Spaces:
Running
Running
Apply chat template for Atla responses
Browse files- gen_api_answer.py +95 -57
gen_api_answer.py
CHANGED
|
@@ -12,19 +12,17 @@ from prompts import (
|
|
| 12 |
PROMETHEUS_PROMPT_WITH_REFERENCE,
|
| 13 |
ATLA_PROMPT,
|
| 14 |
ATLA_PROMPT_WITH_REFERENCE,
|
| 15 |
-
|
| 16 |
)
|
|
|
|
| 17 |
|
| 18 |
# Initialize clients
|
| 19 |
anthropic_client = anthropic.Anthropic()
|
| 20 |
openai_client = OpenAI()
|
| 21 |
together_client = Together()
|
| 22 |
hf_api_key = os.getenv("HF_API_KEY")
|
| 23 |
-
cohere_client = cohere.ClientV2(os.getenv("CO_API_KEY"))
|
| 24 |
-
|
| 25 |
-
|
| 26 |
flow_judge_api_key = os.getenv("FLOW_JUDGE_API_KEY")
|
| 27 |
-
|
| 28 |
|
| 29 |
def get_openai_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0):
|
| 30 |
"""Get response from OpenAI API"""
|
|
@@ -73,7 +71,7 @@ def get_together_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT,
|
|
| 73 |
except Exception as e:
|
| 74 |
return f"Error with Together model {model_name}: {str(e)}"
|
| 75 |
|
| 76 |
-
def get_prometheus_response(model_name, prompt, max_tokens=500, temperature=0.01):
|
| 77 |
"""Get response from Hugging Face model"""
|
| 78 |
try:
|
| 79 |
headers = {
|
|
@@ -82,8 +80,19 @@ def get_prometheus_response(model_name, prompt, max_tokens=500, temperature=0.01
|
|
| 82 |
"Content-Type": "application/json"
|
| 83 |
}
|
| 84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
payload = {
|
| 86 |
-
"inputs":
|
| 87 |
"parameters": {
|
| 88 |
"max_new_tokens": max_tokens,
|
| 89 |
"return_full_text": False,
|
|
@@ -100,7 +109,7 @@ def get_prometheus_response(model_name, prompt, max_tokens=500, temperature=0.01
|
|
| 100 |
except Exception as e:
|
| 101 |
return f"Error with Hugging Face model {model_name}: {str(e)}"
|
| 102 |
|
| 103 |
-
def get_atla_response(model_name, prompt, max_tokens=500, temperature=0.01):
|
| 104 |
"""Get response from HF endpoint for Atla model"""
|
| 105 |
try:
|
| 106 |
headers = {
|
|
@@ -109,13 +118,25 @@ def get_atla_response(model_name, prompt, max_tokens=500, temperature=0.01):
|
|
| 109 |
"Content-Type": "application/json"
|
| 110 |
}
|
| 111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
payload = {
|
| 113 |
-
"inputs":
|
| 114 |
"parameters": {
|
| 115 |
"max_new_tokens": max_tokens,
|
| 116 |
"return_full_text": False,
|
| 117 |
"temperature": temperature,
|
| 118 |
-
"seed": 42
|
|
|
|
| 119 |
}
|
| 120 |
}
|
| 121 |
|
|
@@ -128,27 +149,6 @@ def get_atla_response(model_name, prompt, max_tokens=500, temperature=0.01):
|
|
| 128 |
except Exception as e:
|
| 129 |
return f"Error with Atla model {model_name}: {str(e)}"
|
| 130 |
|
| 131 |
-
def get_cohere_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0):
|
| 132 |
-
"""Get response from Cohere API"""
|
| 133 |
-
try:
|
| 134 |
-
response = cohere_client.chat(
|
| 135 |
-
model=model_name,
|
| 136 |
-
messages=[
|
| 137 |
-
{"role": "system", "content": system_prompt},
|
| 138 |
-
{"role": "user", "content": prompt}
|
| 139 |
-
],
|
| 140 |
-
max_tokens=max_tokens,
|
| 141 |
-
temperature=temperature
|
| 142 |
-
)
|
| 143 |
-
# Extract the text from the content items
|
| 144 |
-
content_items = response.message.content
|
| 145 |
-
if isinstance(content_items, list):
|
| 146 |
-
# Get the text from the first content item
|
| 147 |
-
return content_items[0].text
|
| 148 |
-
return str(content_items) # Fallback if it's not a list
|
| 149 |
-
except Exception as e:
|
| 150 |
-
return f"Error with Cohere model {model_name}: {str(e)}"
|
| 151 |
-
|
| 152 |
def get_flow_judge_response(model_name, prompt, max_tokens=500, temperature=0.1, top_p=0.95) -> str:
|
| 153 |
"""Get response from Flow Judge"""
|
| 154 |
try:
|
|
@@ -173,6 +173,27 @@ def get_flow_judge_response(model_name, prompt, max_tokens=500, temperature=0.1,
|
|
| 173 |
except Exception as e:
|
| 174 |
return f"Error with Flow Judge completions model {model_name}: {str(e)}"
|
| 175 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
def get_model_response(
|
| 177 |
model_name,
|
| 178 |
model_info,
|
|
@@ -188,21 +209,22 @@ def get_model_response(
|
|
| 188 |
api_model = model_info["api_model"]
|
| 189 |
organization = model_info["organization"]
|
| 190 |
|
| 191 |
-
# Determine if model is Prometheus or Atla
|
| 192 |
is_prometheus = (organization == "Prometheus")
|
| 193 |
is_atla = (organization == "Atla")
|
| 194 |
is_flow_judge = (organization == "Flow AI")
|
| 195 |
-
# For non-Prometheus/Atla models, use the Judge system prompt
|
| 196 |
system_prompt = None if (is_prometheus or is_atla or is_flow_judge) else JUDGE_SYSTEM_PROMPT
|
| 197 |
|
| 198 |
# Select the appropriate base prompt
|
|
|
|
| 199 |
if is_atla:
|
| 200 |
base_prompt = ATLA_PROMPT_WITH_REFERENCE if use_reference else ATLA_PROMPT
|
| 201 |
elif is_flow_judge:
|
| 202 |
base_prompt = FLOW_JUDGE_PROMPT
|
| 203 |
else:
|
| 204 |
base_prompt = PROMETHEUS_PROMPT_WITH_REFERENCE if use_reference else PROMETHEUS_PROMPT
|
| 205 |
-
|
| 206 |
# For non-Prometheus/non-Atla models, replace the specific instruction
|
| 207 |
if not (is_prometheus or is_atla or is_flow_judge):
|
| 208 |
base_prompt = base_prompt.replace(
|
|
@@ -224,6 +246,7 @@ def get_model_response(
|
|
| 224 |
score4_desc=prompt_data['score4_desc'],
|
| 225 |
score5_desc=prompt_data['score5_desc']
|
| 226 |
)
|
|
|
|
| 227 |
else:
|
| 228 |
human_input = f"<user_input>\n{prompt_data['human_input']}\n</user_input>"
|
| 229 |
ai_response = f"<response>\n{prompt_data['ai_response']}\n</response>"
|
|
@@ -249,6 +272,7 @@ def get_model_response(
|
|
| 249 |
EVALUATION_CRITERIA=eval_criteria,
|
| 250 |
RUBRIC=rubric
|
| 251 |
)
|
|
|
|
| 252 |
except KeyError as e:
|
| 253 |
return f"Error formatting prompt: Missing required field {str(e)}"
|
| 254 |
|
|
@@ -263,11 +287,11 @@ def get_model_response(
|
|
| 263 |
)
|
| 264 |
elif organization == "Prometheus":
|
| 265 |
return get_prometheus_response(
|
| 266 |
-
api_model, final_prompt, max_tokens, temperature = 0.01
|
| 267 |
)
|
| 268 |
elif organization == "Atla":
|
| 269 |
return get_atla_response(
|
| 270 |
-
api_model, final_prompt, max_tokens, temperature = 0.01
|
| 271 |
)
|
| 272 |
elif organization == "Cohere":
|
| 273 |
return get_cohere_response(
|
|
@@ -290,6 +314,10 @@ def parse_model_response(response):
|
|
| 290 |
# Debug print
|
| 291 |
print(f"Raw model response: {response}")
|
| 292 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
# First try to parse the entire response as JSON
|
| 294 |
try:
|
| 295 |
data = json.loads(response)
|
|
@@ -306,6 +334,16 @@ def parse_model_response(response):
|
|
| 306 |
except Exception as e:
|
| 307 |
# Debug print for error case
|
| 308 |
print(f"Failed to parse response: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 309 |
return "Error", f"Failed to parse response: {response}"
|
| 310 |
|
| 311 |
def prometheus_parse_model_response(output):
|
|
@@ -363,6 +401,27 @@ def prometheus_parse_model_response(output):
|
|
| 363 |
except Exception as e:
|
| 364 |
print(f"Failed to parse response: {str(e)}")
|
| 365 |
return "Error", f"Exception during parsing: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 366 |
|
| 367 |
def flow_judge_parse_model_response(output):
|
| 368 |
try:
|
|
@@ -386,25 +445,4 @@ def flow_judge_parse_model_response(output):
|
|
| 386 |
|
| 387 |
except Exception as e:
|
| 388 |
print(f"Failed to parse response: {str(e)}")
|
| 389 |
-
return "Error", f"Exception during parsing: {str(e)}"
|
| 390 |
-
|
| 391 |
-
def atla_parse_model_response(output):
|
| 392 |
-
"""Parse response from ATLA model"""
|
| 393 |
-
try:
|
| 394 |
-
print(f"Raw Atla model response: {output}")
|
| 395 |
-
output = output.strip()
|
| 396 |
-
|
| 397 |
-
# Look for the Reasoning and Result sections
|
| 398 |
-
reasoning_match = re.search(r'\*\*Reasoning:\*\*(.*?)(?=\*\*Result:|$)', output, re.DOTALL)
|
| 399 |
-
result_match = re.search(r'\*\*Result:\*\*\s*(\d+)', output)
|
| 400 |
-
|
| 401 |
-
if reasoning_match and result_match:
|
| 402 |
-
feedback = reasoning_match.group(1).strip()
|
| 403 |
-
score = result_match.group(1)
|
| 404 |
-
return str(score), feedback
|
| 405 |
-
|
| 406 |
-
return "Error", f"Failed to parse ATLA response format: {output}"
|
| 407 |
-
|
| 408 |
-
except Exception as e:
|
| 409 |
-
print(f"Failed to parse ATLA response: {str(e)}")
|
| 410 |
return "Error", f"Exception during parsing: {str(e)}"
|
|
|
|
| 12 |
PROMETHEUS_PROMPT_WITH_REFERENCE,
|
| 13 |
ATLA_PROMPT,
|
| 14 |
ATLA_PROMPT_WITH_REFERENCE,
|
| 15 |
+
FLOW_JUDGE_PROMPT
|
| 16 |
)
|
| 17 |
+
from transformers import AutoTokenizer
|
| 18 |
|
| 19 |
# Initialize clients
|
| 20 |
anthropic_client = anthropic.Anthropic()
|
| 21 |
openai_client = OpenAI()
|
| 22 |
together_client = Together()
|
| 23 |
hf_api_key = os.getenv("HF_API_KEY")
|
|
|
|
|
|
|
|
|
|
| 24 |
flow_judge_api_key = os.getenv("FLOW_JUDGE_API_KEY")
|
| 25 |
+
cohere_client = cohere.ClientV2(os.getenv("CO_API_KEY"))
|
| 26 |
|
| 27 |
def get_openai_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0):
|
| 28 |
"""Get response from OpenAI API"""
|
|
|
|
| 71 |
except Exception as e:
|
| 72 |
return f"Error with Together model {model_name}: {str(e)}"
|
| 73 |
|
| 74 |
+
def get_prometheus_response(model_name, prompt, system_prompt=None, max_tokens=500, temperature=0.01):
|
| 75 |
"""Get response from Hugging Face model"""
|
| 76 |
try:
|
| 77 |
headers = {
|
|
|
|
| 80 |
"Content-Type": "application/json"
|
| 81 |
}
|
| 82 |
|
| 83 |
+
# Create messages list for chat template
|
| 84 |
+
messages = []
|
| 85 |
+
if system_prompt:
|
| 86 |
+
messages.append({"role": "system", "content": system_prompt})
|
| 87 |
+
messages.append({"role": "user", "content": prompt})
|
| 88 |
+
|
| 89 |
+
# Apply chat template
|
| 90 |
+
model_id = "prometheus-eval/prometheus-7b-v2.0"
|
| 91 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 92 |
+
formatted_prompt = tokenizer.apply_chat_template(messages, tokenize=False)
|
| 93 |
+
|
| 94 |
payload = {
|
| 95 |
+
"inputs": formatted_prompt,
|
| 96 |
"parameters": {
|
| 97 |
"max_new_tokens": max_tokens,
|
| 98 |
"return_full_text": False,
|
|
|
|
| 109 |
except Exception as e:
|
| 110 |
return f"Error with Hugging Face model {model_name}: {str(e)}"
|
| 111 |
|
| 112 |
+
def get_atla_response(model_name, prompt, system_prompt=None, max_tokens=500, temperature=0.01):
|
| 113 |
"""Get response from HF endpoint for Atla model"""
|
| 114 |
try:
|
| 115 |
headers = {
|
|
|
|
| 118 |
"Content-Type": "application/json"
|
| 119 |
}
|
| 120 |
|
| 121 |
+
# Create messages list for chat template
|
| 122 |
+
messages = []
|
| 123 |
+
if system_prompt:
|
| 124 |
+
messages.append({"role": "system", "content": system_prompt})
|
| 125 |
+
messages.append({"role": "user", "content": prompt})
|
| 126 |
+
|
| 127 |
+
# Apply chat template
|
| 128 |
+
model_id = "AtlaAI/Atla-8B-preview" # Update this if using a different model
|
| 129 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 130 |
+
formatted_prompt = tokenizer.apply_chat_template(messages, tokenize=False)
|
| 131 |
+
|
| 132 |
payload = {
|
| 133 |
+
"inputs": formatted_prompt,
|
| 134 |
"parameters": {
|
| 135 |
"max_new_tokens": max_tokens,
|
| 136 |
"return_full_text": False,
|
| 137 |
"temperature": temperature,
|
| 138 |
+
"seed": 42,
|
| 139 |
+
"add_generation_prompt": True
|
| 140 |
}
|
| 141 |
}
|
| 142 |
|
|
|
|
| 149 |
except Exception as e:
|
| 150 |
return f"Error with Atla model {model_name}: {str(e)}"
|
| 151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
def get_flow_judge_response(model_name, prompt, max_tokens=500, temperature=0.1, top_p=0.95) -> str:
|
| 153 |
"""Get response from Flow Judge"""
|
| 154 |
try:
|
|
|
|
| 173 |
except Exception as e:
|
| 174 |
return f"Error with Flow Judge completions model {model_name}: {str(e)}"
|
| 175 |
|
| 176 |
+
def get_cohere_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0):
|
| 177 |
+
"""Get response from Cohere API"""
|
| 178 |
+
try:
|
| 179 |
+
response = cohere_client.chat(
|
| 180 |
+
model=model_name,
|
| 181 |
+
messages=[
|
| 182 |
+
{"role": "system", "content": system_prompt},
|
| 183 |
+
{"role": "user", "content": prompt}
|
| 184 |
+
],
|
| 185 |
+
max_tokens=max_tokens,
|
| 186 |
+
temperature=temperature
|
| 187 |
+
)
|
| 188 |
+
# Extract the text from the content items
|
| 189 |
+
content_items = response.message.content
|
| 190 |
+
if isinstance(content_items, list):
|
| 191 |
+
# Get the text from the first content item
|
| 192 |
+
return content_items[0].text
|
| 193 |
+
return str(content_items) # Fallback if it's not a list
|
| 194 |
+
except Exception as e:
|
| 195 |
+
return f"Error with Cohere model {model_name}: {str(e)}"
|
| 196 |
+
|
| 197 |
def get_model_response(
|
| 198 |
model_name,
|
| 199 |
model_info,
|
|
|
|
| 209 |
api_model = model_info["api_model"]
|
| 210 |
organization = model_info["organization"]
|
| 211 |
|
| 212 |
+
# Determine if model is Prometheus or Atla or Flow Judge
|
| 213 |
is_prometheus = (organization == "Prometheus")
|
| 214 |
is_atla = (organization == "Atla")
|
| 215 |
is_flow_judge = (organization == "Flow AI")
|
| 216 |
+
# For non-Prometheus/Atla models/Flow Judge, use the Judge system prompt
|
| 217 |
system_prompt = None if (is_prometheus or is_atla or is_flow_judge) else JUDGE_SYSTEM_PROMPT
|
| 218 |
|
| 219 |
# Select the appropriate base prompt
|
| 220 |
+
|
| 221 |
if is_atla:
|
| 222 |
base_prompt = ATLA_PROMPT_WITH_REFERENCE if use_reference else ATLA_PROMPT
|
| 223 |
elif is_flow_judge:
|
| 224 |
base_prompt = FLOW_JUDGE_PROMPT
|
| 225 |
else:
|
| 226 |
base_prompt = PROMETHEUS_PROMPT_WITH_REFERENCE if use_reference else PROMETHEUS_PROMPT
|
| 227 |
+
|
| 228 |
# For non-Prometheus/non-Atla models, replace the specific instruction
|
| 229 |
if not (is_prometheus or is_atla or is_flow_judge):
|
| 230 |
base_prompt = base_prompt.replace(
|
|
|
|
| 246 |
score4_desc=prompt_data['score4_desc'],
|
| 247 |
score5_desc=prompt_data['score5_desc']
|
| 248 |
)
|
| 249 |
+
|
| 250 |
else:
|
| 251 |
human_input = f"<user_input>\n{prompt_data['human_input']}\n</user_input>"
|
| 252 |
ai_response = f"<response>\n{prompt_data['ai_response']}\n</response>"
|
|
|
|
| 272 |
EVALUATION_CRITERIA=eval_criteria,
|
| 273 |
RUBRIC=rubric
|
| 274 |
)
|
| 275 |
+
|
| 276 |
except KeyError as e:
|
| 277 |
return f"Error formatting prompt: Missing required field {str(e)}"
|
| 278 |
|
|
|
|
| 287 |
)
|
| 288 |
elif organization == "Prometheus":
|
| 289 |
return get_prometheus_response(
|
| 290 |
+
api_model, final_prompt, system_prompt, max_tokens, temperature = 0.01
|
| 291 |
)
|
| 292 |
elif organization == "Atla":
|
| 293 |
return get_atla_response(
|
| 294 |
+
api_model, final_prompt, system_prompt, max_tokens, temperature = 0.01
|
| 295 |
)
|
| 296 |
elif organization == "Cohere":
|
| 297 |
return get_cohere_response(
|
|
|
|
| 314 |
# Debug print
|
| 315 |
print(f"Raw model response: {response}")
|
| 316 |
|
| 317 |
+
# If response is already a dictionary, use it directly
|
| 318 |
+
if isinstance(response, dict):
|
| 319 |
+
return str(response.get("result", "N/A")), response.get("feedback", "N/A")
|
| 320 |
+
|
| 321 |
# First try to parse the entire response as JSON
|
| 322 |
try:
|
| 323 |
data = json.loads(response)
|
|
|
|
| 334 |
except Exception as e:
|
| 335 |
# Debug print for error case
|
| 336 |
print(f"Failed to parse response: {str(e)}")
|
| 337 |
+
|
| 338 |
+
# If the error message itself contains valid JSON, try to parse that
|
| 339 |
+
try:
|
| 340 |
+
error_json_match = re.search(r"{.*}", str(e), re.DOTALL)
|
| 341 |
+
if error_json_match:
|
| 342 |
+
data = json.loads(error_json_match.group(0))
|
| 343 |
+
return str(data.get("result", "N/A")), data.get("feedback", "N/A")
|
| 344 |
+
except:
|
| 345 |
+
pass
|
| 346 |
+
|
| 347 |
return "Error", f"Failed to parse response: {response}"
|
| 348 |
|
| 349 |
def prometheus_parse_model_response(output):
|
|
|
|
| 401 |
except Exception as e:
|
| 402 |
print(f"Failed to parse response: {str(e)}")
|
| 403 |
return "Error", f"Exception during parsing: {str(e)}"
|
| 404 |
+
|
| 405 |
+
def atla_parse_model_response(output):
|
| 406 |
+
"""Parse response from ATLA model"""
|
| 407 |
+
try:
|
| 408 |
+
print(f"Raw Atla model response: {output}")
|
| 409 |
+
output = output.strip()
|
| 410 |
+
|
| 411 |
+
# Look for the Reasoning and Result sections
|
| 412 |
+
reasoning_match = re.search(r'\*\*Reasoning:\*\*(.*?)(?=\*\*Result:|$)', output, re.DOTALL)
|
| 413 |
+
result_match = re.search(r'\*\*Result:\*\*\s*(\d+)', output)
|
| 414 |
+
|
| 415 |
+
if reasoning_match and result_match:
|
| 416 |
+
feedback = reasoning_match.group(1).strip()
|
| 417 |
+
score = result_match.group(1)
|
| 418 |
+
return str(score), feedback
|
| 419 |
+
|
| 420 |
+
return "Error", f"Failed to parse ATLA response format: {output}"
|
| 421 |
+
|
| 422 |
+
except Exception as e:
|
| 423 |
+
print(f"Failed to parse ATLA response: {str(e)}")
|
| 424 |
+
return "Error", f"Exception during parsing: {str(e)}"
|
| 425 |
|
| 426 |
def flow_judge_parse_model_response(output):
|
| 427 |
try:
|
|
|
|
| 445 |
|
| 446 |
except Exception as e:
|
| 447 |
print(f"Failed to parse response: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 448 |
return "Error", f"Exception during parsing: {str(e)}"
|