Spaces:
Build error
Build error
| # Import Libraries | |
| from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline | |
| from sentence_transformers import SentenceTransformer, util | |
| from datasets import load_dataset | |
| import faiss | |
| import numpy as np | |
| import streamlit as st | |
| # Load the BillSum dataset | |
| dataset = load_dataset("billsum", split="ca_test") | |
| # Initialize models | |
| sbert_model = SentenceTransformer("all-mpnet-base-v2") | |
| t5_tokenizer = AutoTokenizer.from_pretrained("t5-small") | |
| t5_model = AutoModelForSeq2SeqLM.from_pretrained("t5-small") | |
| # Prepare data and build FAISS index | |
| texts = dataset["text"][:100] # Limiting to 100 samples for speed | |
| case_embeddings = sbert_model.encode(texts, convert_to_tensor=True, show_progress_bar=True) | |
| index = faiss.IndexFlatL2(case_embeddings.shape[1]) | |
| index.add(np.array(case_embeddings.cpu())) | |
| # Define retrieval and summarization functions | |
| def retrieve_cases(query, top_k=3): | |
| query_embedding = sbert_model.encode(query, convert_to_tensor=True) | |
| _, indices = index.search(np.array([query_embedding.cpu()]), top_k) | |
| return [(texts[i], i) for i in indices[0]] | |
| def summarize_text(text): | |
| inputs = t5_tokenizer("summarize: " + text, return_tensors="pt", max_length=512, truncation=True) | |
| outputs = t5_model.generate(inputs["input_ids"], max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True) | |
| return t5_tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| # Streamlit UI | |
| def main(): | |
| st.title("Legal Case Summarizer") | |
| query = st.text_input("Enter your case search query here:") | |
| top_k = st.slider("Number of similar cases to retrieve:", 1, 5, 3) | |
| if st.button("Search"): | |
| results = retrieve_cases(query, top_k=top_k) | |
| for i, (case_text, index) in enumerate(results): | |
| st.subheader(f"Case {i+1}") | |
| st.write("**Original Text:**", case_text) | |
| summary = summarize_text(case_text) | |
| st.write("**Summary:**", summary) | |
| if __name__ == "__main__": | |
| main() | |
| # Run Streamlit app within Colab |