Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,68 +1,64 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import
|
| 3 |
import numpy as np
|
| 4 |
-
from pydub import AudioSegment
|
| 5 |
-
import io
|
| 6 |
-
from IPython.display import Audio
|
| 7 |
|
| 8 |
-
#
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
if data is not None:
|
| 17 |
-
response = requests.post(api_url, headers=headers, data=data)
|
| 18 |
-
else:
|
| 19 |
-
response = requests.post(api_url, headers=headers, json=payload)
|
| 20 |
-
response_json = response.json()
|
| 21 |
-
if 'error' in response_json:
|
| 22 |
-
print(f"Error in query function: {response_json['error']}")
|
| 23 |
-
return None
|
| 24 |
-
return response_json
|
| 25 |
|
| 26 |
# Define the function to translate speech
|
| 27 |
-
def translate_speech(
|
| 28 |
-
|
|
|
|
| 29 |
|
| 30 |
-
# Use the
|
| 31 |
-
|
| 32 |
-
output
|
| 33 |
-
print(f"Output: {output}") # Debug line
|
| 34 |
|
| 35 |
-
# Check if output
|
| 36 |
-
if
|
| 37 |
-
|
| 38 |
-
if 'error' in output:
|
| 39 |
-
print(f"Error: {output['error']}")
|
| 40 |
-
return
|
| 41 |
-
|
| 42 |
-
# Check if 'text' key exists in the output
|
| 43 |
-
if 'text' in output:
|
| 44 |
-
transcription = output["text"]
|
| 45 |
-
else:
|
| 46 |
-
print("Key 'text' does not exist in the output.")
|
| 47 |
-
return
|
| 48 |
else:
|
| 49 |
-
print("
|
| 50 |
return
|
| 51 |
|
| 52 |
# Use the translation pipeline to translate the transcription
|
| 53 |
-
translated_text =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
-
#
|
| 56 |
-
|
| 57 |
-
audio_bytes = response.content
|
| 58 |
|
| 59 |
-
|
| 60 |
-
return Audio(audio_bytes)
|
| 61 |
|
| 62 |
# Define the Gradio interface
|
| 63 |
iface = gr.Interface(
|
| 64 |
fn=translate_speech,
|
| 65 |
-
inputs=gr.inputs.
|
| 66 |
outputs=gr.outputs.Audio(type="numpy"),
|
| 67 |
title="Hausa to English Translation",
|
| 68 |
description="Realtime demo for Hausa to English translation using speech recognition and text-to-speech synthesis."
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import pipeline, AutoTokenizer
|
| 3 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
# Load the pipeline for speech recognition and translation
|
| 6 |
+
pipe = pipeline(
|
| 7 |
+
"automatic-speech-recognition",
|
| 8 |
+
model="Baghdad99/saad-speech-recognition-hausa-audio-to-text",
|
| 9 |
+
tokenizer="Baghdad99/saad-speech-recognition-hausa-audio-to-text"
|
| 10 |
+
)
|
| 11 |
+
translator = pipeline("text2text-generation", model="Baghdad99/saad-hausa-text-to-english-text")
|
| 12 |
+
tts = pipeline("text-to-speech", model="Baghdad99/english_voice_tts")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
# Define the function to translate speech
|
| 15 |
+
def translate_speech(audio):
|
| 16 |
+
# Separate the sample rate and the audio data
|
| 17 |
+
sample_rate, audio_data = audio
|
| 18 |
|
| 19 |
+
# Use the speech recognition pipeline to transcribe the audio
|
| 20 |
+
output = pipe(audio_data)
|
| 21 |
+
print(f"Output: {output}") # Print the output to see what it contains
|
|
|
|
| 22 |
|
| 23 |
+
# Check if the output contains 'text'
|
| 24 |
+
if 'text' in output:
|
| 25 |
+
transcription = output["text"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
else:
|
| 27 |
+
print("The output does not contain 'text'")
|
| 28 |
return
|
| 29 |
|
| 30 |
# Use the translation pipeline to translate the transcription
|
| 31 |
+
translated_text = translator(transcription, return_tensors="pt")
|
| 32 |
+
print(f"Translated text: {translated_text}") # Print the translated text to see what it contains
|
| 33 |
+
|
| 34 |
+
# Check if the translated text contains 'generated_token_ids'
|
| 35 |
+
if 'generated_token_ids' in translated_text[0]:
|
| 36 |
+
# Decode the tokens into text
|
| 37 |
+
translated_text_str = translator.tokenizer.decode(translated_text[0]['generated_token_ids'])
|
| 38 |
+
else:
|
| 39 |
+
print("The translated text does not contain 'generated_token_ids'")
|
| 40 |
+
return
|
| 41 |
+
|
| 42 |
+
# Use the text-to-speech pipeline to synthesize the translated text
|
| 43 |
+
synthesised_speech = tts(translated_text_str)
|
| 44 |
+
print(f"Synthesised speech: {synthesised_speech}") # Print the synthesised speech to see what it contains
|
| 45 |
+
|
| 46 |
+
# Check if the synthesised speech contains 'audio'
|
| 47 |
+
if 'audio' in synthesised_speech:
|
| 48 |
+
synthesised_speech_data = synthesised_speech['audio']
|
| 49 |
+
else:
|
| 50 |
+
print("The synthesised speech does not contain 'audio'")
|
| 51 |
+
return
|
| 52 |
|
| 53 |
+
# Scale the audio data to the range of int16 format
|
| 54 |
+
synthesised_speech = (synthesised_speech_data * 32767).astype(np.int16)
|
|
|
|
| 55 |
|
| 56 |
+
return 16000, synthesised_speech
|
|
|
|
| 57 |
|
| 58 |
# Define the Gradio interface
|
| 59 |
iface = gr.Interface(
|
| 60 |
fn=translate_speech,
|
| 61 |
+
inputs=gr.inputs.Audio(source="microphone", type="numpy"),
|
| 62 |
outputs=gr.outputs.Audio(type="numpy"),
|
| 63 |
title="Hausa to English Translation",
|
| 64 |
description="Realtime demo for Hausa to English translation using speech recognition and text-to-speech synthesis."
|