Spaces:
Sleeping
Sleeping
Update qa_summary.py
Browse files- qa_summary.py +5 -5
qa_summary.py
CHANGED
|
@@ -3,7 +3,7 @@ import torch
|
|
| 3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
|
| 5 |
@spaces.GPU(duration=60)
|
| 6 |
-
def generate_answer(llm_name, texts, query, queries, mode='validate'):
|
| 7 |
|
| 8 |
if llm_name == 'solar':
|
| 9 |
tokenizer = AutoTokenizer.from_pretrained("Upstage/SOLAR-10.7B-Instruct-v1.0", use_fast=True)
|
|
@@ -17,7 +17,7 @@ def generate_answer(llm_name, texts, query, queries, mode='validate'):
|
|
| 17 |
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2", use_fast=True)
|
| 18 |
llm_model = AutoModelForCausalLM.from_pretrained(
|
| 19 |
"mistralai/Mistral-7B-Instruct-v0.2",
|
| 20 |
-
#device_map="auto",
|
| 21 |
device_map="cuda",
|
| 22 |
torch_dtype=torch.float16,
|
| 23 |
)
|
|
@@ -28,7 +28,7 @@ def generate_answer(llm_name, texts, query, queries, mode='validate'):
|
|
| 28 |
"microsoft/Phi-3-mini-128k-instruct",
|
| 29 |
device_map="auto",
|
| 30 |
torch_dtype="auto",
|
| 31 |
-
trust_remote_code=
|
| 32 |
)
|
| 33 |
|
| 34 |
template_texts =""
|
|
@@ -42,8 +42,8 @@ def generate_answer(llm_name, texts, query, queries, mode='validate'):
|
|
| 42 |
elif mode == 'h_summarize':
|
| 43 |
conversation = [ {'role': 'user', 'content': f'The documents below describe a developing disaster event. Based on these documents, write a brief summary in the form of a paragraph, highlighting the most crucial information. \nDocuments: {template_texts}'} ]
|
| 44 |
elif mode == "multi_summarize":
|
| 45 |
-
|
| 46 |
-
|
| 47 |
|
| 48 |
|
| 49 |
prompt = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
|
|
|
| 3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
|
| 5 |
@spaces.GPU(duration=60)
|
| 6 |
+
def generate_answer(llm_name, texts, query, queries, response_lang, mode='validate'):
|
| 7 |
|
| 8 |
if llm_name == 'solar':
|
| 9 |
tokenizer = AutoTokenizer.from_pretrained("Upstage/SOLAR-10.7B-Instruct-v1.0", use_fast=True)
|
|
|
|
| 17 |
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2", use_fast=True)
|
| 18 |
llm_model = AutoModelForCausalLM.from_pretrained(
|
| 19 |
"mistralai/Mistral-7B-Instruct-v0.2",
|
| 20 |
+
# device_map="auto",
|
| 21 |
device_map="cuda",
|
| 22 |
torch_dtype=torch.float16,
|
| 23 |
)
|
|
|
|
| 28 |
"microsoft/Phi-3-mini-128k-instruct",
|
| 29 |
device_map="auto",
|
| 30 |
torch_dtype="auto",
|
| 31 |
+
trust_remote_code=True,
|
| 32 |
)
|
| 33 |
|
| 34 |
template_texts =""
|
|
|
|
| 42 |
elif mode == 'h_summarize':
|
| 43 |
conversation = [ {'role': 'user', 'content': f'The documents below describe a developing disaster event. Based on these documents, write a brief summary in the form of a paragraph, highlighting the most crucial information. \nDocuments: {template_texts}'} ]
|
| 44 |
elif mode == "multi_summarize":
|
| 45 |
+
conversation = [ {'role': 'user', 'content': f"""For the following queries and documents, in a brief paragraph try to answer the given queries based on the documents.
|
| 46 |
+
Then, return the top 5 documents as provided that answer the queries.\nQueries: {queries} \nDocuments: {template_texts}. Give your response in {response_lang} language"""} ]
|
| 47 |
|
| 48 |
|
| 49 |
prompt = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|