File size: 19,463 Bytes
302920f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import tempfile

import pytest
import torch
from torch.testing import assert_close
from transformers import AutoModelForCausalLM

from peft import get_peft_model
from peft.peft_model import PeftModel
from peft.tuners.adaption_prompt import AdaptionPromptConfig
from peft.utils import infer_device
from peft.utils.other import prepare_model_for_kbit_training
from peft.utils.save_and_load import get_peft_model_state_dict


MODELS_TO_TEST = [
    "hf-internal-testing/tiny-random-gpt2",
    "trl-internal-testing/tiny-random-LlamaForCausalLM",
    "hf-internal-testing/tiny-random-MistralForCausalLM",
]


class TestAdaptionPrompt:
    """
    Tests for the AdaptionPrompt model.

    Some of these tests were adapted from `test_peft_model.py` (which has been refactored since), but since we haven't
    checked in the test checkpoints for Llama into `hf-internal-testing`, we separate them for now.
    """

    transformers_class = AutoModelForCausalLM
    torch_device = infer_device()

    @pytest.mark.parametrize("model_id", MODELS_TO_TEST)
    def test_attributes(self, model_id):
        model = self.transformers_class.from_pretrained(model_id)
        config = AdaptionPromptConfig(adapter_layers=1, adapter_len=4)
        model = get_peft_model(model, config)

        assert hasattr(model, "save_pretrained")
        assert hasattr(model, "from_pretrained")
        assert hasattr(model, "push_to_hub")

    @pytest.mark.parametrize("model_id", MODELS_TO_TEST)
    def test_prepare_for_training(self, model_id):
        model = self.transformers_class.from_pretrained(model_id)
        config = AdaptionPromptConfig(adapter_layers=1, adapter_len=4, task_type="CAUSAL_LM")
        model = get_peft_model(model, config)
        model = model.to(self.torch_device)

        dummy_input = torch.LongTensor([[1, 1, 1]]).to(self.torch_device)
        dummy_output = model.get_input_embeddings()(dummy_input)

        assert not dummy_output.requires_grad

    @pytest.mark.parametrize("model_id", MODELS_TO_TEST)
    def test_prepare_for_int8_training(self, model_id):
        model = self.transformers_class.from_pretrained(model_id)
        model = prepare_model_for_kbit_training(model)
        model = model.to(self.torch_device)

        for param in model.parameters():
            assert not param.requires_grad

        config = AdaptionPromptConfig(adapter_layers=1, adapter_len=4, task_type="CAUSAL_LM")
        model = get_peft_model(model, config)

        # For backward compatibility
        if hasattr(model, "enable_input_require_grads"):
            model.enable_input_require_grads()
        else:

            def make_inputs_require_grad(module, input, output):
                output.requires_grad_(True)

            model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)

        dummy_input = torch.LongTensor([[1, 1, 1]]).to(self.torch_device)
        dummy_output = model.get_input_embeddings()(dummy_input)

        assert dummy_output.requires_grad

    @pytest.mark.parametrize("model_id", MODELS_TO_TEST)
    def test_save_pretrained_regression(self, model_id):
        seed = 420
        torch.manual_seed(seed)
        model = self.transformers_class.from_pretrained(model_id)
        config = AdaptionPromptConfig(adapter_layers=2, adapter_len=4, task_type="CAUSAL_LM")
        model = get_peft_model(model, config)
        model = model.to(self.torch_device)

        with tempfile.TemporaryDirectory() as tmp_dirname:
            model.save_pretrained(tmp_dirname, safe_serialization=False)

            torch.manual_seed(seed)
            model_from_pretrained = self.transformers_class.from_pretrained(model_id)
            model_from_pretrained = PeftModel.from_pretrained(model_from_pretrained, tmp_dirname)

            # check if the state dicts are equal
            state_dict = get_peft_model_state_dict(model)
            state_dict_from_pretrained = get_peft_model_state_dict(model_from_pretrained)

            # check if same keys
            assert state_dict.keys() == state_dict_from_pretrained.keys()

            # Check that the number of saved parameters is 4 -- 2 layers of (tokens and gate).
            assert len(state_dict) == 4

            # check if tensors equal
            for key in state_dict.keys():
                assert torch.allclose(
                    state_dict[key].to(self.torch_device), state_dict_from_pretrained[key].to(self.torch_device)
                )

            # check if `adapter_model.bin` is present
            assert os.path.exists(os.path.join(tmp_dirname, "adapter_model.bin"))

            # check if `adapter_config.json` is present
            assert os.path.exists(os.path.join(tmp_dirname, "adapter_config.json"))

            # check if `model.safetensors` is not present
            assert not os.path.exists(os.path.join(tmp_dirname, "model.safetensors"))

            # check if `config.json` is not present
            assert not os.path.exists(os.path.join(tmp_dirname, "config.json"))

    @pytest.mark.parametrize("model_id", MODELS_TO_TEST)
    def test_save_pretrained(self, model_id):
        seed = 420
        torch.manual_seed(seed)
        model = self.transformers_class.from_pretrained(model_id)
        config = AdaptionPromptConfig(adapter_layers=2, adapter_len=4, task_type="CAUSAL_LM")
        model = get_peft_model(model, config)
        model = model.to(self.torch_device)

        with tempfile.TemporaryDirectory() as tmp_dirname:
            model.save_pretrained(tmp_dirname)

            torch.manual_seed(seed)
            model_from_pretrained = self.transformers_class.from_pretrained(model_id)
            model_from_pretrained = PeftModel.from_pretrained(model_from_pretrained, tmp_dirname)

            # check if the state dicts are equal
            state_dict = get_peft_model_state_dict(model)
            state_dict_from_pretrained = get_peft_model_state_dict(model_from_pretrained)

            # check if same keys
            assert state_dict.keys() == state_dict_from_pretrained.keys()

            # Check that the number of saved parameters is 4 -- 2 layers of (tokens and gate).
            assert len(state_dict) == 4

            # check if tensors equal
            for key in state_dict.keys():
                assert torch.allclose(
                    state_dict[key].to(self.torch_device), state_dict_from_pretrained[key].to(self.torch_device)
                )

            # check if `adapter_model.bin` is present
            assert os.path.exists(os.path.join(tmp_dirname, "adapter_model.safetensors"))

            # check if `adapter_config.json` is present
            assert os.path.exists(os.path.join(tmp_dirname, "adapter_config.json"))

            # check if `model.safetensors` is not present
            assert not os.path.exists(os.path.join(tmp_dirname, "model.safetensors"))

            # check if `config.json` is not present
            assert not os.path.exists(os.path.join(tmp_dirname, "config.json"))

    @pytest.mark.parametrize("model_id", MODELS_TO_TEST)
    def test_save_pretrained_selected_adapters(self, model_id):
        seed = 420
        torch.manual_seed(seed)
        model = self.transformers_class.from_pretrained(model_id)
        config = AdaptionPromptConfig(adapter_layers=2, adapter_len=4, task_type="CAUSAL_LM")
        model = get_peft_model(model, config)
        model = model.to(self.torch_device)

        new_adapter_config = AdaptionPromptConfig(adapter_layers=2, adapter_len=4, task_type="CAUSAL_LM")
        model.add_adapter("new_adapter", new_adapter_config)

        with tempfile.TemporaryDirectory() as tmp_dirname:
            model.save_pretrained(tmp_dirname)

            torch.manual_seed(seed)
            model_from_pretrained = self.transformers_class.from_pretrained(model_id)
            model_from_pretrained = PeftModel.from_pretrained(model_from_pretrained, tmp_dirname)

            model_from_pretrained.load_adapter(tmp_dirname, "new_adapter")

            # check if the state dicts are equal
            state_dict = get_peft_model_state_dict(model)
            state_dict_from_pretrained = get_peft_model_state_dict(model_from_pretrained)

            # check if same keys
            assert state_dict.keys() == state_dict_from_pretrained.keys()

            # Check that the number of saved parameters is 4 -- 2 layers of (tokens and gate).
            assert len(state_dict) == 4

            # check if tensors equal
            for key in state_dict.keys():
                assert torch.allclose(
                    state_dict[key].to(self.torch_device), state_dict_from_pretrained[key].to(self.torch_device)
                )

            # check if `adapter_model.bin` is present
            assert os.path.exists(os.path.join(tmp_dirname, "adapter_model.safetensors"))

            # check if `adapter_config.json` is present
            assert os.path.exists(os.path.join(tmp_dirname, "adapter_config.json"))

            # check if `model.safetensors` is not present
            assert not os.path.exists(os.path.join(tmp_dirname, "model.safetensors"))

            # check if `config.json` is not present
            assert not os.path.exists(os.path.join(tmp_dirname, "config.json"))

    @pytest.mark.parametrize("model_id", MODELS_TO_TEST)
    def test_generate(self, model_id):
        model = self.transformers_class.from_pretrained(model_id)
        config = AdaptionPromptConfig(adapter_layers=2, adapter_len=4, task_type="CAUSAL_LM")
        model = get_peft_model(model, config)
        model = model.to(self.torch_device)

        input_ids = torch.LongTensor([[1, 1, 1], [2, 1, 2]]).to(self.torch_device)
        attention_mask = torch.LongTensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device)

        # check if `generate` works
        _ = model.generate(input_ids=input_ids, attention_mask=attention_mask)

        # check if `generate` works if positional arguments are passed
        _ = model.generate(input_ids, attention_mask=attention_mask)

    @pytest.mark.parametrize("model_id", MODELS_TO_TEST)
    def test_sequence_adapter_ops(self, model_id):
        """Test sequence of adapter operations."""
        # Test input data.
        input_ids = torch.LongTensor([[1, 1, 1], [2, 1, 2]]).to(self.torch_device)
        target_ids = torch.LongTensor([[0, 0, 0], [0, 0, 0]]).to(self.torch_device)
        attention_mask = torch.LongTensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device)

        # Create original llama model.
        original = self.transformers_class.from_pretrained(model_id)
        original = original.to(self.torch_device)
        original_before = original(input_ids=input_ids, attention_mask=attention_mask)

        # Get AdaptionPrompt model.
        adapted = get_peft_model(
            original, AdaptionPromptConfig(adapter_layers=2, adapter_len=4, task_type="CAUSAL_LM")
        )
        adapted = adapted.to(self.torch_device)
        default_before = adapted(input_ids=input_ids, attention_mask=attention_mask, labels=target_ids)

        # Test zero-init: The logits should be exactly the same.
        assert_close(original_before.logits, default_before.logits, rtol=0, atol=0)

        # Single fine-tuning step on "default" adapter.
        optimizer = torch.optim.SGD(adapted.parameters(), lr=1)
        optimizer.zero_grad()
        default_before.loss.backward()
        optimizer.step()

        # Test that the output changed.
        default_after = adapted(input_ids=input_ids, attention_mask=attention_mask, labels=target_ids)
        assert not torch.allclose(default_before.logits, default_after.logits)

        with adapted.disable_adapter():
            # Test that the output is the same as the original output.
            default_disabled = adapted(input_ids=input_ids, attention_mask=attention_mask, labels=target_ids)
            assert_close(original_before.logits, default_disabled.logits, rtol=0, atol=0)

        # Add new adapter 1.
        adapted.add_adapter("adapter 1", AdaptionPromptConfig(adapter_layers=2, adapter_len=8, task_type="CAUSAL_LM"))
        # Test zero-init
        adapter_1_before = adapted(input_ids=input_ids, attention_mask=attention_mask, labels=target_ids)
        assert_close(original_before.logits, adapter_1_before.logits, rtol=0, atol=0)

        # Single fine-tuning step on adapter 1.
        optimizer = torch.optim.SGD(adapted.parameters(), lr=1)
        optimizer.zero_grad()
        adapter_1_before.loss.backward()
        optimizer.step()

        # Test that adapter 1 output changed.
        adapter_1_after = adapted(input_ids=input_ids, attention_mask=attention_mask, labels=target_ids)
        assert not torch.allclose(adapter_1_before.logits, adapter_1_after.logits)
        assert not torch.allclose(original_before.logits, adapter_1_after.logits)
        assert not torch.allclose(default_after.logits, adapter_1_after.logits)

        with adapted.disable_adapter():
            # Test that the output is the same as the original output.
            adapter_1_disabled = adapted(input_ids=input_ids, attention_mask=attention_mask, labels=target_ids)
            assert_close(original_before.logits, adapter_1_disabled.logits, rtol=0, atol=0)

        # Set adapter back to default.
        adapted.set_adapter("default")

        # Test that the output is the same as the default output after training.
        default_after_set = adapted(input_ids=input_ids, attention_mask=attention_mask, labels=target_ids)
        assert_close(default_after.logits, default_after_set.logits, rtol=0, atol=0)
        assert not torch.allclose(original_before.logits, default_after_set.logits)
        assert not torch.allclose(adapter_1_after.logits, default_after_set.logits)

    @pytest.mark.parametrize("model_id", MODELS_TO_TEST)
    def test_add_and_set_while_disabled(self, model_id):
        """Test that adding and setting adapters while disabled works as intended."""
        # Test input data.
        input_ids = torch.LongTensor([[1, 1, 1], [2, 1, 2]]).to(self.torch_device)
        target_ids = torch.LongTensor([[0, 0, 0], [0, 0, 0]]).to(self.torch_device)
        attention_mask = torch.LongTensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device)

        # Create original llama model.
        original = self.transformers_class.from_pretrained(model_id)
        original = original.to(self.torch_device)
        original_before = original(input_ids=input_ids, attention_mask=attention_mask)

        # Get AdaptionPrompt model.
        adapted = get_peft_model(
            original, AdaptionPromptConfig(adapter_layers=2, adapter_len=4, task_type="CAUSAL_LM")
        )
        adapted = adapted.to(self.torch_device)

        with adapted.disable_adapter():
            adapted.add_adapter(
                "adapter 1", AdaptionPromptConfig(adapter_layers=2, adapter_len=8, task_type="CAUSAL_LM")
            )

        # Test that the output is the same as the original output.
        adapter_1_before = adapted(input_ids=input_ids, attention_mask=attention_mask, labels=target_ids)
        assert_close(original_before.logits, adapter_1_before.logits, rtol=0, atol=0)

        # Single fine-tuning step on adapter 1.
        optimizer = torch.optim.SGD(adapted.parameters(), lr=1)
        optimizer.zero_grad()
        adapter_1_before.loss.backward()
        optimizer.step()

        # Test that adapter 1 output changed.
        adapter_1_after = adapted(input_ids=input_ids, attention_mask=attention_mask, labels=target_ids)
        assert not torch.allclose(original_before.logits, adapter_1_after.logits)

        adapted.set_adapter("default")
        with adapted.disable_adapter():
            adapted.set_adapter("adapter 1")

        # Test that adapter 1 is active again.
        adapter_1_after_set = adapted(input_ids=input_ids, attention_mask=attention_mask, labels=target_ids)
        assert_close(adapter_1_after.logits, adapter_1_after_set.logits, rtol=0, atol=0)

    @pytest.mark.parametrize("model_id", MODELS_TO_TEST)
    def test_use_cache(self, model_id):
        """Test that AdaptionPrompt works when Llama config use_cache=True."""
        torch.manual_seed(0)
        input_ids = torch.LongTensor([[1, 1, 1], [2, 1, 2]]).to(self.torch_device)
        original = self.transformers_class.from_pretrained(model_id, use_cache=False)
        adapted = get_peft_model(
            original, AdaptionPromptConfig(adapter_layers=2, adapter_len=4, task_type="CAUSAL_LM")
        )
        adapted = adapted.to(self.torch_device)
        expected = adapted.generate(input_ids=input_ids, max_length=8)

        # Set use_cache = True and generate output again.
        adapted.base_model.config.use_cache = True
        actual = adapted.generate(input_ids=input_ids, max_length=8)
        assert_close(expected, actual, rtol=0, atol=0)

    @pytest.mark.parametrize("model_id", MODELS_TO_TEST)
    def test_bf16_inference(self, model_id):
        if self.torch_device == "mps":
            return pytest.skip("Skipping bf16 test on MPS")

        """Test that AdaptionPrompt works when Llama using a half-precision model."""
        input_ids = torch.LongTensor([[1, 1, 1], [2, 1, 2]]).to(self.torch_device)
        original = self.transformers_class.from_pretrained(model_id, torch_dtype=torch.bfloat16)
        adapted = get_peft_model(
            original, AdaptionPromptConfig(adapter_layers=2, adapter_len=4, task_type="CAUSAL_LM")
        )
        adapted = adapted.to(self.torch_device)
        adapted.generate(input_ids=input_ids)  # does not raise

    @pytest.mark.xfail(reason="currently this fails because scores are zeroed out", raises=AssertionError)
    @pytest.mark.parametrize("model_id", MODELS_TO_TEST)
    def test_disable_adapter(self, model_id):
        model = self.transformers_class.from_pretrained(model_id).to(self.torch_device)
        dummy_input = torch.LongTensor([[1, 1, 1]]).to(self.torch_device)
        output_before = model(dummy_input).logits

        config = AdaptionPromptConfig(adapter_layers=1, adapter_len=4, task_type="CAUSAL_LM")
        model = get_peft_model(model, config).to(self.torch_device)
        output_peft = model(dummy_input).logits
        # TODO currently this fails because scores are zeroed out:
        # https://github.com/huggingface/peft/blob/062d95a09eb5d1de35c0e5e23d4387daba99e2db/src/peft/tuners/adaption_prompt.py#L303
        # This is fine for users but makes it difficult to test if anything happens. In the future, we will have a clean
        # way to control initialization. Until then, this test is expected to fail.
        assert not torch.allclose(output_before, output_peft)

        with model.disable_adapter():
            output_peft_disabled = model(dummy_input).logits
        assert torch.allclose(output_before, output_peft_disabled)