Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -15,53 +15,53 @@ def translate_speech(audio_data_tuple):
|
|
| 15 |
# Extract the audio data from the tuple
|
| 16 |
sample_rate, audio_data = audio_data_tuple
|
| 17 |
|
| 18 |
-
#
|
| 19 |
-
|
| 20 |
-
sf.write(temp_audio_file.name, audio_data, sample_rate)
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
| 63 |
|
| 64 |
-
return 16000, synthesised_speech
|
| 65 |
|
| 66 |
# Define the Gradio interface
|
| 67 |
iface = gr.Interface(
|
|
|
|
| 15 |
# Extract the audio data from the tuple
|
| 16 |
sample_rate, audio_data = audio_data_tuple
|
| 17 |
|
| 18 |
+
# Resample the audio data to 16000 Hz
|
| 19 |
+
audio_data_resampled = librosa.resample(audio_data, sample_rate, 16000)
|
|
|
|
| 20 |
|
| 21 |
+
# Prepare the input dictionary
|
| 22 |
+
input_dict = asr_processor(audio_data_resampled, sampling_rate=16000, return_tensors="pt", padding=True) # Pass the resampled audio_data here
|
| 23 |
|
| 24 |
+
# Use the ASR model to get the logits
|
| 25 |
+
logits = asr_model(input_dict.input_values.to("cpu")).logits
|
| 26 |
|
| 27 |
+
# Get the predicted IDs
|
| 28 |
+
pred_ids = torch.argmax(logits, dim=-1)[0]
|
| 29 |
|
| 30 |
+
# Decode the predicted IDs to get the transcription
|
| 31 |
+
transcription = asr_processor.decode(pred_ids)
|
| 32 |
+
print(f"Transcription: {transcription}") # Print the transcription
|
| 33 |
|
| 34 |
+
# Use the translation pipeline to translate the transcription
|
| 35 |
+
translated_text = translator(transcription, return_tensors="pt")
|
| 36 |
+
print(f"Translated text: {translated_text}") # Print the translated text
|
| 37 |
|
| 38 |
+
# Check if the translated text contains 'generated_token_ids'
|
| 39 |
+
if 'generated_token_ids' in translated_text[0]:
|
| 40 |
+
# Decode the tokens into text
|
| 41 |
+
translated_text_str = translator.tokenizer.decode(translated_text[0]['generated_token_ids'])
|
| 42 |
+
print(f"Translated text string: {translated_text_str}") # Print the translated text string
|
| 43 |
+
else:
|
| 44 |
+
print("The translated text does not contain 'generated_token_ids'")
|
| 45 |
+
return
|
| 46 |
|
| 47 |
+
# Use the text-to-speech pipeline to synthesize the translated text
|
| 48 |
+
synthesised_speech = tts(translated_text_str)
|
| 49 |
|
| 50 |
+
# Check if the synthesised speech contains 'audio'
|
| 51 |
+
if 'audio' in synthesised_speech:
|
| 52 |
+
synthesised_speech_data = synthesised_speech['audio']
|
| 53 |
+
else:
|
| 54 |
+
print("The synthesised speech does not contain 'audio'")
|
| 55 |
+
return
|
| 56 |
|
| 57 |
+
# Flatten the audio data
|
| 58 |
+
synthesised_speech_data = synthesised_speech_data.flatten()
|
| 59 |
|
| 60 |
+
# Scale the audio data to the range of int16 format
|
| 61 |
+
synthesised_speech = (synthesised_speech_data * 32767).astype(np.int16)
|
| 62 |
+
|
| 63 |
+
return 16000, synthesised_speech
|
| 64 |
|
|
|
|
| 65 |
|
| 66 |
# Define the Gradio interface
|
| 67 |
iface = gr.Interface(
|