Spaces:
Running
Running
| """Main application module for NER annotation tool.""" | |
| import os | |
| import json | |
| import gradio as gr | |
| from typing import List, Dict, Union, Tuple | |
| from src.ner_annotation.core.dataset import DynamicDataset, prepare_for_highlight | |
| from src.ner_annotation.core.annotator import AutoAnnotator | |
| from src.ner_annotation.utils.text_processing import extract_tokens_and_labels | |
| from src.ner_annotation.utils.file_processing import process_uploaded_file, load_from_local_file | |
| from src.ner_annotation.utils.huggingface import ( | |
| is_valid_repo_name, | |
| upload_to_hf, | |
| download_from_hf | |
| ) | |
| # Available models for annotation | |
| AVAILABLE_MODELS = [ | |
| "BookingCare/gliner-multi-healthcare", | |
| "knowledgator/gliner-multitask-large-v0.5", | |
| "knowledgator/gliner-multitask-base-v0.5" | |
| ] | |
| # Global variables | |
| dynamic_dataset = None | |
| annotator = None | |
| sentences = [] | |
| def load_dataset(): | |
| """Load the dataset and return the first example.""" | |
| global dynamic_dataset | |
| try: | |
| with open("data/annotated_data.json", 'rt') as dataset: | |
| ANNOTATED_DATA = json.load(dataset) | |
| dynamic_dataset = DynamicDataset(ANNOTATED_DATA) | |
| max_value = len(dynamic_dataset.data) - 1 if dynamic_dataset.data else 0 | |
| return prepare_for_highlight(dynamic_dataset.load_current_example()), gr.update(value=0, maximum=max_value) | |
| except Exception as e: | |
| return [("Error loading dataset: " + str(e), None)], gr.update(value=0, maximum=1) | |
| def example_by_id(id): | |
| """Navigate to a specific example by ID.""" | |
| global dynamic_dataset | |
| if dynamic_dataset is None: | |
| return [("Please load a dataset first", None)], gr.update(value=0, maximum=1) | |
| try: | |
| id = int(id) | |
| dynamic_dataset.example_by_id(id) | |
| current = dynamic_dataset.current | |
| max_value = len(dynamic_dataset.data) - 1 | |
| return prepare_for_highlight(dynamic_dataset.load_current_example()), gr.update(value=current, maximum=max_value) | |
| except Exception as e: | |
| return [("Error navigating to example: " + str(e), None)], gr.update(value=0, maximum=1) | |
| def next_example(): | |
| """Move to the next example.""" | |
| global dynamic_dataset | |
| if dynamic_dataset is None: | |
| return [("Please load a dataset first", None)], gr.update(value=0, maximum=1) | |
| try: | |
| dynamic_dataset.next_example() | |
| current = dynamic_dataset.current | |
| max_value = len(dynamic_dataset.data) - 1 | |
| return prepare_for_highlight(dynamic_dataset.load_current_example()), gr.update(value=current, maximum=max_value) | |
| except Exception as e: | |
| return [("Error navigating to next example: " + str(e), None)], gr.update(value=0, maximum=1) | |
| def previous_example(): | |
| """Move to the previous example.""" | |
| global dynamic_dataset | |
| if dynamic_dataset is None: | |
| return [("Please load a dataset first", None)], gr.update(value=0, maximum=1) | |
| try: | |
| dynamic_dataset.previous_example() | |
| current = dynamic_dataset.current | |
| max_value = len(dynamic_dataset.data) - 1 | |
| return prepare_for_highlight(dynamic_dataset.load_current_example()), gr.update(value=current, maximum=max_value) | |
| except Exception as e: | |
| return [("Error navigating to previous example: " + str(e), None)], gr.update(value=0, maximum=1) | |
| def update_example(data): | |
| """Update the current example with new annotations.""" | |
| global dynamic_dataset | |
| if dynamic_dataset is None: | |
| return [("Please load a dataset first", None)] | |
| tokens, ner = extract_tokens_and_labels(data) | |
| dynamic_dataset.data[dynamic_dataset.current]["tokenized_text"] = tokens | |
| dynamic_dataset.data[dynamic_dataset.current]["ner"] = ner | |
| return prepare_for_highlight(dynamic_dataset.load_current_example()) | |
| def validate_example(): | |
| """Mark the current example as validated.""" | |
| global dynamic_dataset | |
| if dynamic_dataset is None: | |
| return [("Please load a dataset first", None)] | |
| dynamic_dataset.data[dynamic_dataset.current]["validated"] = True | |
| return [("The example was validated!", None)] | |
| def save_dataset(inp): | |
| """Save the dataset to a file.""" | |
| global dynamic_dataset | |
| if dynamic_dataset is None: | |
| return [("Please load a dataset first", None)] | |
| with open("data/annotated_data.json", "wt") as file: | |
| json.dump(dynamic_dataset.data, file) | |
| return [("The validated dataset was saved as data/annotated_data.json", None)] | |
| def annotate(model, labels, threshold, prompt, save_to_hub, repo_name, repo_type, is_private): | |
| """Annotate the uploaded text using the selected model.""" | |
| global annotator, sentences | |
| try: | |
| if not sentences: | |
| return "Please upload a file with text first!" | |
| if save_to_hub and not is_valid_repo_name(repo_name): | |
| return "Error: Invalid repo name. Only use letters, numbers, '-', '_', or '.' (no slashes or spaces)." | |
| labels = [label.strip() for label in labels.split(",")] | |
| annotator = AutoAnnotator(model) | |
| annotated_data = annotator.auto_annotate(sentences, labels, prompt, threshold) | |
| # Save annotated data locally | |
| os.makedirs("data", exist_ok=True) | |
| local_path = "data/annotated_data.json" | |
| with open(local_path, "wt") as file: | |
| json.dump(annotated_data, file, ensure_ascii=False) | |
| status_messages = [f"Successfully annotated and saved locally to {local_path}"] | |
| # Upload to Hugging Face Hub if requested | |
| if save_to_hub: | |
| try: | |
| repo_id = upload_to_hf(local_path, repo_name, repo_type, is_private) | |
| status_messages.append(f"Successfully uploaded to Hugging Face Hub repository: {repo_id}") | |
| except Exception as e: | |
| status_messages.append(f"Error with Hugging Face Hub: {str(e)}") | |
| return "\n".join(status_messages) | |
| except Exception as e: | |
| return f"Error during annotation: {str(e)}" | |
| def load_from_huggingface(name): | |
| """Load a dataset from Hugging Face Hub.""" | |
| global dynamic_dataset | |
| try: | |
| # Download dataset from Hugging Face Hub | |
| local_path = download_from_hf(name, "annotated_data.json") | |
| # Load the downloaded dataset | |
| with open(local_path, 'rt') as dataset: | |
| data = json.load(dataset) | |
| # Initialize the dataset | |
| dynamic_dataset = DynamicDataset(data) | |
| return "Successfully loaded dataset from Hugging Face Hub" | |
| except Exception as e: | |
| return f"Error loading dataset from Hugging Face Hub: {str(e)}" | |
| def update_hf_dataset(repo_name, repo_type, is_private): | |
| """Upload the current dataset to Hugging Face Hub.""" | |
| global dynamic_dataset | |
| if dynamic_dataset is None: | |
| return "Please load a dataset first" | |
| try: | |
| if not is_valid_repo_name(repo_name): | |
| return "Error: Invalid repo name. Only use letters, numbers, '-', '_', or '.' (no slashes or spaces)." | |
| # Save dataset locally first | |
| os.makedirs("data", exist_ok=True) | |
| local_path = "data/annotated_data.json" | |
| with open(local_path, "wt") as file: | |
| json.dump(dynamic_dataset.data, file, ensure_ascii=False) | |
| # Upload to Hugging Face Hub | |
| repo_id = upload_to_hf(local_path, repo_name, repo_type, is_private) | |
| return f"Successfully uploaded to Hugging Face Hub repository: {repo_id}" | |
| except Exception as e: | |
| return f"Error uploading to Hugging Face Hub: {str(e)}" | |
| def process_conll(content): | |
| """Convert CoNLL format to JSON.""" | |
| sentences = [] | |
| current_sentence = {"text": "", "tokenized_text": [], "ner": []} | |
| for line in content.split('\n'): | |
| if not line.strip(): | |
| if current_sentence["text"]: | |
| sentences.append(current_sentence) | |
| current_sentence = {"text": "", "tokenized_text": [], "ner": []} | |
| continue | |
| parts = line.split() | |
| if len(parts) >= 2: | |
| token, label = parts[0], parts[-1] | |
| current_sentence["tokenized_text"].append(token) | |
| current_sentence["ner"].append(label) | |
| current_sentence["text"] += token + " " | |
| if current_sentence["text"]: | |
| sentences.append(current_sentence) | |
| return sentences | |
| def process_txt(content): | |
| """Convert plain text to JSON format.""" | |
| sentences = [] | |
| for line in content.split('\n'): | |
| if line.strip(): | |
| sentences.append({ | |
| "text": line.strip(), | |
| "tokenized_text": line.strip().split(), | |
| "ner": ["O"] * len(line.strip().split()) | |
| }) | |
| return sentences | |
| def process_local_file(file_obj, format): | |
| """Process a local file and save it as JSON.""" | |
| try: | |
| if file_obj is None: | |
| return "No file uploaded" | |
| # Get the file content from the Gradio file object | |
| content = file_obj.name | |
| with open(content, 'r', encoding='utf-8') as f: | |
| content = f.read() | |
| if format == "json": | |
| data = json.loads(content) | |
| elif format == "conll": | |
| data = process_conll(content) | |
| elif format == "txt": | |
| data = process_txt(content) | |
| else: | |
| return "Unsupported file format" | |
| os.makedirs("data", exist_ok=True) | |
| with open("data/annotated_data.json", "wt") as f: | |
| json.dump(data, f, ensure_ascii=False) | |
| return "Successfully processed and saved file" | |
| except Exception as e: | |
| return f"Error processing file: {str(e)}" | |
| def create_interface(): | |
| """Create and return the Gradio interface.""" | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# NER Annotation Tool") | |
| with gr.Tabs(): | |
| with gr.TabItem("Auto Annotation"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| file_uploader = gr.File(label="Upload text file (one sentence per line)") | |
| upload_status = gr.Textbox(label="Upload Status") | |
| file_uploader.change(fn=process_uploaded_file, inputs=[file_uploader], outputs=[upload_status]) | |
| with gr.Column(): | |
| model = gr.Dropdown( | |
| label="Choose the model for annotation", | |
| choices=AVAILABLE_MODELS, | |
| value=AVAILABLE_MODELS[0] | |
| ) | |
| labels = gr.Textbox( | |
| label="Labels", | |
| placeholder="Enter comma-separated labels (e.g., PERSON,ORG,LOC)", | |
| scale=2 | |
| ) | |
| threshold = gr.Slider( | |
| 0, 1, | |
| value=0.3, | |
| step=0.01, | |
| label="Threshold", | |
| info="Lower threshold increases entity predictions" | |
| ) | |
| prompt = gr.Textbox( | |
| label="Prompt", | |
| placeholder="Enter your annotation prompt (optional)", | |
| scale=2 | |
| ) | |
| with gr.Group(): | |
| gr.Markdown("### Save Options") | |
| save_to_hub = gr.Checkbox( | |
| label="Save to Hugging Face Hub", | |
| value=False | |
| ) | |
| with gr.Group(visible=False) as hub_settings: | |
| gr.Markdown("#### Hugging Face Hub Settings") | |
| repo_name = gr.Textbox( | |
| label="Repository Name", | |
| placeholder="Enter repository name (e.g., my-ner-dataset)", | |
| scale=2 | |
| ) | |
| repo_type = gr.Dropdown( | |
| choices=["dataset", "model", "space"], | |
| value="dataset", | |
| label="Repository Type" | |
| ) | |
| is_private = gr.Checkbox( | |
| label="Private Repository", | |
| value=False | |
| ) | |
| annotate_btn = gr.Button("Annotate Data") | |
| output_info = gr.Textbox(label="Processing Status") | |
| # Add download buttons for annotated data | |
| with gr.Row(): | |
| download_btn_annot = gr.Button("Download Annotated Data", visible=False) | |
| download_file_annot = gr.File(label="Download", interactive=False, visible=False) | |
| download_status = gr.Textbox(label="Download Status", visible=False) | |
| def toggle_hub_settings(save_to_hub): | |
| return { | |
| hub_settings: gr.update(visible=save_to_hub) | |
| } | |
| save_to_hub.change( | |
| fn=toggle_hub_settings, | |
| inputs=[save_to_hub], | |
| outputs=[hub_settings] | |
| ) | |
| def show_download_buttons(status): | |
| if status and status.startswith("Successfully annotated and saved locally"): | |
| return gr.update(visible=True), gr.update(visible=True) | |
| return gr.update(visible=False), gr.update(visible=False) | |
| annotate_btn.click( | |
| fn=annotate, | |
| inputs=[ | |
| model, labels, threshold, prompt, | |
| save_to_hub, repo_name, repo_type, is_private | |
| ], | |
| outputs=[output_info] | |
| ) | |
| output_info.change( | |
| fn=show_download_buttons, | |
| inputs=[output_info], | |
| outputs=[download_btn_annot, download_status] | |
| ) | |
| def handle_download_annot(): | |
| file_path = "data/annotated_data.json" | |
| if os.path.exists(file_path): | |
| return gr.update(value=file_path, visible=True) | |
| return gr.update(visible=False) | |
| download_btn_annot.click( | |
| fn=handle_download_annot, | |
| inputs=None, | |
| outputs=[download_file_annot] | |
| ) | |
| with gr.TabItem("Dataset Viewer"): | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| gr.Markdown("### Dataset Controls") | |
| with gr.Group(): | |
| with gr.Row(): | |
| load_local_btn = gr.Button("Load Local Dataset", variant="primary") | |
| load_hf_btn = gr.Button("Load from Hugging Face", variant="secondary") | |
| with gr.Group() as local_inputs: | |
| local_file = gr.File(label="Upload Local Dataset") | |
| file_format = gr.Dropdown( | |
| choices=["json", "conll", "txt"], | |
| value="json", | |
| label="File Format" | |
| ) | |
| local_status = gr.Textbox(label="Status", interactive=False) | |
| with gr.Group(visible=False) as hf_inputs: | |
| with gr.Row(): | |
| dataset_name = gr.Textbox( | |
| label="Dataset Name", | |
| placeholder="Enter dataset name (e.g., conll2003)", | |
| scale=4 | |
| ) | |
| with gr.Row(): | |
| gr.Column(scale=1) | |
| load_dataset_btn = gr.Button("📥 Load Dataset", variant="primary") | |
| gr.Column(scale=1) | |
| with gr.Row(): | |
| gr.Markdown( | |
| "💡 Tip: Enter a valid Hugging Face dataset name", | |
| elem_classes=["text-sm", "text-gray-500"] | |
| ) | |
| gr.Markdown("### Navigation") | |
| with gr.Group(): | |
| bar = gr.Slider( | |
| minimum=0, | |
| maximum=1, | |
| step=1, | |
| label="Progress", | |
| interactive=True, | |
| info="Use slider to navigate through examples" | |
| ) | |
| with gr.Row(): | |
| previous_btn = gr.Button("← Previous", variant="secondary") | |
| next_btn = gr.Button("Next →", variant="secondary") | |
| gr.Markdown("### Actions") | |
| with gr.Group(): | |
| with gr.Row(): | |
| apply_btn = gr.Button("Apply Changes", variant="primary") | |
| validate_btn = gr.Button("Validate", variant="secondary") | |
| save_btn = gr.Button("Save Dataset", variant="primary") | |
| gr.Markdown("### Hugging Face Upload") | |
| with gr.Group(): | |
| with gr.Row(): | |
| show_hf_upload_btn = gr.Button("📤 Show Upload Options", variant="secondary", scale=1) | |
| hide_hf_upload_btn = gr.Button("📥 Hide Upload Options", visible=False, variant="secondary", scale=1) | |
| with gr.Group(visible=False) as hf_upload_group: | |
| with gr.Row(): | |
| hf_repo_name = gr.Textbox( | |
| label="Repository Name", | |
| placeholder="Enter repository name (e.g., my-ner-dataset)", | |
| scale=2 | |
| ) | |
| hf_repo_type = gr.Dropdown( | |
| choices=["dataset", "model", "space"], | |
| value="dataset", | |
| label="Repository Type", | |
| scale=1 | |
| ) | |
| with gr.Row(): | |
| hf_is_private = gr.Checkbox( | |
| label="Private Repository", | |
| value=False, | |
| scale=1 | |
| ) | |
| upload_to_hf_btn = gr.Button("Upload to Hugging Face", variant="primary", scale=2) | |
| hf_upload_status = gr.Textbox( | |
| label="Upload Status", | |
| interactive=False, | |
| show_label=True | |
| ) | |
| def toggle_upload_options(show: bool): | |
| return { | |
| hf_upload_group: gr.update(visible=show), | |
| show_hf_upload_btn: gr.update(visible=not show), | |
| hide_hf_upload_btn: gr.update(visible=show) | |
| } | |
| show_hf_upload_btn.click( | |
| fn=lambda: toggle_upload_options(True), | |
| inputs=None, | |
| outputs=[hf_upload_group, show_hf_upload_btn, hide_hf_upload_btn] | |
| ) | |
| hide_hf_upload_btn.click( | |
| fn=lambda: toggle_upload_options(False), | |
| inputs=None, | |
| outputs=[hf_upload_group, show_hf_upload_btn, hide_hf_upload_btn] | |
| ) | |
| with gr.Column(scale=2): | |
| gr.Markdown("### Current Example") | |
| inp_box = gr.HighlightedText(value=None, interactive=True) | |
| def toggle_local_inputs(): | |
| return { | |
| local_inputs: gr.update(visible=True), | |
| hf_inputs: gr.update(visible=False) | |
| } | |
| def toggle_hf_inputs(): | |
| return { | |
| local_inputs: gr.update(visible=False), | |
| hf_inputs: gr.update(visible=True) | |
| } | |
| load_local_btn.click( | |
| fn=toggle_local_inputs, | |
| inputs=None, | |
| outputs=[local_inputs, hf_inputs] | |
| ) | |
| load_hf_btn.click( | |
| fn=toggle_hf_inputs, | |
| inputs=None, | |
| outputs=[local_inputs, hf_inputs] | |
| ) | |
| def process_and_load_local(file_obj, format): | |
| status = process_local_file(file_obj, format) | |
| if "Successfully" in status: | |
| result = load_dataset() | |
| return result[0], result[1], status | |
| return [("Error loading dataset: " + status, None)], gr.update(value=0, maximum=1), status | |
| local_file.change( | |
| fn=process_and_load_local, | |
| inputs=[local_file, file_format], | |
| outputs=[inp_box, bar, local_status] | |
| ) | |
| def load_hf_dataset(name): | |
| status = load_from_huggingface(name) | |
| if "Successfully" in status: | |
| return load_dataset() | |
| return [("Error loading dataset: " + status, None)], gr.update(value=0, maximum=1) | |
| load_dataset_btn.click( | |
| fn=load_hf_dataset, | |
| inputs=[dataset_name], | |
| outputs=[inp_box, bar] | |
| ) | |
| apply_btn.click(fn=update_example, inputs=inp_box, outputs=inp_box) | |
| save_btn.click(fn=save_dataset, inputs=inp_box, outputs=inp_box) | |
| validate_btn.click(fn=validate_example, inputs=None, outputs=inp_box) | |
| next_btn.click(fn=next_example, inputs=None, outputs=[inp_box, bar]) | |
| previous_btn.click(fn=previous_example, inputs=None, outputs=[inp_box, bar]) | |
| bar.change( | |
| fn=example_by_id, | |
| inputs=[bar], | |
| outputs=[inp_box, bar], | |
| api_name="example_by_id" | |
| ) | |
| upload_to_hf_btn.click( | |
| fn=update_hf_dataset, | |
| inputs=[hf_repo_name, hf_repo_type, hf_is_private], | |
| outputs=[hf_upload_status] | |
| ) | |
| return demo | |
| def main(): | |
| """Run the application.""" | |
| demo = create_interface() | |
| demo.launch() | |
| if __name__ == "__main__": | |
| main() |