|
|
|
|
|
|
|
|
BANNER = """ |
|
|
<div style="text-align: center; margin-bottom: 20px;"> |
|
|
<h1>π ImageNet-1k Leaderboard</h1> |
|
|
<p style="font-size: 18px; color: #666;">Compare computer vision models on ImageNet-1k classification</p> |
|
|
</div> |
|
|
""" |
|
|
|
|
|
INTRODUCTION_TEXT = """ |
|
|
# ImageNet-1k Leaderboard |
|
|
|
|
|
Welcome to the ImageNet-1k Leaderboard! This leaderboard tracks the performance of various computer vision models on the ImageNet-1k dataset, which contains 1.2 million training images across 1000 classes. |
|
|
|
|
|
## Key Metrics |
|
|
|
|
|
- **Top-1 Accuracy**: Percentage of images where the model's top prediction is correct |
|
|
- **Top-5 Accuracy**: Percentage of images where the correct class is among the top 5 predictions |
|
|
- **Parameters**: Number of trainable parameters in the model |
|
|
- **FLOPs**: Floating point operations required for inference |
|
|
- **Inference Time**: Average time per image (if available) |
|
|
|
|
|
## Dataset |
|
|
|
|
|
ImageNet-1k is a subset of the ImageNet dataset containing: |
|
|
- **Training set**: 1.2M images |
|
|
- **Validation set**: 50K images |
|
|
- **Classes**: 1000 object categories |
|
|
- **Image size**: Variable (typically resized to 224x224 or 384x384) |
|
|
|
|
|
## Hardware Configuration |
|
|
|
|
|
All results are tested on **NVIDIA L4 GPU** to ensure consistent and fair comparison across models. |
|
|
|
|
|
The leaderboard is sorted by Top-1 Accuracy (descending) as the primary metric. |
|
|
""" |
|
|
|
|
|
CITATION_TEXT = """@article{imagenet, |
|
|
title={ImageNet: A large-scale hierarchical image database}, |
|
|
author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li}, |
|
|
journal={2009 IEEE conference on computer vision and pattern recognition}, |
|
|
pages={248--255}, |
|
|
year={2009}, |
|
|
organization={IEEE} |
|
|
}""" |
|
|
|
|
|
METRICS_TAB_TEXT = """ |
|
|
# Evaluation Metrics |
|
|
|
|
|
## Hardware Configuration |
|
|
All models are evaluated on **NVIDIA L4 GPU** to ensure consistent and fair comparison across different architectures. |
|
|
|
|
|
## Top-1 Accuracy |
|
|
The percentage of test images for which the model's highest confidence prediction matches the ground truth label. |
|
|
|
|
|
## Top-5 Accuracy |
|
|
The percentage of test images for which the ground truth label appears in the model's top 5 highest confidence predictions. |
|
|
|
|
|
## Parameters |
|
|
The total number of trainable parameters in the model. This gives an indication of model complexity and size. |
|
|
|
|
|
## FLOPs (Floating Point Operations) |
|
|
The number of floating point operations required for a single forward pass through the model. This is a measure of computational complexity. |
|
|
|
|
|
## Inference Time |
|
|
The average time required to process a single image on NVIDIA L4 GPU. This metric helps compare the computational efficiency of different models. |
|
|
|
|
|
## Model Size |
|
|
The size of the model file in MB or GB, indicating storage requirements. |
|
|
""" |
|
|
|
|
|
|
|
|
from pathlib import Path |
|
|
DIR_OUTPUT_REQUESTS = Path("evaluation_requests") |
|
|
|
|
|
|
|
|
LEADERBOARD_CSS = """ |
|
|
.leaderboard-table { |
|
|
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; |
|
|
} |
|
|
|
|
|
.leaderboard-table th { |
|
|
background-color: #f8f9fa; |
|
|
font-weight: bold; |
|
|
text-align: center; |
|
|
padding: 12px; |
|
|
border: 1px solid #dee2e6; |
|
|
} |
|
|
|
|
|
.leaderboard-table td { |
|
|
text-align: center; |
|
|
padding: 8px 12px; |
|
|
border: 1px solid #dee2e6; |
|
|
} |
|
|
|
|
|
.leaderboard-table tr:nth-child(even) { |
|
|
background-color: #f8f9fa; |
|
|
} |
|
|
|
|
|
.leaderboard-table tr:hover { |
|
|
background-color: #e9ecef; |
|
|
} |
|
|
|
|
|
.markdown-text { |
|
|
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; |
|
|
line-height: 1.6; |
|
|
} |
|
|
|
|
|
.tab-buttons { |
|
|
margin-bottom: 20px; |
|
|
} |
|
|
|
|
|
#banner { |
|
|
text-align: center; |
|
|
margin-bottom: 30px; |
|
|
padding: 20px; |
|
|
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); |
|
|
color: white; |
|
|
border-radius: 10px; |
|
|
} |
|
|
|
|
|
#show-proprietary-checkbox { |
|
|
margin-top: 10px; |
|
|
} |
|
|
""" |
|
|
|