Spaces:
Sleeping
Sleeping
Upload app_recolor.py
Browse files- app_recolor.py +546 -0
app_recolor.py
ADDED
|
@@ -0,0 +1,546 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""color changing of objects.ipynb
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1HsLQzlFkDmY380DOwp6Ppl_1fM5nIAlq
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
import torchvision.transforms as T
|
| 12 |
+
from transformers import Mask2FormerImageProcessor, Mask2FormerForUniversalSegmentation
|
| 13 |
+
from PIL import Image, ImageFilter
|
| 14 |
+
import numpy as np
|
| 15 |
+
from typing import List, Tuple, Dict, Union
|
| 16 |
+
from skimage import color # For LAB color space manipulation
|
| 17 |
+
|
| 18 |
+
# --- Determine Device ---
|
| 19 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 20 |
+
# For color changing, float32 is generally sufficient and avoids half-precision issues
|
| 21 |
+
DTYPE = torch.float32
|
| 22 |
+
print(f"Using device: {DEVICE} with dtype: {DTYPE}")# --- Determine Device ---
|
| 23 |
+
|
| 24 |
+
# --- Model Loading ---
|
| 25 |
+
# Mask2Former for semantic segmentation
|
| 26 |
+
print("Loading Mask2Former model for semantic segmentation...")
|
| 27 |
+
processor = Mask2FormerImageProcessor.from_pretrained("facebook/mask2former-swin-large-ade-semantic")
|
| 28 |
+
model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-large-ade-semantic")
|
| 29 |
+
model = model.to(DEVICE)
|
| 30 |
+
print(f"Mask2Former (Semantic Segmentation) loaded to {DEVICE}.")
|
| 31 |
+
print("All necessary AI models loaded successfully.")
|
| 32 |
+
|
| 33 |
+
COLOR_MAPPING_ = {
|
| 34 |
+
'#FFFFFF': 'background', "#787878": "wall", "#B47878": "building;edifice", "#06E6E6": "sky",
|
| 35 |
+
"#503232": "floor;flooring", "#04C803": "tree", "#787850": "ceiling", "#8C8C8C": "road;route",
|
| 36 |
+
"#CC05FF": "bed", "#E6E6E6": "windowpane;window", "#04FA07": "grass", "#E005FF": "cabinet",
|
| 37 |
+
"#EBFF07": "sidewalk;pavement", "#96053D": "person;individual;someone;somebody;mortal;soul",
|
| 38 |
+
"#787846": "earth;ground", "#08FF33": "door;double;door", "#FF0652": "table", "#8FFF8C": "mountain;mount",
|
| 39 |
+
"#CCFF04": "plant;flora;plant;life", "#FF3307": "curtain;drape;drapery;mantle;pall",
|
| 40 |
+
"#CC4603": "chair", "#0066C8": "car;auto;automobile;machine;motorcar", "#3DE6FA": "water",
|
| 41 |
+
"#FF0633": "painting;picture", "#0B66FF": "sofa;couch;lounge", "#FF0747": "shelf",
|
| 42 |
+
"#FF09E0": "house", "#0907E6": "sea", "#DCDCDC": "mirror", "#FF095C": "rug;carpet;carpeting",
|
| 43 |
+
"#7009FF": "field", "#08FFD6": "armchair", "#07FFE0": "seat", "#FFB806": "fence;fencing",
|
| 44 |
+
"#0AFF47": "desk", "#FF290A": "rock;stone", "#07FFFF": "wardrobe;closet;press",
|
| 45 |
+
"#E0FF08": "lamp", "#6608FF": "bathtub;bathing;tub;bath;tub", "#FF3D06": "railing;rail",
|
| 46 |
+
"#FFC207": "cushion", "#FF7A08": "base;pedestal;stand", "#00FF14": "box",
|
| 47 |
+
"#FF0829": "column;pillar", "#FF0599": "signboard;sign", "#0633FF": "chest;of;drawers;chest;bureau;dresser",
|
| 48 |
+
"#EB0CFF": "counter", "#A09614": "sand", "#00A3FF": "sink", "#8C8C8C": "skyscraper",
|
| 49 |
+
"#FA0A0F": "fireplace;hearth;open;fireplace", "#14FF00": "refrigerator;icebox",
|
| 50 |
+
"#1FFF00": "grandstand;covered;stand", "#FF1F00": "path", "#FFE000": "stairs;steps",
|
| 51 |
+
"#99FF00": "runway", "#0000FF": "case;display;case;showcase;vitrine",
|
| 52 |
+
"#FF4700": "pool;table;billiard;table;snooker;table", "#00EBFF": "pillow",
|
| 53 |
+
"#00ADFF": "screen;door;screen", "#1F00FF": "stairway;staircase", "#0BC8C8": "river",
|
| 54 |
+
"#FF5200": "bridge;span", "#00FFF5": "bookcase", "#003DFF": "blind;screen",
|
| 55 |
+
"#00FF70": "coffee;table;cocktail;table", "#00FF85": "toilet;can;commode;crapper;pot;potty;stool;throne",
|
| 56 |
+
"#FF0000": "flower", "#FFA300": "book", "#FF6600": "hill", "#C2FF00": "bench",
|
| 57 |
+
"#008FFF": "countertop", "#33FF00": "stove;kitchen;stove;range;kitchen;range;cooking;stove",
|
| 58 |
+
"#0052FF": "palm;palm;tree", "#00FF29": "kitchen;island",
|
| 59 |
+
"#00FFAD": "computer;computing;machine;computing;device;data;processor;electronic;computer;information;processing;system",
|
| 60 |
+
"#0A00FF": "swivel;chair", "#ADFF00": "boat", "#00FF99": "bar", "#FF5C00": "arcade;machine",
|
| 61 |
+
"#FF00FF": "hovel;hut;hutch;shack;shanty", "#FF00F5": "bus;autobus;coach;charabanc;double-decker;jitney;motorbus;motorcoach;omnibus;passenger;vehicle",
|
| 62 |
+
"#FF0066": "towel", "#FFAD00": "light;light;source", "#FF0014": "truck;motortruck",
|
| 63 |
+
"#FFB8B8": "tower", "#001FFF": "chandelier;pendant;pendent", "#00FF3D": "awning;sunshade;sunblind",
|
| 64 |
+
"#0047FF": "streetlight;street;lamp", "#FF00CC": "booth;cubicle;stall;kiosk",
|
| 65 |
+
"#00FFC2": "television;television;receiver;television;set;tv;tv;set;idiot;box;boob;tube;telly;goggle;box",
|
| 66 |
+
"#00FF52": "airplane;aeroplane;plane", "#000AFF": "dirt;track",
|
| 67 |
+
"#0070FF": "apparel;wearing;apparel;dress;clothes", "#3300FF": "pole",
|
| 68 |
+
"#00C2FF": "land;ground;soil", "#007AFF": "bannister;banister;balustrade;balusters;handrail",
|
| 69 |
+
"#00FFA3": "escalator;moving;staircase;moving;stairway",
|
| 70 |
+
"#FF9900": "ottoman;pouf;pouffe;puff;hassock", "#00FF0A": "bottle",
|
| 71 |
+
"#FF7000": "buffet;counter;sideboard", "#8FFF00": "poster;posting;placard;notice;bill;card",
|
| 72 |
+
"#5200FF": "stage", "#A3FF00": "van", "#FFEB00": "ship", "#08B8AA": "fountain",
|
| 73 |
+
"#8500FF": "conveyer;belt;conveyor;belt;conveyer;conveyor;transporter", "#00FF5C": "canopy",
|
| 74 |
+
"#B800FF": "washer;automatic;washer;washing;machine", "#FF001F": "plaything;toy",
|
| 75 |
+
"#00B8FF": "swimming;pool;swimming;bath;natatorium", "#00D6FF": "stool", "#FF0070": "barrel;cask",
|
| 76 |
+
"#5CFF00": "basket;handbasket", "#00E0FF": "waterfall;falls", "#70E0FF": "tent;collapsible;shelter",
|
| 77 |
+
"#46B8A0": "bag", "#A300FF": "minibike;motorbike", "#9900FF": "cradle", "#47FF00": "oven",
|
| 78 |
+
"#FF00A3": "ball", "#FFCC00": "food;solid;food", "#FF008F": "step;stair",
|
| 79 |
+
"#00FFEB": "tank;storage;tank", "#85FF00": "trade;name;brand;name;brand;marque",
|
| 80 |
+
"#FF00EB": "microwave;microwave;oven", "#F500FF": "pot;flowerpot",
|
| 81 |
+
"#FF007A": "animal;animate;being;beast;brute;creature;fauna", "#FFF500": "bicycle;bike;wheel;cycle",
|
| 82 |
+
"#0ABED4": "lake", "#D6FF00": "dishwasher;dish;washer;dishwashing;machine",
|
| 83 |
+
"#00CCFF": "screen;silver;screen;projection;screen", "#1400FF": "blanket;cover",
|
| 84 |
+
"#FFFF00": "sculpture", "#0099FF": "hood;exhaust;hood", "#0029FF": "sconce", "#00FFCC": "vase",
|
| 85 |
+
"#2900FF": "traffic;light;traffic;signal;stoplight", "#29FF00": "tray",
|
| 86 |
+
"#AD00FF": "ashcan;trash;can;garbage;can;wastebin;ash;bin;ash-bin;ashbin;dustbin;trash;barrel;trash;bin",
|
| 87 |
+
"#00F5FF": "fan", "#4700FF": "pier;wharf;wharfage;dock", "#7A00FF": "crt;screen",
|
| 88 |
+
"#00FFB8": "plate", "#005CFF": "monitor;monitoring;device", "#B8FF00": "bulletin;board;notice;board",
|
| 89 |
+
"#0085FF": "shower", "#FFD600": "radiator", "#19C2C2": "glass;drinking;glass",
|
| 90 |
+
"#66FF00": "clock", "#5C00FF": "flag",
|
| 91 |
+
}
|
| 92 |
+
|
| 93 |
+
def to_rgb(color_hex: str) -> Tuple[int, int, int]:
|
| 94 |
+
"""Converts a hex color string to an RGB tuple."""
|
| 95 |
+
color_hex = color_hex.lstrip('#')
|
| 96 |
+
return tuple(int(color_hex[i:i+2], 16) for i in (0, 2, 4))
|
| 97 |
+
|
| 98 |
+
def map_colors_rgb(color_rgb_tuple: Tuple[int, int, int]) -> str:
|
| 99 |
+
"""Maps an RGB color tuple to a semantic object name."""
|
| 100 |
+
# Initialize COLOR_MAPPING_RGB if not already done (should be done once at module load)
|
| 101 |
+
global COLOR_MAPPING_RGB
|
| 102 |
+
if 'COLOR_MAPPING_RGB' not in globals():
|
| 103 |
+
COLOR_MAPPING_RGB = {to_rgb(k): v for k, v in COLOR_MAPPING_.items()}
|
| 104 |
+
|
| 105 |
+
if color_rgb_tuple in COLOR_MAPPING_RGB:
|
| 106 |
+
return COLOR_MAPPING_RGB[color_rgb_tuple]
|
| 107 |
+
else:
|
| 108 |
+
# Fallback to finding the closest color name if exact match not found
|
| 109 |
+
closest_color_name = "unknown"
|
| 110 |
+
min_dist = float('inf')
|
| 111 |
+
for mapped_rgb, name in COLOR_MAPPING_RGB.items():
|
| 112 |
+
dist = np.sum((np.array(color_rgb_tuple) - np.array(mapped_rgb))**2)
|
| 113 |
+
if dist < min_dist:
|
| 114 |
+
min_dist = dist
|
| 115 |
+
closest_color_name = name
|
| 116 |
+
return closest_color_name
|
| 117 |
+
|
| 118 |
+
# Initialize COLOR_MAPPING_RGB here so it's ready when imported
|
| 119 |
+
COLOR_MAPPING_RGB = {to_rgb(k): v for k, v in COLOR_MAPPING_.items()}
|
| 120 |
+
|
| 121 |
+
def ade_palette() -> List[List[int]]:
|
| 122 |
+
"""Returns the ADE20K palette for semantic segmentation visualization."""
|
| 123 |
+
return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
|
| 124 |
+
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
|
| 125 |
+
[230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
|
| 126 |
+
[150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
|
| 127 |
+
[143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
|
| 128 |
+
[0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
|
| 129 |
+
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
|
| 130 |
+
[255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
|
| 131 |
+
[255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
|
| 132 |
+
[224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
|
| 133 |
+
[255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
|
| 134 |
+
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
|
| 135 |
+
[140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
|
| 136 |
+
[255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
|
| 137 |
+
[255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
|
| 138 |
+
[11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
|
| 139 |
+
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
|
| 140 |
+
[255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
|
| 141 |
+
[0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
|
| 142 |
+
[173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
|
| 143 |
+
[255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
|
| 144 |
+
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
|
| 145 |
+
[255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
|
| 146 |
+
[0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
|
| 147 |
+
[0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
|
| 148 |
+
[143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
|
| 149 |
+
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
|
| 150 |
+
[255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
|
| 151 |
+
[92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
|
| 152 |
+
[163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
|
| 153 |
+
[255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
|
| 154 |
+
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
|
| 155 |
+
[10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
|
| 156 |
+
[255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
|
| 157 |
+
[41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
|
| 158 |
+
[71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
|
| 159 |
+
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
|
| 160 |
+
[102, 255, 0], [92, 0, 255]]
|
| 161 |
+
|
| 162 |
+
def load_and_preprocess_image(image: Union[Image.Image, np.ndarray]) -> Image.Image:
|
| 163 |
+
"""
|
| 164 |
+
Loads an image (PIL or numpy array) and preprocesses it for model input.
|
| 165 |
+
"""
|
| 166 |
+
if isinstance(image, np.ndarray):
|
| 167 |
+
if image.shape[-1] == 4: # If RGBA, convert to RGB
|
| 168 |
+
image = Image.fromarray(image).convert('RGB')
|
| 169 |
+
else: # Assume RGB
|
| 170 |
+
image = Image.fromarray(image)
|
| 171 |
+
elif not isinstance(image, Image.Image):
|
| 172 |
+
raise TypeError(f"load_and_preprocess_image received unexpected image type: {type(image)}")
|
| 173 |
+
|
| 174 |
+
image = image.convert("RGB")
|
| 175 |
+
image = image.resize((512, 512)) # Standardize size for models
|
| 176 |
+
return image
|
| 177 |
+
|
| 178 |
+
def get_segmentation_data(image: Image.Image) -> Tuple[np.ndarray, Image.Image, List[str], Dict[Tuple[int, int, int], str]]:
|
| 179 |
+
"""
|
| 180 |
+
Performs semantic segmentation on the input image.
|
| 181 |
+
Returns the raw segmentation map (numpy), a colored segmentation image (PIL),
|
| 182 |
+
a list of detected object names, and the segment items map.
|
| 183 |
+
"""
|
| 184 |
+
if not isinstance(image, Image.Image):
|
| 185 |
+
raise TypeError("Input 'image' must be a PIL Image object.")
|
| 186 |
+
|
| 187 |
+
with torch.inference_mode():
|
| 188 |
+
semantic_inputs = processor(images=image, return_tensors="pt", size={"height": 256, "width": 256})
|
| 189 |
+
semantic_inputs = {key: value.to(DEVICE) for key, value in semantic_inputs.items()}
|
| 190 |
+
|
| 191 |
+
semantic_outputs = model(**semantic_inputs)
|
| 192 |
+
|
| 193 |
+
if hasattr(semantic_outputs, 'logits') and torch.is_tensor(semantic_outputs.logits):
|
| 194 |
+
semantic_outputs.logits = semantic_outputs.logits.to("cpu")
|
| 195 |
+
if hasattr(semantic_outputs, 'pred_masks') and torch.is_tensor(semantic_outputs.pred_masks):
|
| 196 |
+
semantic_outputs.pred_masks = semantic_outputs.pred_masks.to("cpu")
|
| 197 |
+
|
| 198 |
+
segmentation_maps = processor.post_process_semantic_segmentation(semantic_outputs, target_sizes=[image.size[::-1]])
|
| 199 |
+
predicted_semantic_map_np = segmentation_maps[0].cpu().numpy()
|
| 200 |
+
|
| 201 |
+
if predicted_semantic_map_np.size == 0:
|
| 202 |
+
print("Warning: Mask2Former detected no objects in the image.")
|
| 203 |
+
color_seg = np.zeros((image.size[1], image.size[0], 3), dtype=np.uint8)
|
| 204 |
+
detected_items = []
|
| 205 |
+
temp_segment_map = {}
|
| 206 |
+
else:
|
| 207 |
+
color_seg = np.zeros((predicted_semantic_map_np.shape[0], predicted_semantic_map_np.shape[1], 3), dtype=np.uint8)
|
| 208 |
+
palette = np.array(ade_palette())
|
| 209 |
+
unique_labels = np.unique(predicted_semantic_map_np)
|
| 210 |
+
|
| 211 |
+
detected_items = []
|
| 212 |
+
temp_segment_map = {}
|
| 213 |
+
|
| 214 |
+
for label in unique_labels:
|
| 215 |
+
color = palette[label]
|
| 216 |
+
item_name = map_colors_rgb(tuple(color))
|
| 217 |
+
color_seg[predicted_semantic_map_np == label, :] = color
|
| 218 |
+
if item_name not in detected_items:
|
| 219 |
+
detected_items.append(item_name)
|
| 220 |
+
temp_segment_map[tuple(color)] = item_name
|
| 221 |
+
|
| 222 |
+
seg_image = Image.fromarray(color_seg).convert('RGB')
|
| 223 |
+
return predicted_semantic_map_np, seg_image, detected_items, temp_segment_map
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
from skimage import color # For LAB color space manipulation
|
| 228 |
+
from PIL import ImageFilter # Import ImageFilter here
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
def apply_color_change_to_objects(
|
| 232 |
+
original_image: Image.Image,
|
| 233 |
+
segmentation_np: np.ndarray,
|
| 234 |
+
segment_items_map: Dict[Tuple[int, int, int], str],
|
| 235 |
+
selected_object_names: List[str],
|
| 236 |
+
target_hex_color: str
|
| 237 |
+
) -> Image.Image:
|
| 238 |
+
"""
|
| 239 |
+
Applies a new color to selected objects in the original image, preserving texture and lighting.
|
| 240 |
+
Uses LAB color space for initial color shift and then blends with original luminance.
|
| 241 |
+
Also applies a slight blur to the mask for smoother transitions.
|
| 242 |
+
"""
|
| 243 |
+
# Ensure skimage.color is available within the function scope
|
| 244 |
+
import skimage.color
|
| 245 |
+
# Ensure ImageFilter is available within the function scope
|
| 246 |
+
from PIL import ImageFilter
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
if not selected_object_names:
|
| 250 |
+
return original_image # No objects selected, return original
|
| 251 |
+
|
| 252 |
+
# Convert original image to NumPy array and then to LAB color space
|
| 253 |
+
original_np = np.array(original_image)
|
| 254 |
+
print(f"original_np shape: {original_np.shape}, dtype: {original_np.dtype}")
|
| 255 |
+
original_np_normalized = original_np / 255.0
|
| 256 |
+
print(f"original_np_normalized shape: {original_np_normalized.shape}, dtype: {original_np_normalized.dtype}")
|
| 257 |
+
original_lab = skimage.color.rgb2lab(original_np_normalized) # Normalize to 0-1 for skimage
|
| 258 |
+
|
| 259 |
+
print("hexa color to rgb")
|
| 260 |
+
# Convert target hex color to RGB tuple (0-255)
|
| 261 |
+
target_rgb_tuple = to_rgb(target_hex_color)
|
| 262 |
+
print("RGB to LAB")
|
| 263 |
+
# Convert target RGB to LAB color space (normalized for skimage)
|
| 264 |
+
target_lab = skimage.color.rgb2lab(np.array(target_rgb_tuple).reshape(1, 1, 3) / 255.0).flatten()
|
| 265 |
+
|
| 266 |
+
# Extract L, a, b channels from target_lab
|
| 267 |
+
target_L, target_a, target_b = target_lab[0], target_lab[1], target_lab[2]
|
| 268 |
+
|
| 269 |
+
# Create a mask for all selected objects based on segmentation labels
|
| 270 |
+
# The segmentation_np contains integer labels, not RGB colors directly.
|
| 271 |
+
# We need to map selected object names back to their corresponding integer labels.
|
| 272 |
+
combined_mask_raw = np.zeros(segmentation_np.shape, dtype=bool)
|
| 273 |
+
|
| 274 |
+
# Create a reverse mapping from object name to label
|
| 275 |
+
name_to_label = {}
|
| 276 |
+
# Iterate through unique labels present in the segmentation_np
|
| 277 |
+
palette = np.array(ade_palette())
|
| 278 |
+
unique_labels_in_segmentation = np.unique(segmentation_np)
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
for label in unique_labels_in_segmentation:
|
| 282 |
+
if label < len(palette): # Ensure label is within palette bounds
|
| 283 |
+
color_rgb_from_palette = tuple(palette[label].tolist())
|
| 284 |
+
item_name = map_colors_rgb(color_rgb_from_palette)
|
| 285 |
+
name_to_label[item_name] = label
|
| 286 |
+
|
| 287 |
+
for selected_name in selected_object_names:
|
| 288 |
+
if selected_name in name_to_label:
|
| 289 |
+
label = name_to_label[selected_name]
|
| 290 |
+
# Create mask for the current object's label
|
| 291 |
+
object_mask = (segmentation_np == label)
|
| 292 |
+
combined_mask_raw = np.logical_or(combined_mask_raw, object_mask)
|
| 293 |
+
|
| 294 |
+
# Convert raw boolean mask to uint8 for PIL Image and blurring
|
| 295 |
+
combined_mask_pil = Image.fromarray(combined_mask_raw.astype(np.uint8) * 255)
|
| 296 |
+
|
| 297 |
+
# Feather the mask for smoother transitions
|
| 298 |
+
# Adjust radius as needed for desired softness
|
| 299 |
+
feathered_mask_pil = combined_mask_pil.filter(ImageFilter.GaussianBlur(radius=5))
|
| 300 |
+
feathered_mask_np = np.array(feathered_mask_pil) / 255.0 # Normalize to 0-1
|
| 301 |
+
|
| 302 |
+
# Apply color change to the original LAB image
|
| 303 |
+
modified_lab = original_lab.copy()
|
| 304 |
+
|
| 305 |
+
# Create a new LAB image with the target color everywhere
|
| 306 |
+
target_lab_full = np.full(original_lab.shape, target_lab)
|
| 307 |
+
|
| 308 |
+
# Blend the original LAB with the target LAB using the feathered mask
|
| 309 |
+
# This blends the color (a, b channels) while trying to retain luminance (L channel)
|
| 310 |
+
# A simple linear interpolation for a and b channels
|
| 311 |
+
modified_lab[:, :, 1] = original_lab[:, :, 1] * (1 - feathered_mask_np) + target_lab_full[:, :, 1] * feathered_mask_np
|
| 312 |
+
modified_lab[:, :, 2] = original_lab[:, :, 2] * (1 - feathered_mask_np) + target_lab_full[:, :, 2] * feathered_mask_np
|
| 313 |
+
|
| 314 |
+
# For luminance (L channel), we'll keep the original luminance to preserve texture.
|
| 315 |
+
# We are not blending L channel here, as it often leads to a "flatter" look.
|
| 316 |
+
# modified_lab[:, :, 0] = original_lab[:, :, 0] * (1 - feathered_mask_np) + target_lab_full[:, :, 0] * feathered_mask_np
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
# Convert back to RGB and then to PIL Image
|
| 320 |
+
modified_rgb_normalized = skimage.color.lab2rgb(modified_lab)
|
| 321 |
+
modified_rgb_255 = (modified_rgb_normalized * 255).astype(np.uint8)
|
| 322 |
+
|
| 323 |
+
# Post-processing: Apply saturation boost to the masked area
|
| 324 |
+
# Convert the modified image to HSV for saturation adjustment
|
| 325 |
+
modified_hsv = skimage.color.rgb2hsv(modified_rgb_normalized)
|
| 326 |
+
|
| 327 |
+
# Define a saturation boost factor (e.g., 1.3 for 30% boost). Experiment with this value.
|
| 328 |
+
# A higher value will result in more intense colors.
|
| 329 |
+
saturation_boost_factor = 1.3
|
| 330 |
+
|
| 331 |
+
# Boost saturation only in the masked areas, gradually applying the boost based on the feathered mask
|
| 332 |
+
# modified_hsv[:, :, 1] is the saturation channel
|
| 333 |
+
modified_hsv[:, :, 1] = np.clip(
|
| 334 |
+
modified_hsv[:, :, 1] * (1 + feathered_mask_np * (saturation_boost_factor - 1)),
|
| 335 |
+
0, 1
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
# Convert back to RGB
|
| 339 |
+
final_rgb_normalized = skimage.color.hsv2rgb(modified_hsv)
|
| 340 |
+
final_rgb_255 = (final_rgb_normalized * 255).astype(np.uint8)
|
| 341 |
+
|
| 342 |
+
return Image.fromarray(final_rgb_255)
|
| 343 |
+
|
| 344 |
+
import gradio as gr
|
| 345 |
+
from PIL import Image
|
| 346 |
+
from typing import List, Tuple, Dict, Union
|
| 347 |
+
import numpy as np
|
| 348 |
+
|
| 349 |
+
# --- Global State for this specific app ---
|
| 350 |
+
_current_input_image_pil: Union[Image.Image, None] = None
|
| 351 |
+
_current_segmentation_np: Union[np.ndarray, None] = None
|
| 352 |
+
_current_segment_items_map: Dict[Tuple[int, int, int], str] = {}
|
| 353 |
+
_current_detected_objects: List[str] = [] # Stores human-readable names of detected objects
|
| 354 |
+
|
| 355 |
+
def on_upload_image(input_image_upload: Image.Image) -> Tuple[gr.Image, gr.CheckboxGroup, gr.ColorPicker, gr.Button]:
|
| 356 |
+
"""
|
| 357 |
+
Handles the initial image upload, processes it for segmentation,
|
| 358 |
+
and populates the object selection dropdown.
|
| 359 |
+
"""
|
| 360 |
+
global _current_input_image_pil, _current_segmentation_np, _current_segment_items_map, _current_detected_objects
|
| 361 |
+
|
| 362 |
+
if input_image_upload is None:
|
| 363 |
+
return (
|
| 364 |
+
gr.update(value=None),
|
| 365 |
+
gr.update(choices=[], value=[], interactive=False),
|
| 366 |
+
gr.update(interactive=False),
|
| 367 |
+
gr.update(interactive=False)
|
| 368 |
+
)
|
| 369 |
+
|
| 370 |
+
try:
|
| 371 |
+
_current_input_image_pil = load_and_preprocess_image(input_image_upload)
|
| 372 |
+
|
| 373 |
+
# Perform semantic segmentation
|
| 374 |
+
segmentation_np, _, detected_objects, segment_items_map = get_segmentation_data(_current_input_image_pil)
|
| 375 |
+
|
| 376 |
+
_current_segmentation_np = segmentation_np
|
| 377 |
+
_current_segment_items_map = segment_items_map
|
| 378 |
+
_current_detected_objects = sorted(list(set(detected_objects))) # Store unique sorted names
|
| 379 |
+
|
| 380 |
+
# Prepare choices for CheckboxGroup: (value, label) pairs.
|
| 381 |
+
# The 'value' will be the object name (string), and 'label' will also be the object name.
|
| 382 |
+
formatted_choices = [(name, name) for name in _current_detected_objects]
|
| 383 |
+
|
| 384 |
+
return (
|
| 385 |
+
gr.update(value=_current_input_image_pil),
|
| 386 |
+
gr.update(choices=formatted_choices, value=[], interactive=True), # No default selection
|
| 387 |
+
gr.update(value="#FF0000", interactive=True), # Default to red
|
| 388 |
+
gr.update(interactive=True)
|
| 389 |
+
)
|
| 390 |
+
except Exception as e:
|
| 391 |
+
print(f"Error during image processing: {e}")
|
| 392 |
+
gr.Warning(f"Failed to process image: {e}")
|
| 393 |
+
return (
|
| 394 |
+
gr.update(value=None),
|
| 395 |
+
gr.update(choices=[], value=[], interactive=False),
|
| 396 |
+
gr.update(interactive=False),
|
| 397 |
+
gr.update(interactive=False)
|
| 398 |
+
)
|
| 399 |
+
|
| 400 |
+
def handle_apply_color_change(
|
| 401 |
+
selected_object_names: List[str], # This will be a list of strings (object names)
|
| 402 |
+
target_color_hex: str # This will be the hex string from the color picker
|
| 403 |
+
) -> gr.Image:
|
| 404 |
+
"""
|
| 405 |
+
Applies the chosen color to the selected objects in the image.
|
| 406 |
+
"""
|
| 407 |
+
global _current_input_image_pil, _current_segmentation_np, _current_segment_items_map
|
| 408 |
+
|
| 409 |
+
if _current_input_image_pil is None:
|
| 410 |
+
gr.Error("Please upload an image first.")
|
| 411 |
+
return None
|
| 412 |
+
if not selected_object_names:
|
| 413 |
+
gr.Warning("Please select at least one object to change its color.")
|
| 414 |
+
return _current_input_image_pil # Return original if no selection
|
| 415 |
+
if not target_color_hex:
|
| 416 |
+
gr.Error("Please select a target color.")
|
| 417 |
+
return None
|
| 418 |
+
|
| 419 |
+
print(f"Target color received: {target_color_hex}") # Debugging print statement
|
| 420 |
+
|
| 421 |
+
# Convert RGBA string from Gradio ColorPicker to hex string if necessary
|
| 422 |
+
if target_color_hex.startswith('rgba'):
|
| 423 |
+
try:
|
| 424 |
+
# Extract RGBA values
|
| 425 |
+
rgba_values = target_color_hex.replace('rgba(', '').replace(')', '').split(',')
|
| 426 |
+
r, g, b, a = [float(val.strip()) for val in rgba_values]
|
| 427 |
+
|
| 428 |
+
# Convert to hex
|
| 429 |
+
# Note: Alpha is ignored for hex conversion as hex does not support alpha
|
| 430 |
+
target_hex_color = '#{:02x}{:02x}{:02x}'.format(int(r), int(g), int(b))
|
| 431 |
+
print(f"Converted to hex: {target_hex_color}") # Debugging print statement
|
| 432 |
+
except Exception as e:
|
| 433 |
+
gr.Error(f"Failed to parse color string: {target_color_hex}. Error: {e}")
|
| 434 |
+
return None
|
| 435 |
+
else:
|
| 436 |
+
target_hex_color = target_color_hex
|
| 437 |
+
|
| 438 |
+
print("applu color change strat")
|
| 439 |
+
try:
|
| 440 |
+
output_image = apply_color_change_to_objects(
|
| 441 |
+
original_image=_current_input_image_pil,
|
| 442 |
+
segmentation_np=_current_segmentation_np,
|
| 443 |
+
segment_items_map=_current_segment_items_map,
|
| 444 |
+
selected_object_names=selected_object_names,
|
| 445 |
+
target_hex_color=target_hex_color
|
| 446 |
+
)
|
| 447 |
+
print("applu color change end")
|
| 448 |
+
return output_image
|
| 449 |
+
except Exception as e:
|
| 450 |
+
print(f"Error applying color change: {e}")
|
| 451 |
+
gr.Error(f"Error applying color change: {e}")
|
| 452 |
+
return None
|
| 453 |
+
|
| 454 |
+
def move_output_to_input_for_ui(output_image_to_move: Image.Image) -> gr.Image:
|
| 455 |
+
"""
|
| 456 |
+
Copies the output image back to the input image component for further editing.
|
| 457 |
+
"""
|
| 458 |
+
global _current_input_image_pil, _current_segmentation_np, _current_segment_items_map, _current_detected_objects
|
| 459 |
+
if output_image_to_move is None:
|
| 460 |
+
gr.Warning("No output image to move.")
|
| 461 |
+
return gr.update()
|
| 462 |
+
|
| 463 |
+
_current_input_image_pil = load_and_preprocess_image(output_image_to_move)
|
| 464 |
+
|
| 465 |
+
# Re-segment the new input image to update detected objects
|
| 466 |
+
segmentation_np, _, detected_objects, segment_items_map = get_segmentation_data(_current_input_image_pil)
|
| 467 |
+
_current_segmentation_np = segmentation_np
|
| 468 |
+
_current_segment_items_map = segment_items_map
|
| 469 |
+
_current_detected_objects = sorted(list(set(detected_objects)))
|
| 470 |
+
|
| 471 |
+
formatted_choices = [(name, name) for name in _current_detected_objects]
|
| 472 |
+
|
| 473 |
+
return gr.update(value=_current_input_image_pil), gr.update(choices=formatted_choices, value=[], interactive=True)
|
| 474 |
+
|
| 475 |
+
with gr.Blocks() as demo:
|
| 476 |
+
|
| 477 |
+
gr.Markdown(
|
| 478 |
+
"""
|
| 479 |
+
# Interior Design AI: Object Color Changer
|
| 480 |
+
Upload an image, select objects, and apply a new color while preserving texture.
|
| 481 |
+
"""
|
| 482 |
+
)
|
| 483 |
+
|
| 484 |
+
with gr.Row():
|
| 485 |
+
with gr.Column():
|
| 486 |
+
input_image_component = gr.Image(
|
| 487 |
+
type="pil",
|
| 488 |
+
label="Upload an image of your room (PNG/JPG)",
|
| 489 |
+
sources=["upload"],
|
| 490 |
+
height=300,
|
| 491 |
+
interactive=True
|
| 492 |
+
)
|
| 493 |
+
|
| 494 |
+
gr.Markdown("---")
|
| 495 |
+
gr.Markdown("### Select Objects to Re-color")
|
| 496 |
+
object_selection_checkboxes = gr.CheckboxGroup(
|
| 497 |
+
label="Choose objects to change color",
|
| 498 |
+
choices=[], # Populated after image upload
|
| 499 |
+
interactive=False
|
| 500 |
+
)
|
| 501 |
+
|
| 502 |
+
gr.Markdown("---")
|
| 503 |
+
gr.Markdown("### Choose New Color")
|
| 504 |
+
color_picker = gr.ColorPicker(
|
| 505 |
+
label="Select New Color",
|
| 506 |
+
value="#FF0000", # Default to red
|
| 507 |
+
interactive=False
|
| 508 |
+
)
|
| 509 |
+
|
| 510 |
+
apply_color_button = gr.Button("🎨 Apply Color Change", interactive=False)
|
| 511 |
+
|
| 512 |
+
with gr.Column():
|
| 513 |
+
output_image_display = gr.Image(type="pil", label="Resulting Image", height=400)
|
| 514 |
+
move_to_input_btn = gr.Button("🔁 Use Result as New Input", interactive=False)
|
| 515 |
+
|
| 516 |
+
# --- Event Listeners ---
|
| 517 |
+
|
| 518 |
+
input_image_component.upload(
|
| 519 |
+
fn=on_upload_image,
|
| 520 |
+
inputs=[input_image_component],
|
| 521 |
+
outputs=[
|
| 522 |
+
input_image_component,
|
| 523 |
+
object_selection_checkboxes,
|
| 524 |
+
color_picker,
|
| 525 |
+
apply_color_button
|
| 526 |
+
]
|
| 527 |
+
)
|
| 528 |
+
|
| 529 |
+
apply_color_button.click(
|
| 530 |
+
fn=handle_apply_color_change,
|
| 531 |
+
inputs=[
|
| 532 |
+
object_selection_checkboxes,
|
| 533 |
+
color_picker
|
| 534 |
+
],
|
| 535 |
+
outputs=[output_image_display]
|
| 536 |
+
)
|
| 537 |
+
|
| 538 |
+
move_to_input_btn.click(
|
| 539 |
+
fn=move_output_to_input_for_ui,
|
| 540 |
+
inputs=[output_image_display],
|
| 541 |
+
outputs=[input_image_component, object_selection_checkboxes] # Update checkboxes too
|
| 542 |
+
)
|
| 543 |
+
|
| 544 |
+
# To run this app: uncomment the line below and run the file (e.g., python app_color_changer.py)
|
| 545 |
+
demo.launch(debug=True)
|
| 546 |
+
|