Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import pipeline, AutoTokenizer | |
| from huggingsound import SpeechRecognitionModel | |
| import numpy as np | |
| import soundfile as sf | |
| import tempfile | |
| # Load the model for speech recognition | |
| model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-english") | |
| translator = pipeline("text2text-generation", model="Baghdad99/saad-english-text-to-hausa-text") | |
| tts = pipeline("text-to-speech", model="Baghdad99/hausa_voice_tts") | |
| # Define the function to translate speech | |
| def translate_speech(audio_data_tuple): | |
| print(f"Type of audio: {type(audio_data_tuple)}, Value of audio: {audio_data_tuple}") # Debug line | |
| # Extract the audio data from the tuple | |
| sample_rate, audio_data = audio_data_tuple | |
| # Save the audio data to a temporary file | |
| with tempfile.NamedTemporaryFile(suffix=".wav", delete=True) as temp_audio_file: | |
| sf.write(temp_audio_file.name, audio_data, sample_rate) | |
| # Use the speech recognition model to transcribe the audio | |
| output = model.transcribe([temp_audio_file.name]) | |
| print(f"Output: {output}") # Print the output to see what it contains | |
| # ... (rest of your code) | |
| # Use the translation pipeline to translate the transcription | |
| translated_text = translator(output, return_tensors="pt") | |
| print(f"Translated text: {translated_text}") # Print the translated text to see what it contains | |
| # Check if the translated text contains 'generated_token_ids' | |
| if 'generated_token_ids' in translated_text[0]: | |
| # Decode the tokens into text | |
| translated_text_str = translator.tokenizer.decode(translated_text[0]['generated_token_ids']) | |
| else: | |
| print("The translated text does not contain 'generated_token_ids'") | |
| return | |
| # Use the text-to-speech pipeline to synthesize the translated text | |
| synthesised_speech = tts(translated_text_str) | |
| print(f"Synthesised speech: {synthesised_speech}") # Print the synthesised speech to see what it contains | |
| # Check if the synthesised speech contains 'audio' | |
| if 'audio' in synthesised_speech: | |
| synthesised_speech_data = synthesised_speech['audio'] | |
| else: | |
| print("The synthesised speech does not contain 'audio'") | |
| return | |
| # Flatten the audio data | |
| synthesised_speech_data = synthesised_speech_data.flatten() | |
| # Scale the audio data to the range of int16 format | |
| synthesised_speech = (synthesised_speech_data * 32767).astype(np.int16) | |
| return 16000, synthesised_speech | |
| # Define the Gradio interface | |
| iface = gr.Interface( | |
| fn=translate_speech, | |
| inputs=gr.inputs.Audio(source="microphone"), # Change this line | |
| outputs=gr.outputs.Audio(type="numpy"), | |
| title="Hausa to English Translation", | |
| description="Realtime demo for Hausa to English translation using speech recognition and text-to-speech synthesis." | |
| ) | |
| iface.launch() | |