File size: 14,608 Bytes
f472b08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
from dataclasses import asdict, replace

import numpy as np
import pytest
from diffusers import StableDiffusionPipeline

from peft import (
    BOFTConfig,
    HRAConfig,
    LoHaConfig,
    LoKrConfig,
    LoraConfig,
    OFTConfig,
    get_peft_model,
    get_peft_model_state_dict,
    inject_adapter_in_model,
    set_peft_model_state_dict,
)
from peft.tuners.tuners_utils import BaseTunerLayer

from .testing_common import PeftCommonTester
from .testing_utils import set_init_weights_false, temp_seed


PEFT_DIFFUSERS_SD_MODELS_TO_TEST = ["hf-internal-testing/tiny-sd-pipe"]
DIFFUSERS_CONFIGS = [
    (
        LoraConfig,
        {
            "text_encoder": {
                "r": 8,
                "lora_alpha": 32,
                "target_modules": ["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"],
                "lora_dropout": 0.0,
                "bias": "none",
                "init_lora_weights": False,
            },
            "unet": {
                "r": 8,
                "lora_alpha": 32,
                "target_modules": [
                    "proj_in",
                    "proj_out",
                    "to_k",
                    "to_q",
                    "to_v",
                    "to_out.0",
                    "ff.net.0.proj",
                    "ff.net.2",
                ],
                "lora_dropout": 0.0,
                "bias": "none",
                "init_lora_weights": False,
            },
        },
    ),
    (
        LoHaConfig,
        {
            "text_encoder": {
                "r": 8,
                "alpha": 32,
                "target_modules": ["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"],
                "rank_dropout": 0.0,
                "module_dropout": 0.0,
                "init_weights": False,
            },
            "unet": {
                "r": 8,
                "alpha": 32,
                "target_modules": [
                    "proj_in",
                    "proj_out",
                    "to_k",
                    "to_q",
                    "to_v",
                    "to_out.0",
                    "ff.net.0.proj",
                    "ff.net.2",
                ],
                "rank_dropout": 0.0,
                "module_dropout": 0.0,
                "init_weights": False,
            },
        },
    ),
    (
        LoKrConfig,
        {
            "text_encoder": {
                "r": 8,
                "alpha": 32,
                "target_modules": ["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"],
                "rank_dropout": 0.0,
                "module_dropout": 0.0,
                "init_weights": False,
            },
            "unet": {
                "r": 8,
                "alpha": 32,
                "target_modules": [
                    "proj_in",
                    "proj_out",
                    "to_k",
                    "to_q",
                    "to_v",
                    "to_out.0",
                    "ff.net.0.proj",
                    "ff.net.2",
                ],
                "rank_dropout": 0.0,
                "module_dropout": 0.0,
                "init_weights": False,
            },
        },
    ),
    (
        OFTConfig,
        {
            "text_encoder": {
                "r": 1,
                "oft_block_size": 0,
                "target_modules": ["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"],
                "module_dropout": 0.0,
                "init_weights": False,
                "use_cayley_neumann": False,
            },
            "unet": {
                "r": 1,
                "oft_block_size": 0,
                "target_modules": [
                    "proj_in",
                    "proj_out",
                    "to_k",
                    "to_q",
                    "to_v",
                    "to_out.0",
                    "ff.net.0.proj",
                    "ff.net.2",
                ],
                "module_dropout": 0.0,
                "init_weights": False,
                "use_cayley_neumann": False,
            },
        },
    ),
    (
        BOFTConfig,
        {
            "text_encoder": {
                "boft_block_num": 1,
                "boft_block_size": 0,
                "target_modules": ["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"],
                "boft_dropout": 0.0,
                "init_weights": False,
            },
            "unet": {
                "boft_block_num": 1,
                "boft_block_size": 0,
                "target_modules": [
                    "proj_in",
                    "proj_out",
                    "to_k",
                    "to_q",
                    "to_v",
                    "to_out.0",
                    "ff.net.0.proj",
                    "ff.net.2",
                ],
                "boft_dropout": 0.0,
                "init_weights": False,
            },
        },
    ),
    (
        HRAConfig,
        {
            "text_encoder": {
                "r": 8,
                "target_modules": ["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"],
                "init_weights": False,
            },
            "unet": {
                "r": 8,
                "target_modules": [
                    "proj_in",
                    "proj_out",
                    "to_k",
                    "to_q",
                    "to_v",
                    "to_out.0",
                    "ff.net.0.proj",
                    "ff.net.2",
                ],
                "init_weights": False,
            },
        },
    ),
]


def skip_if_not_lora(config_cls):
    if config_cls != LoraConfig:
        pytest.skip("Skipping test because it is only applicable to LoraConfig")


class TestStableDiffusionModel(PeftCommonTester):
    r"""
    Tests that diffusers StableDiffusion model works with PEFT as expected.
    """

    transformers_class = StableDiffusionPipeline
    sd_model = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sd-pipe")

    def instantiate_sd_peft(self, model_id, config_cls, config_kwargs):
        # Instantiate StableDiffusionPipeline
        if model_id == "hf-internal-testing/tiny-sd-pipe":
            # in CI, this model often times out on the hub, let's cache it
            model = copy.deepcopy(self.sd_model)
        else:
            model = self.transformers_class.from_pretrained(model_id)

        config_kwargs = config_kwargs.copy()
        text_encoder_kwargs = config_kwargs.pop("text_encoder")
        unet_kwargs = config_kwargs.pop("unet")
        # the remaining config kwargs should be applied to both configs
        for key, val in config_kwargs.items():
            text_encoder_kwargs[key] = val
            unet_kwargs[key] = val

        # Instantiate text_encoder adapter
        config_text_encoder = config_cls(**text_encoder_kwargs)
        model.text_encoder = get_peft_model(model.text_encoder, config_text_encoder)

        # Instantiate unet adapter
        config_unet = config_cls(**unet_kwargs)
        model.unet = get_peft_model(model.unet, config_unet)

        # Move model to device
        model = model.to(self.torch_device)

        return model

    def prepare_inputs_for_testing(self):
        return {
            "prompt": "a high quality digital photo of a cute corgi",
            "num_inference_steps": 3,
        }

    @pytest.mark.parametrize("model_id", PEFT_DIFFUSERS_SD_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", DIFFUSERS_CONFIGS)
    def test_merge_layers(self, model_id, config_cls, config_kwargs):
        if (config_cls == LoKrConfig) and (self.torch_device not in ["cuda", "xpu"]):
            pytest.skip("Merging test with LoKr fails without GPU")

        # Instantiate model & adapters
        config_kwargs = set_init_weights_false(config_cls, config_kwargs)
        model = self.instantiate_sd_peft(model_id, config_cls, config_kwargs)

        # Generate output for peft modified StableDiffusion
        dummy_input = self.prepare_inputs_for_testing()
        with temp_seed(seed=42):
            peft_output = np.array(model(**dummy_input).images[0]).astype(np.float32)

        # Merge adapter and model
        if config_cls not in [LoHaConfig, OFTConfig, HRAConfig]:
            # TODO: Merging the text_encoder is leading to issues on CPU with PyTorch 2.1
            model.text_encoder = model.text_encoder.merge_and_unload()
        model.unet = model.unet.merge_and_unload()

        # Generate output for peft merged StableDiffusion
        with temp_seed(seed=42):
            merged_output = np.array(model(**dummy_input).images[0]).astype(np.float32)

        # Images are in uint8 drange, so use large atol
        assert np.allclose(peft_output, merged_output, atol=1.0)

    @pytest.mark.parametrize("model_id", PEFT_DIFFUSERS_SD_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", DIFFUSERS_CONFIGS)
    def test_merge_layers_safe_merge(self, model_id, config_cls, config_kwargs):
        if (config_cls == LoKrConfig) and (self.torch_device not in ["cuda", "xpu"]):
            pytest.skip("Merging test with LoKr fails without GPU")

        # Instantiate model & adapters
        model = self.instantiate_sd_peft(model_id, config_cls, config_kwargs)

        # Generate output for peft modified StableDiffusion
        dummy_input = self.prepare_inputs_for_testing()
        with temp_seed(seed=42):
            peft_output = np.array(model(**dummy_input).images[0]).astype(np.float32)

        # Merge adapter and model
        if config_cls not in [LoHaConfig, OFTConfig, HRAConfig]:
            # TODO: Merging the text_encoder is leading to issues on CPU with PyTorch 2.1
            model.text_encoder = model.text_encoder.merge_and_unload(safe_merge=True)
        model.unet = model.unet.merge_and_unload(safe_merge=True)

        # Generate output for peft merged StableDiffusion
        with temp_seed(seed=42):
            merged_output = np.array(model(**dummy_input).images[0]).astype(np.float32)

        # Images are in uint8 drange, so use large atol
        assert np.allclose(peft_output, merged_output, atol=1.0)

    @pytest.mark.parametrize("model_id", PEFT_DIFFUSERS_SD_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", DIFFUSERS_CONFIGS)
    def test_add_weighted_adapter_base_unchanged(self, model_id, config_cls, config_kwargs):
        skip_if_not_lora(config_cls)
        # Instantiate model & adapters
        config_kwargs = set_init_weights_false(config_cls, config_kwargs)
        model = self.instantiate_sd_peft(model_id, config_cls, config_kwargs)

        # Get current available adapter config
        text_encoder_adapter_name = next(iter(model.text_encoder.peft_config.keys()))
        unet_adapter_name = next(iter(model.unet.peft_config.keys()))
        text_encoder_adapter_config = replace(model.text_encoder.peft_config[text_encoder_adapter_name])
        unet_adapter_config = replace(model.unet.peft_config[unet_adapter_name])

        # Create weighted adapters
        model.text_encoder.add_weighted_adapter([unet_adapter_name], [0.5], "weighted_adapter_test")
        model.unet.add_weighted_adapter([unet_adapter_name], [0.5], "weighted_adapter_test")

        # Assert that base adapters config did not change
        assert asdict(text_encoder_adapter_config) == asdict(model.text_encoder.peft_config[text_encoder_adapter_name])
        assert asdict(unet_adapter_config) == asdict(model.unet.peft_config[unet_adapter_name])

    @pytest.mark.parametrize("model_id", PEFT_DIFFUSERS_SD_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", DIFFUSERS_CONFIGS)
    def test_disable_adapter(self, model_id, config_cls, config_kwargs):
        config_kwargs = set_init_weights_false(config_cls, config_kwargs)
        self._test_disable_adapter(model_id, config_cls, config_kwargs)

    @pytest.mark.parametrize("model_id", PEFT_DIFFUSERS_SD_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", DIFFUSERS_CONFIGS)
    def test_load_model_low_cpu_mem_usage(self, model_id, config_cls, config_kwargs):
        # Instantiate model & adapters
        pipe = self.instantiate_sd_peft(model_id, config_cls, config_kwargs)

        te_state_dict = get_peft_model_state_dict(pipe.text_encoder)
        unet_state_dict = get_peft_model_state_dict(pipe.unet)

        del pipe
        pipe = self.instantiate_sd_peft(model_id, config_cls, config_kwargs)

        config_kwargs = config_kwargs.copy()
        text_encoder_kwargs = config_kwargs.pop("text_encoder")
        unet_kwargs = config_kwargs.pop("unet")
        # the remaining config kwargs should be applied to both configs
        for key, val in config_kwargs.items():
            text_encoder_kwargs[key] = val
            unet_kwargs[key] = val

        config_text_encoder = config_cls(**text_encoder_kwargs)
        config_unet = config_cls(**unet_kwargs)

        # check text encoder
        inject_adapter_in_model(config_text_encoder, pipe.text_encoder, low_cpu_mem_usage=True)
        # sanity check that the adapter was applied:
        assert any(isinstance(module, BaseTunerLayer) for module in pipe.text_encoder.modules())

        assert "meta" in {p.device.type for p in pipe.text_encoder.parameters()}
        set_peft_model_state_dict(pipe.text_encoder, te_state_dict, low_cpu_mem_usage=True)
        assert "meta" not in {p.device.type for p in pipe.text_encoder.parameters()}

        # check unet
        inject_adapter_in_model(config_unet, pipe.unet, low_cpu_mem_usage=True)
        # sanity check that the adapter was applied:
        assert any(isinstance(module, BaseTunerLayer) for module in pipe.unet.modules())

        assert "meta" in {p.device.type for p in pipe.unet.parameters()}
        set_peft_model_state_dict(pipe.unet, unet_state_dict, low_cpu_mem_usage=True)
        assert "meta" not in {p.device.type for p in pipe.unet.parameters()}