Upload folder using huggingface_hub
Browse files- app/__init__.py +0 -0
- app/draw_diagram.py +114 -0
- app/pages.py +303 -0
- app/show_examples.py +129 -0
app/__init__.py
ADDED
|
File without changes
|
app/draw_diagram.py
ADDED
|
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
from streamlit_echarts import st_echarts
|
| 5 |
+
# from streamlit_echarts import JsCode
|
| 6 |
+
from streamlit_javascript import st_javascript
|
| 7 |
+
# from PIL import Image
|
| 8 |
+
from app.show_examples import *
|
| 9 |
+
|
| 10 |
+
links_dic = {}
|
| 11 |
+
|
| 12 |
+
links_dic = {k.lower().replace('_', '-') : v for k, v in links_dic.items()}
|
| 13 |
+
|
| 14 |
+
# huggingface_image = Image.open('style/huggingface.jpg')
|
| 15 |
+
|
| 16 |
+
def nav_to(value):
|
| 17 |
+
try:
|
| 18 |
+
url = links_dic[str(value).lower()]
|
| 19 |
+
js = f'window.open("{url}", "_blank").then(r => window.parent.location.href);'
|
| 20 |
+
st_javascript(js)
|
| 21 |
+
except:
|
| 22 |
+
pass
|
| 23 |
+
|
| 24 |
+
def draw(folder_name, category_name, dataset_name, metrics):
|
| 25 |
+
|
| 26 |
+
folder = f"./results/{metrics}/"
|
| 27 |
+
|
| 28 |
+
display_names = {
|
| 29 |
+
'SU': 'Speech Understanding',
|
| 30 |
+
'ASU': 'Audio Scene Understanding',
|
| 31 |
+
'VU': 'Voice Understanding'
|
| 32 |
+
}
|
| 33 |
+
|
| 34 |
+
data_path = f'{folder}/{category_name.lower()}.csv'
|
| 35 |
+
chart_data = pd.read_csv(data_path).round(2)
|
| 36 |
+
|
| 37 |
+
# if sorted == 'Ascending':
|
| 38 |
+
# ascend = True
|
| 39 |
+
# else:
|
| 40 |
+
# ascend = False
|
| 41 |
+
|
| 42 |
+
new_dataset_name = dataset_name.replace('-', '_').lower()
|
| 43 |
+
chart_data = chart_data[['Model', new_dataset_name]]
|
| 44 |
+
|
| 45 |
+
chart_data = chart_data.sort_values(by=[new_dataset_name], ascending=True).dropna(axis=0)
|
| 46 |
+
|
| 47 |
+
if len(chart_data) == 0:
|
| 48 |
+
return
|
| 49 |
+
|
| 50 |
+
min_value = round(chart_data.iloc[:, 1::].min().min() - 0.1, 1)
|
| 51 |
+
max_value = round(chart_data.iloc[:, 1::].max().max() + 0.1, 1)
|
| 52 |
+
|
| 53 |
+
options = {
|
| 54 |
+
"title": {"text": f"{display_names[folder_name.upper()]}"},
|
| 55 |
+
"tooltip": {
|
| 56 |
+
"trigger": "axis",
|
| 57 |
+
"axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}},
|
| 58 |
+
"triggerOn": 'mousemove',
|
| 59 |
+
},
|
| 60 |
+
"legend": {"data": ['Overall Accuracy']},
|
| 61 |
+
"toolbox": {"feature": {"saveAsImage": {}}},
|
| 62 |
+
"grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True},
|
| 63 |
+
"xAxis": [
|
| 64 |
+
{
|
| 65 |
+
"type": "category",
|
| 66 |
+
"boundaryGap": False,
|
| 67 |
+
"triggerEvent": True,
|
| 68 |
+
"data": chart_data['Model'].tolist(),
|
| 69 |
+
}
|
| 70 |
+
],
|
| 71 |
+
"yAxis": [{"type": "value",
|
| 72 |
+
"min": min_value,
|
| 73 |
+
"max": max_value,
|
| 74 |
+
# "splitNumber": 10
|
| 75 |
+
}],
|
| 76 |
+
"series": [{
|
| 77 |
+
"name": f"{dataset_name}",
|
| 78 |
+
"type": "line",
|
| 79 |
+
"data": chart_data[f'{new_dataset_name}'].tolist(),
|
| 80 |
+
}],
|
| 81 |
+
}
|
| 82 |
+
|
| 83 |
+
events = {
|
| 84 |
+
"click": "function(params) { return params.value }"
|
| 85 |
+
}
|
| 86 |
+
|
| 87 |
+
value = st_echarts(options=options, events=events, height="500px")
|
| 88 |
+
|
| 89 |
+
if value != None:
|
| 90 |
+
# print(value)
|
| 91 |
+
nav_to(value)
|
| 92 |
+
|
| 93 |
+
# if value != None:
|
| 94 |
+
# highlight_table_line(value)
|
| 95 |
+
|
| 96 |
+
'''
|
| 97 |
+
Show table
|
| 98 |
+
'''
|
| 99 |
+
# st.divider()
|
| 100 |
+
with st.expander('TABLE'):
|
| 101 |
+
# chart_data['Link'] = chart_data['Model'].map(links_dic)
|
| 102 |
+
st.dataframe(chart_data,
|
| 103 |
+
# column_config = {
|
| 104 |
+
# "Link": st.column_config.LinkColumn(
|
| 105 |
+
# display_text= st.image(huggingface_image)
|
| 106 |
+
# ),
|
| 107 |
+
# },
|
| 108 |
+
hide_index = True,
|
| 109 |
+
use_container_width=True)
|
| 110 |
+
'''
|
| 111 |
+
show samples
|
| 112 |
+
'''
|
| 113 |
+
show_examples(category_name, dataset_name, chart_data['Model'].tolist())
|
| 114 |
+
|
app/pages.py
ADDED
|
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from app.draw_diagram import *
|
| 3 |
+
|
| 4 |
+
def dashboard():
|
| 5 |
+
|
| 6 |
+
with st.container():
|
| 7 |
+
st.title("AudioBench")
|
| 8 |
+
|
| 9 |
+
st.markdown("""
|
| 10 |
+
[gh]: https://github.com/AudioLLMs/AudioBench
|
| 11 |
+
[][gh]
|
| 12 |
+
[][gh]
|
| 13 |
+
""")
|
| 14 |
+
|
| 15 |
+
audio_url = "https://arxiv.org/abs/2406.16020"
|
| 16 |
+
|
| 17 |
+
st.divider()
|
| 18 |
+
st.markdown("#### [AudioBench](%s)" % audio_url)
|
| 19 |
+
st.markdown("##### :dizzy: A comprehensive evaluation benchmark designed for general instruction-following audiolanguage models")
|
| 20 |
+
st.markdown('''
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
''')
|
| 24 |
+
|
| 25 |
+
with st.container():
|
| 26 |
+
left_co, center_co, right_co = st.columns([0.5,1, 0.5])
|
| 27 |
+
with center_co:
|
| 28 |
+
st.image("./style/audio_overview.png",
|
| 29 |
+
caption="Overview of the datasets in AudioBench.",
|
| 30 |
+
use_column_width = True)
|
| 31 |
+
|
| 32 |
+
st.markdown('''
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
''')
|
| 36 |
+
|
| 37 |
+
st.markdown("###### :dart: Our Benchmark includes: ")
|
| 38 |
+
cols = st.columns(10)
|
| 39 |
+
cols[1].metric(label="Tasks", value="8") #delta="Tasks", delta_color="off"
|
| 40 |
+
cols[2].metric(label="Datasets", value="26")
|
| 41 |
+
cols[3].metric(label="Test Models", value="5")
|
| 42 |
+
|
| 43 |
+
# st.markdown("###### :dart: Supported Models and Datasets: ")
|
| 44 |
+
|
| 45 |
+
# sup = pd.DataFrame(
|
| 46 |
+
# {"Dataset": "LibriSpeech-Clean",
|
| 47 |
+
# "Category": st.selectbox('category', ['Speech Understanding']),
|
| 48 |
+
# "Task": st.selectbox('task', ['Automatic Speech Recognition']),
|
| 49 |
+
# "Metrics": st.selectbox('metrics', ['WER']),
|
| 50 |
+
# "Status":True}
|
| 51 |
+
# )
|
| 52 |
+
|
| 53 |
+
# st.data_editor(sup, num_rows="dynamic")
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
st.divider()
|
| 57 |
+
with st.container():
|
| 58 |
+
st.markdown("##### Citations")
|
| 59 |
+
|
| 60 |
+
st.markdown('''
|
| 61 |
+
:round_pushpin: AudioBench Paper \n
|
| 62 |
+
@article{wang2024audiobench,
|
| 63 |
+
title={AudioBench: A Universal Benchmark for Audio Large Language Models},
|
| 64 |
+
author={Wang, Bin and Zou, Xunlong and Lin, Geyu and Sun, Shuo and Liu, Zhuohan and Zhang, Wenyu and Liu, Zhengyuan and Aw, AiTi and Chen, Nancy F},
|
| 65 |
+
journal={arXiv preprint arXiv:2406.16020},
|
| 66 |
+
year={2024}
|
| 67 |
+
}
|
| 68 |
+
''')
|
| 69 |
+
|
| 70 |
+
def asr():
|
| 71 |
+
st.title("Automatic Speech Recognition")
|
| 72 |
+
|
| 73 |
+
filters_levelone = ['LibriSpeech-Test-Clean',
|
| 74 |
+
'LibriSpeech-Test-Other',
|
| 75 |
+
'Common-Voice-15-En-Test',
|
| 76 |
+
'Peoples-Speech-Test',
|
| 77 |
+
'GigaSpeech-Test',
|
| 78 |
+
'Earnings21-Test',
|
| 79 |
+
'Earnings22-Test',
|
| 80 |
+
'Tedlium3-Test',
|
| 81 |
+
'Tedlium3-Longform-Test',
|
| 82 |
+
'IMDA-Part1-ASR-Test',
|
| 83 |
+
'IMDA-Part2-ASR-Test',
|
| 84 |
+
'IMDA-Part3-ASR-Test',
|
| 85 |
+
'IMDA-Part4-ASR-Test',
|
| 86 |
+
'IMDA-Part5-ASR-Test',
|
| 87 |
+
'IMDA-Part6-ASR-Test']
|
| 88 |
+
|
| 89 |
+
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 90 |
+
|
| 91 |
+
with left:
|
| 92 |
+
filter_1 = st.selectbox('Select Dataset', filters_levelone)
|
| 93 |
+
|
| 94 |
+
# with middle:
|
| 95 |
+
# if filter_1 == filters_levelone[0]:
|
| 96 |
+
# sort_leveltwo = ['LibriSpeech-Test-Clean', 'LibriSpeech-Test-Other', 'Common-Voice-15-En-Test', 'Peoples-Speech-Test',
|
| 97 |
+
# 'GigaSpeech-Test', 'Tedlium3-Test','Tedlium3-Longform-Test', 'Earning-21-Test', 'Earning-22-Test']
|
| 98 |
+
# elif filter_1 == filters_levelone[1]:
|
| 99 |
+
# sort_leveltwo = ['CN-College-Listen-Test', 'SLUE-P2-SQA5-Test', 'DREAM-TTS-Test', 'Public-SG-SpeechQA-Test']
|
| 100 |
+
|
| 101 |
+
# elif filter_1 == filters_levelone[2]:
|
| 102 |
+
# sort_leveltwo = ['OpenHermes-Audio-Test', 'ALPACA-Audio-Test']
|
| 103 |
+
|
| 104 |
+
# sort = st.selectbox("Sort Dataset", sort_leveltwo)
|
| 105 |
+
|
| 106 |
+
# with right:
|
| 107 |
+
# sorted = st.selectbox('by', ['Ascending', 'Descending'])
|
| 108 |
+
|
| 109 |
+
if filter_1:
|
| 110 |
+
draw('su', 'ASR', filter_1, 'wer')
|
| 111 |
+
else:
|
| 112 |
+
draw('su', 'ASR', 'LibriSpeech-Test-Clean', 'wer')
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
## examples
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def sqa():
|
| 119 |
+
st.title("Speech Question Answering")
|
| 120 |
+
|
| 121 |
+
binary = ['CN-College-Listen-MCQ-Test', 'DREAM-TTS-MCQ-Test']
|
| 122 |
+
|
| 123 |
+
rest = ['SLUE-P2-SQA5-Test',
|
| 124 |
+
'Public-SG-Speech-QA-Test',
|
| 125 |
+
'Spoken-Squad-v1']
|
| 126 |
+
|
| 127 |
+
filters_levelone = binary + rest
|
| 128 |
+
|
| 129 |
+
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 130 |
+
|
| 131 |
+
with left:
|
| 132 |
+
filter_1 = st.selectbox('Select Dataset', filters_levelone)
|
| 133 |
+
|
| 134 |
+
if filter_1:
|
| 135 |
+
if filter_1 in binary:
|
| 136 |
+
draw('su', 'SQA', filter_1, 'llama3_70b_judge_binary')
|
| 137 |
+
else:
|
| 138 |
+
draw('su', 'SQA', filter_1, 'llama3_70b_judge')
|
| 139 |
+
else:
|
| 140 |
+
draw('su', 'SQA', 'CN-College-Listen-Test', 'llama3_70b_judge_binary')
|
| 141 |
+
|
| 142 |
+
def si():
|
| 143 |
+
st.title("Speech Question Answering")
|
| 144 |
+
|
| 145 |
+
filters_levelone = ['OpenHermes-Audio-Test',
|
| 146 |
+
'ALPACA-Audio-Test']
|
| 147 |
+
|
| 148 |
+
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 149 |
+
|
| 150 |
+
with left:
|
| 151 |
+
filter_1 = st.selectbox('Select Dataset', filters_levelone)
|
| 152 |
+
|
| 153 |
+
if filter_1:
|
| 154 |
+
draw('su', 'SI', filter_1, 'llama3_70b_judge')
|
| 155 |
+
else:
|
| 156 |
+
draw('su', 'SI', 'OpenHermes-Audio-Test', 'llama3_70b_judge')
|
| 157 |
+
|
| 158 |
+
def ac():
|
| 159 |
+
st.title("Audio Captioning")
|
| 160 |
+
|
| 161 |
+
filters_levelone = ['WavCaps-Test',
|
| 162 |
+
'AudioCaps-Test']
|
| 163 |
+
filters_leveltwo = ['Llama3-70b-judge', 'Meteor']
|
| 164 |
+
|
| 165 |
+
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 166 |
+
|
| 167 |
+
with left:
|
| 168 |
+
filter_1 = st.selectbox('Select Dataset', filters_levelone)
|
| 169 |
+
with middle:
|
| 170 |
+
metric = st.selectbox('Select Metric', filters_leveltwo)
|
| 171 |
+
|
| 172 |
+
# with middle:
|
| 173 |
+
# if filter_1 == filters_levelone[0]:
|
| 174 |
+
# sort_leveltwo = ['Clotho-AQA-Test', 'WavCaps-QA-Test', 'AudioCaps-QA-Test']
|
| 175 |
+
# elif filter_1 == filters_levelone[1]:
|
| 176 |
+
# sort_leveltwo = ['WavCaps-Test', 'AudioCaps-Test']
|
| 177 |
+
|
| 178 |
+
# sort = st.selectbox("Sort Dataset", sort_leveltwo)
|
| 179 |
+
|
| 180 |
+
# with right:
|
| 181 |
+
# sorted = st.selectbox('by', ['Ascending', 'Descending'])
|
| 182 |
+
|
| 183 |
+
if filter_1 or metric:
|
| 184 |
+
draw('asu', 'AC',filter_1, metric.lower().replace('-', '_'))
|
| 185 |
+
else:
|
| 186 |
+
draw('asu', 'AC', 'WavCaps-Test', 'llama3_70b_judge')
|
| 187 |
+
|
| 188 |
+
def asqa():
|
| 189 |
+
st.title("Audio Scene Question Answering")
|
| 190 |
+
|
| 191 |
+
filters_levelone = ['Clotho-AQA-Test',
|
| 192 |
+
'WavCaps-QA-Test',
|
| 193 |
+
'AudioCaps-QA-Test']
|
| 194 |
+
|
| 195 |
+
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 196 |
+
|
| 197 |
+
with left:
|
| 198 |
+
filter_1 = st.selectbox('Select Dataset', filters_levelone)
|
| 199 |
+
|
| 200 |
+
if filter_1:
|
| 201 |
+
draw('asu', 'AQA',filter_1, 'llama3_70b_judge')
|
| 202 |
+
else:
|
| 203 |
+
draw('asu', 'AQA', 'Clotho-AQA-Test', 'llama3_70b_judge')
|
| 204 |
+
|
| 205 |
+
def er():
|
| 206 |
+
st.title("Emotion Recognition")
|
| 207 |
+
|
| 208 |
+
filters_levelone = ['IEMOCAP-Emotion-Test',
|
| 209 |
+
'MELD-Sentiment-Test',
|
| 210 |
+
'MELD-Emotion-Test']
|
| 211 |
+
sort_leveltwo = []
|
| 212 |
+
|
| 213 |
+
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 214 |
+
|
| 215 |
+
with left:
|
| 216 |
+
filter_1 = st.selectbox('Select Dataset', filters_levelone)
|
| 217 |
+
|
| 218 |
+
# with middle:
|
| 219 |
+
# if filter_1 == filters_levelone[0]:
|
| 220 |
+
# sort_leveltwo = ['IEMOCAP-Emotion-Test', 'MELD-Sentiment-Test', 'MELD-Emotion-Test']
|
| 221 |
+
|
| 222 |
+
# elif filter_1 == filters_levelone[1]:
|
| 223 |
+
# sort_leveltwo = ['VoxCeleb1-Accent-Test']
|
| 224 |
+
|
| 225 |
+
# elif filter_1 == filters_levelone[2]:
|
| 226 |
+
# sort_leveltwo = ['VoxCeleb1-Gender-Test', 'IEMOCAP-Gender-Test']
|
| 227 |
+
|
| 228 |
+
# sort = st.selectbox("Sort Dataset", sort_leveltwo)
|
| 229 |
+
|
| 230 |
+
# with right:
|
| 231 |
+
# sorted = st.selectbox('by', ['Ascending', 'Descending'])
|
| 232 |
+
|
| 233 |
+
if filter_1:
|
| 234 |
+
draw('vu', 'ER', filter_1, 'llama3_70b_judge_binary')
|
| 235 |
+
else:
|
| 236 |
+
draw('vu', 'ER', 'IEMOCAP-Emotion-Test', 'llama3_70b_judge_binary')
|
| 237 |
+
|
| 238 |
+
def ar():
|
| 239 |
+
st.title("Accent Recognition")
|
| 240 |
+
|
| 241 |
+
filters_levelone = ['VoxCeleb-Accent-Test']
|
| 242 |
+
|
| 243 |
+
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 244 |
+
|
| 245 |
+
with left:
|
| 246 |
+
filter_1 = st.selectbox('Select Dataset', filters_levelone)
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
if filter_1:
|
| 250 |
+
draw('vu', 'AR', filter_1, 'llama3_70b_judge')
|
| 251 |
+
else:
|
| 252 |
+
draw('vu', 'AR', 'VoxCeleb-Accent-Test', 'llama3_70b_judge')
|
| 253 |
+
|
| 254 |
+
def gr():
|
| 255 |
+
st.title("Emotion Recognition")
|
| 256 |
+
|
| 257 |
+
filters_levelone = ['VoxCeleb-Gender-Test',
|
| 258 |
+
'IEMOCAP-Gender-Test']
|
| 259 |
+
|
| 260 |
+
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 261 |
+
|
| 262 |
+
with left:
|
| 263 |
+
filter_1 = st.selectbox('Select Dataset', filters_levelone)
|
| 264 |
+
|
| 265 |
+
if filter_1:
|
| 266 |
+
draw('vu', 'GR', filter_1, 'llama3_70b_judge_binary')
|
| 267 |
+
else:
|
| 268 |
+
draw('vu', 'GR', 'VoxCeleb1-Gender-Test', 'llama3_70b_judge_binary')
|
| 269 |
+
|
| 270 |
+
def spt():
|
| 271 |
+
st.title("Speech Translation")
|
| 272 |
+
|
| 273 |
+
filters_levelone = ['Covost2-EN-ID-test',
|
| 274 |
+
'Covost2-EN-ZH-test',
|
| 275 |
+
'Covost2-EN-TA-test',
|
| 276 |
+
'Covost2-ID-EN-test',
|
| 277 |
+
'Covost2-ZH-EN-test',
|
| 278 |
+
'Covost2-TA-EN-test']
|
| 279 |
+
|
| 280 |
+
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 281 |
+
|
| 282 |
+
with left:
|
| 283 |
+
filter_1 = st.selectbox('Select Dataset', filters_levelone)
|
| 284 |
+
|
| 285 |
+
if filter_1:
|
| 286 |
+
draw('su', 'ST', filter_1, 'bleu')
|
| 287 |
+
else:
|
| 288 |
+
draw('su', 'ST', 'Covost2-EN-ID-test', 'bleu')
|
| 289 |
+
|
| 290 |
+
def cnasr():
|
| 291 |
+
st.title("Chinese Automatic Speech Recognition")
|
| 292 |
+
|
| 293 |
+
filters_levelone = ['Aishell-ASR-ZH-Test']
|
| 294 |
+
|
| 295 |
+
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 296 |
+
|
| 297 |
+
with left:
|
| 298 |
+
filter_1 = st.selectbox('Select Dataset', filters_levelone)
|
| 299 |
+
|
| 300 |
+
if filter_1:
|
| 301 |
+
draw('su', 'CNASR', filter_1, 'wer')
|
| 302 |
+
else:
|
| 303 |
+
draw('su', 'CNASR', 'Aishell-ASR-ZH-Test', 'wer')
|
app/show_examples.py
ADDED
|
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import datasets
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def show_examples(category_name, dataset_name, model_lists):
|
| 7 |
+
st.divider()
|
| 8 |
+
sample_folder = f"./examples/{category_name}/{dataset_name}"
|
| 9 |
+
dataset = datasets.load_from_disk(sample_folder)
|
| 10 |
+
|
| 11 |
+
for index in range(len(dataset)):
|
| 12 |
+
|
| 13 |
+
with st.expander(f'EXAMPLE {index+1}'):
|
| 14 |
+
col1, col2 = st.columns([0.3, 0.7], vertical_alignment="center")
|
| 15 |
+
|
| 16 |
+
with col1:
|
| 17 |
+
st.audio(f'{sample_folder}/sample_{index}.wav', format="audio/wav")
|
| 18 |
+
|
| 19 |
+
with col2:
|
| 20 |
+
with st.container():
|
| 21 |
+
custom_css = """
|
| 22 |
+
<style>
|
| 23 |
+
.my-container-question {
|
| 24 |
+
background-color: #F5EEF8;
|
| 25 |
+
padding: 10px;
|
| 26 |
+
border-radius: 10px;
|
| 27 |
+
height: auto;
|
| 28 |
+
}
|
| 29 |
+
</style>
|
| 30 |
+
"""
|
| 31 |
+
st.markdown(custom_css, unsafe_allow_html=True)
|
| 32 |
+
|
| 33 |
+
if dataset_name in ['CN-College-Listen-MCQ-Test', 'DREAM-TTS-MCQ-Test']:
|
| 34 |
+
|
| 35 |
+
choices = dataset[index]['other_attributes']['choices']
|
| 36 |
+
if isinstance(choices, str):
|
| 37 |
+
choices_text = choices
|
| 38 |
+
elif isinstance(choices, list):
|
| 39 |
+
choices_text = ' '.join(i for i in choices)
|
| 40 |
+
|
| 41 |
+
question_text = f"""<div class="my-container-question">
|
| 42 |
+
<p>QUESTION: {dataset[index]['instruction']['text']}</p>
|
| 43 |
+
<p>CHOICES: {choices_text}</p>
|
| 44 |
+
</div>
|
| 45 |
+
"""
|
| 46 |
+
else:
|
| 47 |
+
question_text = f"""<div class="my-container-question">
|
| 48 |
+
<p>QUESTION: {dataset[index]['instruction']['text']}</p>
|
| 49 |
+
</div>"""
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
st.markdown(question_text, unsafe_allow_html=True)
|
| 53 |
+
|
| 54 |
+
with st.container():
|
| 55 |
+
custom_css = """
|
| 56 |
+
<style>
|
| 57 |
+
.my-container-answer {
|
| 58 |
+
background-color: #F9EBEA;
|
| 59 |
+
padding: 10px;
|
| 60 |
+
border-radius: 10px;
|
| 61 |
+
height: auto;
|
| 62 |
+
}
|
| 63 |
+
</style>
|
| 64 |
+
"""
|
| 65 |
+
st.markdown(custom_css, unsafe_allow_html=True)
|
| 66 |
+
st.markdown(f"""<div class="my-container-answer">
|
| 67 |
+
<p>CORRECT ANSWER: {dataset[index]['answer']['text']}</p>
|
| 68 |
+
</div>""", unsafe_allow_html=True)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
st.divider()
|
| 72 |
+
with st.container():
|
| 73 |
+
custom_css = """
|
| 74 |
+
<style>
|
| 75 |
+
.my-container-table {
|
| 76 |
+
background-color: #F2F3F4;
|
| 77 |
+
padding: 10px;
|
| 78 |
+
border-radius: 5px;
|
| 79 |
+
# height: 50px;
|
| 80 |
+
}
|
| 81 |
+
</style>
|
| 82 |
+
"""
|
| 83 |
+
st.markdown(custom_css, unsafe_allow_html=True)
|
| 84 |
+
|
| 85 |
+
model_lists.sort()
|
| 86 |
+
|
| 87 |
+
s = ''
|
| 88 |
+
if dataset_name in ['CN-College-Listen-MCQ-Test', 'DREAM-TTS-MCQ-Test']:
|
| 89 |
+
for model in model_lists:
|
| 90 |
+
try:
|
| 91 |
+
s += f"""<tr>
|
| 92 |
+
<td>{model}</td>
|
| 93 |
+
<td><p>{dataset[index][model]['text']}</p> <p>{choices_text}</p></td>
|
| 94 |
+
<td>{dataset[index][model]['model_prediction']}</td>
|
| 95 |
+
</tr>"""
|
| 96 |
+
except:
|
| 97 |
+
print(f"{model} is not in {dataset_name}")
|
| 98 |
+
continue
|
| 99 |
+
else:
|
| 100 |
+
for model in model_lists:
|
| 101 |
+
try:
|
| 102 |
+
s += f"""<tr>
|
| 103 |
+
<td>{model}</td>
|
| 104 |
+
<td>{dataset[index][model]['text']}</td>
|
| 105 |
+
<td>{dataset[index][model]['model_prediction']}</td>
|
| 106 |
+
</tr>"""
|
| 107 |
+
except:
|
| 108 |
+
print(f"{model} is not in {dataset_name}")
|
| 109 |
+
continue
|
| 110 |
+
|
| 111 |
+
body_details = f"""<table style="width:100%">
|
| 112 |
+
<thead>
|
| 113 |
+
<tr style="text-align: center;">
|
| 114 |
+
<th style="width:20%">MODEL</th>
|
| 115 |
+
<th style="width:40%">QUESTION</th>
|
| 116 |
+
<th style="width:40%">MODEL PREDICTION</th>
|
| 117 |
+
</tr>
|
| 118 |
+
{s}
|
| 119 |
+
</thead>
|
| 120 |
+
</table>"""
|
| 121 |
+
|
| 122 |
+
st.markdown(f"""<div class="my-container-table">
|
| 123 |
+
{body_details}
|
| 124 |
+
</div>""", unsafe_allow_html=True)
|
| 125 |
+
|
| 126 |
+
st.text("")
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
|