Spaces:
Build error
Build error
danseith
commited on
Commit
·
ca69fee
1
Parent(s):
e3a2d6f
Added dummy temp slider and output text box with new input.
Browse files
app.py
CHANGED
|
@@ -1,15 +1,14 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import torch
|
| 4 |
-
from transformers import pipeline
|
| 5 |
from transformers.pipelines import PIPELINE_REGISTRY, FillMaskPipeline
|
| 6 |
-
from transformers import
|
| 7 |
|
| 8 |
-
unmasker = pipeline("fill-mask", model="anferico/bert-for-patents")
|
| 9 |
# unmasker = pipeline("temp-scale", model="anferico/bert-for-patents")
|
| 10 |
-
example = 'A crustless [MASK] made from two slices of baked bread'
|
| 11 |
-
|
| 12 |
-
|
| 13 |
|
| 14 |
def add_mask(text, size=1):
|
| 15 |
split_text = text.split()
|
|
@@ -20,7 +19,49 @@ def add_mask(text, size=1):
|
|
| 20 |
|
| 21 |
|
| 22 |
class TempScalePipe(FillMaskPipeline):
|
| 23 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
# Cap top_k if there are targets
|
| 25 |
if target_ids is not None and target_ids.shape[0] < top_k:
|
| 26 |
top_k = target_ids.shape[0]
|
|
@@ -30,14 +71,16 @@ class TempScalePipe(FillMaskPipeline):
|
|
| 30 |
masked_index = torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=False).squeeze(-1)
|
| 31 |
# Fill mask pipeline supports only one ${mask_token} per sample
|
| 32 |
|
| 33 |
-
logits = outputs[0, masked_index, :] /
|
| 34 |
probs = logits.softmax(dim=-1)
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
| 37 |
if target_ids is not None:
|
| 38 |
probs = probs[..., target_ids]
|
| 39 |
-
|
| 40 |
-
|
| 41 |
|
| 42 |
result = []
|
| 43 |
single_mask = values.shape[0] == 1
|
|
@@ -69,41 +112,33 @@ PIPELINE_REGISTRY.register_pipeline(
|
|
| 69 |
pipeline_class=TempScalePipe,
|
| 70 |
pt_model=AutoModelForMaskedLM,
|
| 71 |
)
|
|
|
|
| 72 |
|
| 73 |
-
|
| 74 |
-
def unmask(text):
|
| 75 |
# text = add_mask(text)
|
| 76 |
-
|
|
|
|
|
|
|
| 77 |
out = {item["token_str"]: item["score"] for item in res}
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
textbox = gr.Textbox(label="Type language here", lines=5)
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
# unmasker = pipeline("fill-mask", model="anferico/bert-for-patents")
|
| 88 |
-
#
|
| 89 |
-
#
|
| 90 |
-
|
| 91 |
-
#
|
| 92 |
-
#
|
| 93 |
-
# def unmask(text):
|
| 94 |
-
# text = add_mask(text)
|
| 95 |
-
# res = unmasker(text)
|
| 96 |
-
# out = {item["token_str"]: item["score"] for item in res}
|
| 97 |
-
# return out
|
| 98 |
-
#
|
| 99 |
-
#
|
| 100 |
-
# textbox = gr.Textbox(label="Type language here", lines=5)
|
| 101 |
-
#
|
| 102 |
demo = gr.Interface(
|
| 103 |
fn=unmask,
|
| 104 |
-
inputs=textbox,
|
| 105 |
-
outputs="label",
|
| 106 |
-
examples=[example],
|
| 107 |
)
|
| 108 |
|
| 109 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import torch
|
| 4 |
+
from transformers import pipeline
|
| 5 |
from transformers.pipelines import PIPELINE_REGISTRY, FillMaskPipeline
|
| 6 |
+
from transformers import AutoModelForMaskedLM
|
| 7 |
|
|
|
|
| 8 |
# unmasker = pipeline("temp-scale", model="anferico/bert-for-patents")
|
| 9 |
+
example = 'A crustless [MASK] made from two slices of baked bread.'
|
| 10 |
+
example = 'The invention provides a method for altering or modifying [MASK] of one or more gene products.'
|
| 11 |
+
example = 'The graphite [MASK] is composed of a two-dimensional hexagonal lattice of carbon atoms.'
|
| 12 |
|
| 13 |
def add_mask(text, size=1):
|
| 14 |
split_text = text.split()
|
|
|
|
| 19 |
|
| 20 |
|
| 21 |
class TempScalePipe(FillMaskPipeline):
|
| 22 |
+
def _sanitize_parameters(self, top_k=None, targets=None, temp=None):
|
| 23 |
+
postprocess_params = {}
|
| 24 |
+
|
| 25 |
+
if targets is not None:
|
| 26 |
+
target_ids = self.get_target_ids(targets, top_k)
|
| 27 |
+
postprocess_params["target_ids"] = target_ids
|
| 28 |
+
|
| 29 |
+
if top_k is not None:
|
| 30 |
+
postprocess_params["top_k"] = top_k
|
| 31 |
+
|
| 32 |
+
if temp is not None:
|
| 33 |
+
postprocess_params["temp"] = temp
|
| 34 |
+
return {}, {}, postprocess_params
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def __call__(self, inputs, *args, **kwargs):
|
| 38 |
+
"""
|
| 39 |
+
Fill the masked token in the text(s) given as inputs.
|
| 40 |
+
|
| 41 |
+
Args:
|
| 42 |
+
args (`str` or `List[str]`):
|
| 43 |
+
One or several texts (or one list of prompts) with masked tokens.
|
| 44 |
+
targets (`str` or `List[str]`, *optional*):
|
| 45 |
+
When passed, the model will limit the scores to the passed targets instead of looking up in the whole
|
| 46 |
+
vocab. If the provided targets are not in the model vocab, they will be tokenized and the first
|
| 47 |
+
resulting token will be used (with a warning, and that might be slower).
|
| 48 |
+
top_k (`int`, *optional*):
|
| 49 |
+
When passed, overrides the number of predictions to return.
|
| 50 |
+
|
| 51 |
+
Return:
|
| 52 |
+
A list or a list of list of `dict`: Each result comes as list of dictionaries with the following keys:
|
| 53 |
+
|
| 54 |
+
- **sequence** (`str`) -- The corresponding input with the mask token prediction.
|
| 55 |
+
- **score** (`float`) -- The corresponding probability.
|
| 56 |
+
- **token** (`int`) -- The predicted token id (to replace the masked one).
|
| 57 |
+
- **token** (`str`) -- The predicted token (to replace the masked one).
|
| 58 |
+
"""
|
| 59 |
+
outputs = super().__call__(inputs, **kwargs)
|
| 60 |
+
if isinstance(inputs, list) and len(inputs) == 1:
|
| 61 |
+
return outputs[0]
|
| 62 |
+
return outputs
|
| 63 |
+
|
| 64 |
+
def postprocess(self, model_outputs, top_k=10, target_ids=None, temp=1):
|
| 65 |
# Cap top_k if there are targets
|
| 66 |
if target_ids is not None and target_ids.shape[0] < top_k:
|
| 67 |
top_k = target_ids.shape[0]
|
|
|
|
| 71 |
masked_index = torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=False).squeeze(-1)
|
| 72 |
# Fill mask pipeline supports only one ${mask_token} per sample
|
| 73 |
|
| 74 |
+
logits = outputs[0, masked_index, :] / 1.2
|
| 75 |
probs = logits.softmax(dim=-1)
|
| 76 |
+
sampling = False
|
| 77 |
+
if sampling:
|
| 78 |
+
predictions = torch.multinomial(probs, num_samples=3)
|
| 79 |
+
values = probs[0, predictions]
|
| 80 |
if target_ids is not None:
|
| 81 |
probs = probs[..., target_ids]
|
| 82 |
+
if not sampling:
|
| 83 |
+
values, predictions = probs.topk(top_k)
|
| 84 |
|
| 85 |
result = []
|
| 86 |
single_mask = values.shape[0] == 1
|
|
|
|
| 112 |
pipeline_class=TempScalePipe,
|
| 113 |
pt_model=AutoModelForMaskedLM,
|
| 114 |
)
|
| 115 |
+
scrambler = pipeline("temp-scale", model="anferico/bert-for-patents")
|
| 116 |
|
| 117 |
+
def unmask(text, temp):
|
|
|
|
| 118 |
# text = add_mask(text)
|
| 119 |
+
split_text = text.split()
|
| 120 |
+
res = scrambler(text)
|
| 121 |
+
mask_pos = [i for i, t in enumerate(split_text) if 'MASK' in t][0]
|
| 122 |
out = {item["token_str"]: item["score"] for item in res}
|
| 123 |
+
score_to_str = {out[k]:k for k in out.keys()}
|
| 124 |
+
print(score_to_str)
|
| 125 |
+
print(out)
|
| 126 |
+
score_list = list(score_to_str.keys())
|
| 127 |
+
idx = np.argmax(np.random.multinomial(1, score_list, 1))
|
| 128 |
+
score = score_list[idx]
|
| 129 |
+
new_token = score_to_str[score]
|
| 130 |
+
split_text[mask_pos] = new_token
|
| 131 |
+
return out, ' '.join(split_text)
|
| 132 |
|
| 133 |
textbox = gr.Textbox(label="Type language here", lines=5)
|
| 134 |
+
textbox2 = gr.Textbox(placeholder="Type here...", lines=4)
|
| 135 |
+
temp_slider = gr.Slider(1.0, 1.5, value=1.0, label='Creativity')
|
| 136 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
demo = gr.Interface(
|
| 138 |
fn=unmask,
|
| 139 |
+
inputs=[textbox, temp_slider],
|
| 140 |
+
outputs=["label", textbox2],
|
| 141 |
+
examples=[[example, 1.2]],
|
| 142 |
)
|
| 143 |
|
| 144 |
demo.launch()
|