Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,7 +10,12 @@ pipe = pipeline(
|
|
| 10 |
model="DrishtiSharma/whisper-large-v2-hausa",
|
| 11 |
tokenizer="DrishtiSharma/whisper-large-v2-hausa"
|
| 12 |
)
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
tts = pipeline("text-to-speech", model="Baghdad99/english_voice_tts")
|
| 15 |
|
| 16 |
# Define the function to translate speech
|
|
@@ -51,9 +56,16 @@ def translate_speech(audio_file):
|
|
| 51 |
print("The translated text does not contain 'generated_token_ids'")
|
| 52 |
return
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
# Use the text-to-speech pipeline to synthesize the translated text
|
| 55 |
synthesised_speech = tts(translated_text_str)
|
| 56 |
-
print(f"Synthesised speech: {synthesised_speech}") # Print the synthesised speech to see what it contains
|
| 57 |
|
| 58 |
# Check if the synthesised speech contains 'audio'
|
| 59 |
if 'audio' in synthesised_speech:
|
|
@@ -71,7 +83,6 @@ def translate_speech(audio_file):
|
|
| 71 |
return 16000, synthesised_speech
|
| 72 |
|
| 73 |
|
| 74 |
-
|
| 75 |
# Define the Gradio interface
|
| 76 |
iface = gr.Interface(
|
| 77 |
fn=translate_speech,
|
|
|
|
| 10 |
model="DrishtiSharma/whisper-large-v2-hausa",
|
| 11 |
tokenizer="DrishtiSharma/whisper-large-v2-hausa"
|
| 12 |
)
|
| 13 |
+
|
| 14 |
+
# Load the new translation model and tokenizer
|
| 15 |
+
model_name = 'jbochi/madlad400-3b-mt'
|
| 16 |
+
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
| 17 |
+
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
| 18 |
+
|
| 19 |
tts = pipeline("text-to-speech", model="Baghdad99/english_voice_tts")
|
| 20 |
|
| 21 |
# Define the function to translate speech
|
|
|
|
| 56 |
print("The translated text does not contain 'generated_token_ids'")
|
| 57 |
return
|
| 58 |
|
| 59 |
+
# Use the new translation model to translate the transcription
|
| 60 |
+
text = "translate Hausa to English: " + transcription
|
| 61 |
+
input_ids = tokenizer.encode(text, return_tensors="pt")
|
| 62 |
+
outputs = model.generate(input_ids=input_ids)
|
| 63 |
+
|
| 64 |
+
# Decode the tokens into text
|
| 65 |
+
translated_text_str = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 66 |
+
|
| 67 |
# Use the text-to-speech pipeline to synthesize the translated text
|
| 68 |
synthesised_speech = tts(translated_text_str)
|
|
|
|
| 69 |
|
| 70 |
# Check if the synthesised speech contains 'audio'
|
| 71 |
if 'audio' in synthesised_speech:
|
|
|
|
| 83 |
return 16000, synthesised_speech
|
| 84 |
|
| 85 |
|
|
|
|
| 86 |
# Define the Gradio interface
|
| 87 |
iface = gr.Interface(
|
| 88 |
fn=translate_speech,
|