|
| 43 |
description = """
|
| 44 |
-
Demo for
|
| 45 |
-
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
| 46 |
-
|
| 47 |
-

|
| 48 |
"""
|
| 49 |
|
| 50 |
demo = gr.Blocks()
|
|
|
|
| 3 |
import torch
|
| 4 |
from datasets import load_dataset
|
| 5 |
|
| 6 |
+
from transformers import VitsModel, VitsTokenizer, pipeline
|
| 7 |
|
| 8 |
|
| 9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 10 |
|
|
|
|
| 11 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
| 12 |
|
| 13 |
+
model = VitsModel.from_pretrained("Matthijs/mms-tts-deu")
|
| 14 |
+
tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-deu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
|
| 17 |
def translate(audio):
|
| 18 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "nl"})
|
| 19 |
return outputs["text"]
|
| 20 |
|
| 21 |
|
| 22 |
def synthesise(text):
|
| 23 |
+
inputs = tokenizer(text, return_tensors="pt")
|
| 24 |
+
with torch.no_grad():
|
| 25 |
+
outputs = model(inputs["input_ids"])
|
| 26 |
+
|
| 27 |
+
speech = outputs.audio[0]
|
| 28 |
+
return speech
|
| 29 |
|
| 30 |
|
| 31 |
def speech_to_speech_translation(audio):
|
|
|
|
| 37 |
|
| 38 |
title = "Cascaded STST"
|
| 39 |
description = """
|
| 40 |
+
Demo for Italian to Dutch speech translation using OpenAI Whisper and MMS models
|
|
|
|
|
|
|
|
|
|
| 41 |
"""
|
| 42 |
|
| 43 |
demo = gr.Blocks()
|