File size: 209,721 Bytes
302920f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import itertools
import math
import platform
import re
import warnings
from collections import defaultdict
from contextlib import contextmanager
from copy import deepcopy
from unittest.mock import patch

import pytest
import torch
from datasets import Dataset
from huggingface_hub import snapshot_download
from safetensors.torch import load_file
from scipy import stats
from torch import nn
from torch.utils.data import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer

from peft import (
    AdaLoraConfig,
    C3AConfig,
    EvaConfig,
    IA3Config,
    LoftQConfig,
    LoKrConfig,
    LoraConfig,
    PeftMixedModel,
    PeftModel,
    PeftModelForCausalLM,
    PeftModelForFeatureExtraction,
    PeftModelForQuestionAnswering,
    PeftModelForSeq2SeqLM,
    PeftModelForSequenceClassification,
    PeftModelForTokenClassification,
    PeftWarning,
    PrefixTuningConfig,
    PromptTuningConfig,
    RoadConfig,
    VBLoRAConfig,
    VeraConfig,
    WaveFTConfig,
    get_eva_state_dict,
    get_peft_model,
    initialize_lora_eva_weights,
    inject_adapter_in_model,
    set_peft_model_state_dict,
)
from peft.mapping import PEFT_TYPE_TO_PREFIX_MAPPING
from peft.tuners.lora.config import CordaConfig
from peft.tuners.lora.corda import preprocess_corda
from peft.tuners.lora.layer import LoraLayer
from peft.utils import infer_device
from peft.utils.hotswap import hotswap_adapter, prepare_model_for_compiled_hotswap

from .testing_utils import load_dataset_english_quotes, require_deterministic_for_xpu


try:
    from huggingface_hub.utils import reset_sessions
except ImportError:
    # this function was removed in hfh v1.0.0
    reset_sessions = None


class TestLoraInitialization:
    """Test class to check the initialization of LoRA adapters."""

    torch_device = infer_device()

    def get_uniform(self, amin, amax, size=(10000,)):
        unif = torch.distributions.uniform.Uniform(amin, amax)
        samples = unif.sample(size)
        return samples

    def get_normal(self, mean, std, size=(10000,)):
        normal = torch.distributions.normal.Normal(mean, std)
        samples = normal.sample(size)
        return samples

    def get_model(self, bias=True):
        class MyModule(nn.Module):
            def __init__(self):
                super().__init__()
                # choose a large weight so that averages are close to expected values
                self.linear = nn.Linear(1000, 1000, bias=bias)
                self.embed = nn.Embedding(1000, 1000)
                self.conv2d = nn.Conv2d(100, 100, 3, bias=bias)

            def forward(self, x):
                x_int = (100 * x).int()
                x_4d = x.flatten().reshape(1, 100, 10, 10)
                return self.linear(x), self.embed(x_int), self.conv2d(x_4d)

        return MyModule().eval().to(self.torch_device)

    @pytest.fixture
    def data(self):
        return torch.rand(10, 1000).to(self.torch_device)

    def test_lora_linear_init_default(self):
        # default is True
        torch.manual_seed(0)

        model = self.get_model()
        config = LoraConfig(target_modules=["linear"])
        model = get_peft_model(model, config)
        weight_A = model.linear.lora_A["default"].weight
        weight_B = model.linear.lora_B["default"].weight

        # use statistical test to check if weight A is from a uniform distribution
        unif = self.get_uniform(weight_A.min().item(), weight_A.max().item())
        _, p_value = stats.kstest(weight_A.detach().flatten().cpu().numpy(), unif.flatten().cpu().numpy())
        assert p_value > 0.5

        # check that weight A is *not* from a normal distribution
        normal = self.get_normal(weight_A.mean().item(), weight_A.std().item())
        _, p_value = stats.kstest(weight_A.detach().flatten().cpu().numpy(), normal.flatten().cpu().numpy())
        assert p_value < 0.05

        # check that weight B is zero
        assert (weight_B == 0.0).all()

    def test_lora_linear_init_gaussian(self):
        # use gaussian init
        torch.manual_seed(0)

        model = self.get_model()
        config = LoraConfig(target_modules=["linear"], init_lora_weights="gaussian")
        model = get_peft_model(model, config)
        weight_A = model.linear.lora_A["default"].weight
        weight_B = model.linear.lora_B["default"].weight

        # use statistical test to check if weight A is from a normal distribution
        normal = self.get_normal(0.0, 1 / config.r)
        _, p_value = stats.kstest(weight_A.detach().flatten().cpu().numpy(), normal.flatten().cpu().numpy())

        assert p_value > 0.5

        # check that weight A is *not* from a uniform distribution
        unif = self.get_uniform(weight_A.min().item(), weight_A.max().item())
        _, p_value = stats.kstest(weight_A.detach().flatten().cpu().numpy(), unif.flatten().cpu().numpy())
        assert p_value < 0.05

        # check that weight B is zero
        assert (weight_B == 0.0).all()

    def test_lora_linear_false(self):
        torch.manual_seed(0)

        model = self.get_model()
        config = LoraConfig(target_modules=["linear"], init_lora_weights=False)
        model = get_peft_model(model, config)
        weight_B = model.linear.lora_B["default"].weight

        # with init_lora_weights=False, weight B should *not* be zero. We don't care so much about the actual values
        # as long as they are not zero, in order to avoid identity transformation.
        assert not torch.allclose(weight_B, torch.zeros_like(weight_B))

    def test_lora_embedding_default(self):
        # embedding is initialized as a normal distribution, not kaiming uniform
        torch.manual_seed(0)

        model = self.get_model()
        config = LoraConfig(target_modules=["embed"])
        model = get_peft_model(model, config)
        weight_A = model.embed.lora_embedding_A["default"]
        weight_B = model.embed.lora_embedding_B["default"]

        # use statistical test to check if weight B is from a normal distribution
        normal = self.get_normal(0.0, 1.0)
        _, p_value = stats.kstest(weight_B.detach().flatten().cpu().numpy(), normal.flatten().cpu().numpy())
        assert p_value > 0.5

        # check that weight B is *not* from a uniform distribution
        unif = self.get_uniform(weight_B.min().item(), weight_B.max().item())
        _, p_value = stats.kstest(weight_B.detach().flatten().cpu().numpy(), unif.flatten().cpu().numpy())
        assert p_value < 0.05

        # check that weight A is zero
        assert (weight_A == 0.0).all()

    def test_lora_embedding_gaussian(self):
        # embedding does not change with init_lora_weights="gaussian" vs True
        torch.manual_seed(0)

        model = self.get_model()
        config = LoraConfig(target_modules=["embed"], init_lora_weights="gaussian")
        model = get_peft_model(model, config)
        weight_A = model.embed.lora_embedding_A["default"]
        weight_B = model.embed.lora_embedding_B["default"]

        # use statistical test to check if weight B is from a normal distribution
        normal = self.get_normal(0.0, 1.0)
        _, p_value = stats.kstest(weight_B.detach().flatten().cpu().numpy(), normal.flatten().cpu().numpy())
        assert p_value > 0.5

        # check that weight B is *not* from a uniform distribution
        unif = self.get_uniform(weight_B.min().item(), weight_B.max().item())
        _, p_value = stats.kstest(weight_B.detach().flatten().cpu().numpy(), unif.flatten().cpu().numpy())
        assert p_value < 0.05

        # check that weight A is zero
        assert (weight_A == 0.0).all()

    def test_lora_embedding_false(self):
        torch.manual_seed(0)

        model = self.get_model()
        config = LoraConfig(target_modules=["embed"], init_lora_weights=False)
        model = get_peft_model(model, config)
        weight_A = model.embed.lora_embedding_B["default"]

        # with init_lora_weights=False, weight A should *not* be zero. We don't care so much about the actual values
        # as long as they are not zero, in order to avoid identity transformation.
        assert not torch.allclose(weight_A, torch.zeros_like(weight_A))

    def test_lora_conv2d_default(self):
        # default is True
        torch.manual_seed(0)

        model = self.get_model()
        config = LoraConfig(target_modules=["conv2d"])
        model = get_peft_model(model, config)
        weight_A = model.conv2d.lora_A["default"].weight
        weight_B = model.conv2d.lora_B["default"].weight

        # use statistical test to check if weight A is from a uniform distribution
        unif = self.get_uniform(weight_A.min().item(), weight_A.max().item())
        _, p_value = stats.kstest(weight_A.detach().flatten().cpu().numpy(), unif.flatten().cpu().numpy())
        assert p_value > 0.5

        # check that weight A is *not* from a normal distribution
        normal = self.get_normal(weight_A.mean().item(), weight_A.std().item())
        _, p_value = stats.kstest(weight_A.detach().flatten().cpu().numpy(), normal.flatten().cpu().numpy())
        assert p_value < 0.05

        # check that weight B is zero
        assert (weight_B == 0.0).all()

    def test_lora_conv2d_init_gaussian(self):
        # use gaussian init
        torch.manual_seed(0)

        model = self.get_model()
        config = LoraConfig(target_modules=["conv2d"], init_lora_weights="gaussian")
        model = get_peft_model(model, config)
        weight_A = model.conv2d.lora_A["default"].weight
        weight_B = model.conv2d.lora_B["default"].weight

        # use statistical test to check if weight A is from a normal distribution
        normal = self.get_normal(0.0, 1 / config.r)
        _, p_value = stats.kstest(weight_A.detach().flatten().cpu().numpy(), normal.flatten().cpu().numpy())
        assert p_value > 0.5

        # check that weight A is *not* from a uniform distribution
        unif = self.get_uniform(weight_A.min().item(), weight_A.max().item())
        _, p_value = stats.kstest(weight_A.detach().flatten().cpu().numpy(), unif.flatten().cpu().numpy())
        assert p_value < 0.05

        # check that weight B is zero
        assert (weight_B == 0.0).all()

    def test_lora_conv2d_false(self):
        torch.manual_seed(0)

        model = self.get_model()
        config = LoraConfig(target_modules=["conv2d"], init_lora_weights=False)
        model = get_peft_model(model, config)
        weight_B = model.conv2d.lora_B["default"].weight

        # with init_lora_weights=False, weight B should *not* be zero. We don't care so much about the actual values
        # as long as they are not zero, in order to avoid identity transformation.
        assert not torch.allclose(weight_B, torch.zeros_like(weight_B))

    def test_lora_init_orthogonal(self):
        torch.manual_seed(0)

        model = self.get_model()
        config = LoraConfig(target_modules=["linear"], init_lora_weights="orthogonal")
        model = get_peft_model(model, config)

        weight_A = model.linear.lora_A["default"].weight
        weight_B = model.linear.lora_B["default"].weight

        assert not torch.allclose(weight_A, torch.zeros_like(weight_A))
        assert not torch.allclose(weight_B, torch.zeros_like(weight_B))
        assert (weight_B @ weight_A).abs().max() < 1e-6

    @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
    def test_lora_init_orthogonal_half_precision_dtype(self, dtype):
        try:
            torch.zeros(1, dtype=dtype)
        except Exception:
            pytest.skip(f"dtype {dtype} not supported on this system, skipping test")

        torch.manual_seed(0)

        model = self.get_model()
        config = LoraConfig(target_modules=["linear"], init_lora_weights="orthogonal")
        model = get_peft_model(model, config).to(dtype)

        weight_A = model.linear.lora_A["default"].weight
        weight_B = model.linear.lora_B["default"].weight

        assert weight_A.dtype == dtype
        assert weight_B.dtype == dtype

    def test_lora_init_orthogonal_odd_rank_raises(self):
        torch.manual_seed(0)

        model = self.get_model()
        config = LoraConfig(target_modules=["linear"], init_lora_weights="orthogonal", r=7)
        msg = "Orthogonal initialization requires the LoRA rank to be even, got 7 instead."
        with pytest.raises(ValueError, match=msg):
            get_peft_model(model, config)

    def test_lora_scaling_default(self):
        # default is True
        torch.manual_seed(0)

        model = self.get_model()

        # check scaling factor use_rslora=False
        config = LoraConfig(target_modules=["linear", "embed", "conv2d"], lora_alpha=3, r=16, use_rslora=False)
        model = get_peft_model(model, config)

        expected_scaling = config.lora_alpha / config.r

        assert model.linear.scaling["default"] == expected_scaling
        assert model.embed.scaling["default"] == expected_scaling
        assert model.conv2d.scaling["default"] == expected_scaling

    # testcase for bugfix for issue 2194
    def test_rank_alpha_pattern_override(self):
        torch.manual_seed(0)

        layer = self.get_model()
        model = nn.Sequential(layer, layer)
        config = LoraConfig(
            target_modules=["linear"],
            lora_alpha=1,
            r=8,
            use_rslora=False,
            rank_pattern={"linear": 8},
            alpha_pattern={"0.linear": 2},
        )
        model = get_peft_model(model, config)
        scaling_with_rank_pattern = model.model[0].linear.scaling

        layer = self.get_model()
        model = nn.Sequential(layer, layer)
        config = LoraConfig(
            target_modules=["linear"], lora_alpha=1, r=8, use_rslora=False, alpha_pattern={"0.linear": 2}
        )
        model = get_peft_model(model, config)
        scaling_without_rank_pattern = model.model[0].linear.scaling

        assert scaling_with_rank_pattern == scaling_without_rank_pattern

    def test_lora_pissa_linear_init_default(self, data):
        model = self.get_model()
        output = model(data)[0]

        config = LoraConfig(init_lora_weights="pissa", target_modules=["linear"])
        peft_model = get_peft_model(deepcopy(model), config)
        assert torch.allclose(output, peft_model(data)[0], atol=1e-06)

        config = LoraConfig(init_lora_weights="pissa_niter_16", target_modules=["linear"])
        peft_model = get_peft_model(deepcopy(model), config)
        assert torch.allclose(output, peft_model(data)[0], atol=1e-06)

    def test_lora_olora_linear_init_default(self, data):
        model = self.get_model()
        output = model(data)[0]

        # Both OLoRA and olora should work
        config = LoraConfig(init_lora_weights="OLoRA", target_modules=["linear"])
        peft_model = get_peft_model(deepcopy(model), config)
        assert torch.allclose(output, peft_model(data)[0], atol=1e-06)

    def test_lora_pissa_conversion_same_output_after_loading(self, data, tmp_path):
        model = self.get_model()
        output_base = model(data)[0]

        config = LoraConfig(init_lora_weights="pissa", target_modules=["linear"], r=8)
        peft_model = get_peft_model(deepcopy(model), config)
        # save the initial model
        peft_model.peft_config["default"].init_lora_weights = True
        peft_model.save_pretrained(tmp_path / "init-model")
        peft_model.peft_config["default"].init_lora_weights = "pissa"

        # modify the weights, or else the adapter performs an identity transformation
        peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
        output_pissa = peft_model(data)[0]

        # sanity check
        tol = 1e-06
        assert not torch.allclose(output_base, output_pissa, atol=tol, rtol=tol)

        # save the model normally
        peft_model.save_pretrained(tmp_path / "pissa-model")
        model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "pissa-model")
        output_loaded = model_loaded(data)[0]

        assert torch.allclose(output_pissa, output_loaded, atol=tol, rtol=tol)
        # sanity check: ranks should still be 8 as initially
        assert model_loaded.peft_config["default"].r == 8
        assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 8
        # sanity check: the base model weights were indeed changed
        assert not torch.allclose(
            model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
        )

        # save the model with conversion
        peft_config_keys_before = list(peft_model.peft_config.keys())
        peft_config_dict_before = peft_model.peft_config["default"].to_dict()
        peft_model.save_pretrained(
            tmp_path / "pissa-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
        )
        peft_config_keys_after = list(peft_model.peft_config.keys())
        peft_config_dict_after = peft_model.peft_config["default"].to_dict()
        assert peft_config_keys_before == peft_config_keys_after
        assert peft_config_dict_before == peft_config_dict_after

        model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "pissa-model-converted")
        output_converted = model_converted(data)[0]

        assert torch.allclose(output_pissa, output_converted, atol=tol, rtol=tol)
        # rank should be double of what it was initially
        assert model_converted.peft_config["default"].r == 16
        assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 16
        # base model weights should be the same as the initial model
        assert torch.allclose(
            model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
        )

    def test_lora_pissa_conversion_same_output_after_loading_with_rank_pattern(self, data, tmp_path):
        # same as above, but using rank_pattern
        model = self.get_model()
        output_base = model(data)[0]

        # use rank_pattern here; note that since there is only a single linear layer, r is completely overridden
        config = LoraConfig(init_lora_weights="pissa", target_modules=["linear"], r=8, rank_pattern={"linear": 32})
        peft_model = get_peft_model(deepcopy(model), config)
        # save the initial model
        peft_model.peft_config["default"].init_lora_weights = True
        peft_model.save_pretrained(tmp_path / "init-model")
        peft_model.peft_config["default"].init_lora_weights = "pissa"

        # modify the weights, or else the adapter performs an identity transformation
        peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
        output_pissa = peft_model(data)[0]

        # sanity check
        tol = 1e-06
        assert not torch.allclose(output_base, output_pissa, atol=tol, rtol=tol)

        # save the model normally
        peft_model.save_pretrained(tmp_path / "pissa-model")
        model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "pissa-model")
        output_loaded = model_loaded(data)[0]

        assert torch.allclose(output_pissa, output_loaded, atol=tol, rtol=tol)
        # sanity check: ranks should still be 8 as initially
        assert model_loaded.peft_config["default"].r == 8
        assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 32
        # sanity check: the base model weights were indeed changed
        assert not torch.allclose(
            model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
        )

        # save the model with conversion
        peft_model.save_pretrained(
            tmp_path / "pissa-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
        )
        model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "pissa-model-converted")
        output_converted = model_converted(data)[0]

        assert torch.allclose(output_pissa, output_converted, atol=tol, rtol=tol)
        # rank should be double of what it was initially
        assert model_converted.peft_config["default"].r == 16
        assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 64
        # base model weights should be the same as the initial model
        assert torch.allclose(
            model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
        )

    def test_lora_pissa_conversion_same_output_after_loading_with_alpha_pattern(self, data, tmp_path):
        # same as above, but using alpha_pattern
        model = self.get_model()
        output_base = model(data)[0]

        # use alpha_pattern here; note that since there is only a single linear layer, lora_alpha is completely
        # overridden
        config = LoraConfig(init_lora_weights="pissa", target_modules=["linear"], alpha_pattern={"linear": 5})
        peft_model = get_peft_model(deepcopy(model), config)
        # save the initial model
        peft_model.peft_config["default"].init_lora_weights = True
        peft_model.save_pretrained(tmp_path / "init-model")
        peft_model.peft_config["default"].init_lora_weights = "pissa"

        # modify the weights, or else the adapter performs an identity transformation
        peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
        output_pissa = peft_model(data)[0]

        # sanity check
        tol = 1e-06
        assert not torch.allclose(output_base, output_pissa, atol=tol, rtol=tol)

        # save the model normally
        peft_model.save_pretrained(tmp_path / "pissa-model")
        model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "pissa-model")
        output_loaded = model_loaded(data)[0]

        assert torch.allclose(output_pissa, output_loaded, atol=tol, rtol=tol)
        # sanity check: ranks should still be 8 as initially
        assert model_loaded.peft_config["default"].r == 8
        assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 8
        assert model_loaded.base_model.model.linear.scaling["default"] == 5 / 8
        # sanity check: the base model weights were indeed changed
        assert not torch.allclose(
            model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
        )

        # save the model with conversion
        peft_model.save_pretrained(
            tmp_path / "pissa-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
        )
        model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "pissa-model-converted")
        output_converted = model_converted(data)[0]

        assert torch.allclose(output_pissa, output_converted, atol=tol, rtol=tol)
        # rank should be double of what it was initially
        assert model_converted.peft_config["default"].r == 16
        assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 16
        assert model_converted.base_model.model.linear.scaling["default"] == 10 / 16
        # base model weights should be the same as the initial model
        assert torch.allclose(
            model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
        )

    def test_lora_pissa_conversion_same_output_after_loading_with_rslora(self, data, tmp_path):
        model = self.get_model()
        output_base = model(data)[0]

        config = LoraConfig(init_lora_weights="pissa", target_modules=["linear"], r=8, use_rslora=True)
        peft_model = get_peft_model(deepcopy(model), config)
        # save the initial model
        peft_model.peft_config["default"].init_lora_weights = True
        peft_model.save_pretrained(tmp_path / "init-model")
        peft_model.peft_config["default"].init_lora_weights = "pissa"

        # modify the weights, or else the adapter performs an identity transformation
        peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
        output_pissa = peft_model(data)[0]

        # sanity check
        tol = 1e-06
        assert not torch.allclose(output_base, output_pissa, atol=tol, rtol=tol)

        # save the model normally
        peft_model.save_pretrained(tmp_path / "pissa-model")
        model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "pissa-model")
        output_loaded = model_loaded(data)[0]

        assert torch.allclose(output_pissa, output_loaded, atol=tol, rtol=tol)
        # sanity check: ranks should still be 8 as initially
        assert model_loaded.peft_config["default"].r == 8
        assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 8
        assert model_loaded.base_model.model.linear.scaling["default"] == 8 / (8**0.5)
        # sanity check: the base model weights were indeed changed
        assert not torch.allclose(
            model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
        )

        # save the model with conversion
        peft_model.save_pretrained(
            tmp_path / "pissa-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
        )
        model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "pissa-model-converted")
        output_converted = model_converted(data)[0]

        assert torch.allclose(output_pissa, output_converted, atol=tol, rtol=tol)
        # rank should be double of what it was initially
        assert model_converted.peft_config["default"].r == 16
        assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 16
        # same scale as before with a little bit of floating point imprecision
        assert model_converted.base_model.model.linear.scaling["default"] == pytest.approx(8 / (8**0.5))
        # base model weights should be the same as the initial model
        assert torch.allclose(
            model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
        )

    def test_pissa_rank_pattern_and_rslora_raises(self, tmp_path):
        # it's not possible to determine the correct scale when using rslora with rank or alpha pattern, because the
        # scale is not stored in the state_dict
        model = self.get_model()
        config = LoraConfig(
            init_lora_weights="pissa", target_modules=["linear"], r=8, rank_pattern={"linear": 2}, use_rslora=True
        )
        peft_model = get_peft_model(model, config)
        peft_model.save_pretrained(tmp_path / "init-model")

        msg = re.escape("Passing `path_initial_model_for_weight_conversion` to `save_pretrained`")
        with pytest.raises(ValueError, match=msg):
            peft_model.save_pretrained(
                tmp_path / "pissa-model", path_initial_model_for_weight_conversion=tmp_path / "init-model"
            )

    def test_pissa_alpha_pattern_and_rslora_raises(self, tmp_path):
        # it's not possible to determine the correct scale when using rslora with rank or alpha pattern, because the
        # scale is not stored in the state_dict
        model = self.get_model()
        config = LoraConfig(
            init_lora_weights="pissa", target_modules=["linear"], r=8, alpha_pattern={"linear": 2}, use_rslora=True
        )
        peft_model = get_peft_model(model, config)
        peft_model.save_pretrained(tmp_path / "init-model")

        msg = re.escape("Passing `path_initial_model_for_weight_conversion` to `save_pretrained`")
        with pytest.raises(ValueError, match=msg):
            peft_model.save_pretrained(
                tmp_path / "pissa-model", path_initial_model_for_weight_conversion=tmp_path / "init-model"
            )

    def test_olora_conversion_same_output_after_loading(self, data, tmp_path):
        model = self.get_model()
        output_base = model(data)[0]

        config = LoraConfig(init_lora_weights="olora", target_modules=["linear"], r=8)
        peft_model = get_peft_model(deepcopy(model), config)
        # save the initial model
        peft_model.save_pretrained(tmp_path / "init-model")

        # modify the weights, or else the adapter performs an identity transformation
        peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
        output_olora = peft_model(data)[0]

        # sanity check
        tol = 1e-06
        assert not torch.allclose(output_base, output_olora, atol=tol, rtol=tol)

        # save the model normally
        peft_model.save_pretrained(tmp_path / "olora-model")
        model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "olora-model")
        output_loaded = model_loaded(data)[0]

        assert torch.allclose(output_olora, output_loaded, atol=tol, rtol=tol)
        # sanity check: ranks should still be 8 as initially
        assert model_loaded.peft_config["default"].r == 8
        assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 8
        # sanity check: the base model weights were indeed changed
        assert not torch.allclose(
            model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
        )

        # save the model with conversion
        peft_config_keys_before = list(peft_model.peft_config.keys())
        peft_config_dict_before = peft_model.peft_config["default"].to_dict()
        peft_model.save_pretrained(
            tmp_path / "olora-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
        )
        peft_config_keys_after = list(peft_model.peft_config.keys())
        peft_config_dict_after = peft_model.peft_config["default"].to_dict()
        assert peft_config_keys_before == peft_config_keys_after
        assert peft_config_dict_before == peft_config_dict_after

        model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "olora-model-converted")
        output_converted = model_converted(data)[0]

        assert torch.allclose(output_olora, output_converted, atol=tol, rtol=tol)
        # rank should be double of what it was initially
        assert model_converted.peft_config["default"].r == 16
        assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 16
        # base model weights should be the same as the initial model
        assert torch.allclose(
            model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
        )

    def test_olora_conversion_same_output_after_loading_with_rank_pattern(self, data, tmp_path):
        # same as above, but using rank_pattern
        model = self.get_model()
        output_base = model(data)[0]

        # use rank_pattern here; note that since there is only a single linear layer, r is completely overridden
        config = LoraConfig(init_lora_weights="olora", target_modules=["linear"], r=8, rank_pattern={"linear": 32})
        peft_model = get_peft_model(deepcopy(model), config)
        # save the initial model
        peft_model.save_pretrained(tmp_path / "init-model")

        # modify the weights, or else the adapter performs an identity transformation
        peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
        output_olora = peft_model(data)[0]

        # sanity check
        tol = 1e-06
        assert not torch.allclose(output_base, output_olora, atol=tol, rtol=tol)

        # save the model normally
        peft_model.save_pretrained(tmp_path / "olora-model")
        model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "olora-model")
        output_loaded = model_loaded(data)[0]

        assert torch.allclose(output_olora, output_loaded, atol=tol, rtol=tol)
        # sanity check: ranks should still be 8 as initially
        assert model_loaded.peft_config["default"].r == 8
        assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 32
        # sanity check: the base model weights were indeed changed
        assert not torch.allclose(
            model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
        )

        # save the model with conversion
        peft_model.save_pretrained(
            tmp_path / "olora-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
        )
        model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "olora-model-converted")
        output_converted = model_converted(data)[0]

        assert torch.allclose(output_olora, output_converted, atol=tol, rtol=tol)
        # rank should be double of what it was initially
        assert model_converted.peft_config["default"].r == 16
        assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 64
        # base model weights should be the same as the initial model
        assert torch.allclose(
            model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
        )

    def test_olora_conversion_same_output_after_loading_with_alpha_pattern(self, data, tmp_path):
        # same as above, but using alpha_pattern
        model = self.get_model()
        output_base = model(data)[0]

        # use alpha_pattern here; note that since there is only a single linear layer, lora_alpha is completely
        # overridden
        config = LoraConfig(init_lora_weights="olora", target_modules=["linear"], alpha_pattern={"linear": 5})
        peft_model = get_peft_model(deepcopy(model), config)
        # save the initial model
        peft_model.save_pretrained(tmp_path / "init-model")

        # modify the weights, or else the adapter performs an identity transformation
        peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
        output_olora = peft_model(data)[0]

        # sanity check
        tol = 1e-06
        assert not torch.allclose(output_base, output_olora, atol=tol, rtol=tol)

        # save the model normally
        peft_model.save_pretrained(tmp_path / "olora-model")
        model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "olora-model")
        output_loaded = model_loaded(data)[0]

        assert torch.allclose(output_olora, output_loaded, atol=tol, rtol=tol)
        # sanity check: ranks should still be 8 as initially
        assert model_loaded.peft_config["default"].r == 8
        assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 8
        assert model_loaded.base_model.model.linear.scaling["default"] == 5 / 8
        # sanity check: the base model weights were indeed changed
        assert not torch.allclose(
            model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
        )

        # save the model with conversion
        peft_model.save_pretrained(
            tmp_path / "olora-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
        )
        model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "olora-model-converted")
        output_converted = model_converted(data)[0]

        assert torch.allclose(output_olora, output_converted, atol=tol, rtol=tol)
        # rank should be double of what it was initially
        assert model_converted.peft_config["default"].r == 16
        assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 16
        assert model_converted.base_model.model.linear.scaling["default"] == 10 / 16
        # base model weights should be the same as the initial model
        assert torch.allclose(
            model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
        )

    def test_olora_conversion_same_output_after_loading_with_rslora(self, data, tmp_path):
        # same as above, but using alpha_pattern
        model = self.get_model()
        output_base = model(data)[0]

        config = LoraConfig(init_lora_weights="olora", target_modules=["linear"], r=8, use_rslora=True)
        peft_model = get_peft_model(deepcopy(model), config)
        # save the initial model
        peft_model.save_pretrained(tmp_path / "init-model")

        # modify the weights, or else the adapter performs an identity transformation
        peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
        output_olora = peft_model(data)[0]

        # sanity check
        tol = 1e-06
        assert not torch.allclose(output_base, output_olora, atol=tol, rtol=tol)

        # save the model normally
        peft_model.save_pretrained(tmp_path / "olora-model")
        model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "olora-model")
        output_loaded = model_loaded(data)[0]

        assert torch.allclose(output_olora, output_loaded, atol=tol, rtol=tol)
        # sanity check: ranks should still be 8 as initially
        assert model_loaded.peft_config["default"].r == 8
        assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 8
        assert model_loaded.base_model.model.linear.scaling["default"] == 8 / (8**0.5)
        # sanity check: the base model weights were indeed changed
        assert not torch.allclose(
            model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
        )

        # save the model with conversion
        peft_model.save_pretrained(
            tmp_path / "olora-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
        )
        model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "olora-model-converted")
        output_converted = model_converted(data)[0]

        assert torch.allclose(output_olora, output_converted, atol=tol, rtol=tol)
        # rank should be double of what it was initially
        assert model_converted.peft_config["default"].r == 16
        assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 16
        # same scale as before with a little bit of floating point imprecision
        assert model_converted.base_model.model.linear.scaling["default"] == pytest.approx(8 / (8**0.5))
        # base model weights should be the same as the initial model
        assert torch.allclose(
            model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
        )

    def test_olora_rank_pattern_and_rslora_raises(self, tmp_path):
        # it's not possible to determine the correct scale when using rslora with rank or alpha pattern, because the
        # scale is not stored in the state_dict
        model = self.get_model()
        config = LoraConfig(
            init_lora_weights="olora", target_modules=["linear"], r=8, rank_pattern={"linear": 2}, use_rslora=True
        )
        peft_model = get_peft_model(model, config)
        peft_model.save_pretrained(tmp_path / "init-model")

        msg = re.escape("Passing `path_initial_model_for_weight_conversion` to `save_pretrained`")
        with pytest.raises(ValueError, match=msg):
            peft_model.save_pretrained(
                tmp_path / "olora-model", path_initial_model_for_weight_conversion=tmp_path / "init-model"
            )

    def test_olora_alpha_pattern_and_rslora_raises(self, tmp_path):
        # it's not possible to determine the correct scale when using rslora with rank or alpha pattern, because the
        # scale is not stored in the state_dict
        model = self.get_model()
        config = LoraConfig(
            init_lora_weights="olora", target_modules=["linear"], r=8, alpha_pattern={"linear": 2}, use_rslora=True
        )
        peft_model = get_peft_model(model, config)
        peft_model.save_pretrained(tmp_path / "init-model")

        msg = re.escape("Passing `path_initial_model_for_weight_conversion` to `save_pretrained`")
        with pytest.raises(ValueError, match=msg):
            peft_model.save_pretrained(
                tmp_path / "olora-model", path_initial_model_for_weight_conversion=tmp_path / "init-model"
            )

    @pytest.mark.parametrize(
        "config_kwargs, should_warn",
        [
            # no warning
            ({"init_lora_weights": "pissa", "target_modules": ["linear"]}, False),
            ({"init_lora_weights": "pissa_niter_3", "target_modules": ["linear"]}, False),
            ({"init_lora_weights": "olora", "target_modules": ["linear"]}, False),
            ({"init_lora_weights": "pissa", "target_modules": ["linear"], "use_rslora": True}, False),
            ({"init_lora_weights": "pissa_niter_3", "target_modules": ["linear"], "use_rslora": True}, False),
            ({"init_lora_weights": "olora", "target_modules": ["linear"], "use_rslora": True}, False),
            ({"init_lora_weights": "pissa", "target_modules": ["linear"], "rank_pattern": {"linear": 8}}, False),
            (
                {"init_lora_weights": "pissa_niter_3", "target_modules": ["linear"], "rank_pattern": {"linear": 8}},
                False,
            ),
            ({"init_lora_weights": "olora", "target_modules": ["linear"], "rank_pattern": {"linear": 8}}, False),
            ({"init_lora_weights": "pissa", "target_modules": ["linear"], "alpha_pattern": {"linear": 8}}, False),
            (
                {"init_lora_weights": "pissa_niter_3", "target_modules": ["linear"], "alpha_pattern": {"linear": 8}},
                False,
            ),
            ({"init_lora_weights": "olora", "target_modules": ["linear"], "alpha_pattern": {"linear": 8}}, False),
            # warning
            (
                {
                    "init_lora_weights": "pissa",
                    "target_modules": ["linear"],
                    "use_rslora": True,
                    "rank_pattern": {"linear": 8},
                },
                True,
            ),
            (
                {
                    "init_lora_weights": "pissa_niter_3",
                    "target_modules": ["linear"],
                    "use_rslora": True,
                    "rank_pattern": {"linear": 8},
                },
                True,
            ),
            (
                {
                    "init_lora_weights": "olora",
                    "target_modules": ["linear"],
                    "use_rslora": True,
                    "rank_pattern": {"linear": 8},
                },
                True,
            ),
            (
                {
                    "init_lora_weights": "pissa",
                    "target_modules": ["linear"],
                    "use_rslora": True,
                    "alpha_pattern": {"linear": 8},
                },
                True,
            ),
            (
                {
                    "init_lora_weights": "pissa_niter_3",
                    "target_modules": ["linear"],
                    "use_rslora": True,
                    "alpha_pattern": {"linear": 8},
                },
                True,
            ),
            (
                {
                    "init_lora_weights": "olora",
                    "target_modules": ["linear"],
                    "use_rslora": True,
                    "alpha_pattern": {"linear": 8},
                },
                True,
            ),
            (
                {
                    "init_lora_weights": "pissa",
                    "target_modules": ["linear"],
                    "use_rslora": True,
                    "rank_pattern": {"linear": 8},
                    "alpha_pattern": {"linear": 8},
                },
                True,
            ),
            (
                {
                    "init_lora_weights": "pissa_niter_3",
                    "target_modules": ["linear"],
                    "use_rslora": True,
                    "rank_pattern": {"linear": 8},
                    "alpha_pattern": {"linear": 8},
                },
                True,
            ),
            (
                {
                    "init_lora_weights": "olora",
                    "target_modules": ["linear"],
                    "use_rslora": True,
                    "rank_pattern": {"linear": 8},
                    "alpha_pattern": {"linear": 8},
                },
                True,
            ),
        ],
    )
    def test_lora_config_pissa_olora_warns(self, config_kwargs, should_warn, recwarn):
        # Using post training conversion of modified base weights to restore their initial values (PiSSA, OLoRA) cannot
        # be correctly done when using rslora + rank_pattern/alpha_pattern. We can't really know if the user intends
        # this when they'll eventually call save_pretrained (i.e. if they'll pass
        # path_initial_model_for_weight_conversionl). Therefore, we only warn but don't raise an error here.
        msg = re.escape("Using Rank-Stabilized LoRA with rank_pattern/alpha_pattern and post-training conversion")
        if should_warn:
            LoraConfig(**config_kwargs)
            assert len(recwarn.list) == 1
            with pytest.warns(UserWarning, match=msg):
                LoraConfig(**config_kwargs)
        else:
            LoraConfig(**config_kwargs)
            assert not recwarn.list

    @pytest.mark.parametrize("init_method", ["pissa", "olora"])
    @pytest.mark.parametrize("pissa_olora_loaded_first", [False, True])
    def test_load_pissa_olora_with_other_adapter_warns(self, init_method, pissa_olora_loaded_first, recwarn, tmp_path):
        # Since PiSSA/OLoRA modifies the base weights, it should not be combined with other adapters. Check for a
        # warning. See #2184.

        # create an adapter without PiSSA/OloRA
        model_id = "hf-internal-testing/tiny-random-OPTForCausalLM"
        model = AutoModelForCausalLM.from_pretrained(model_id)
        model = get_peft_model(model, LoraConfig(init_lora_weights=True))
        model.save_pretrained(tmp_path / "adapter0")
        del model

        # create a model with PiSSA/OLoRA
        model = AutoModelForCausalLM.from_pretrained(model_id)
        model = get_peft_model(model, LoraConfig(init_lora_weights=init_method))
        model.save_pretrained(tmp_path / "adapter1")
        del model

        # load the model
        if pissa_olora_loaded_first:
            path0, path1 = tmp_path / "adapter1", tmp_path / "adapter0"
        else:
            path0, path1 = tmp_path / "adapter0", tmp_path / "adapter1"

        model = AutoModelForCausalLM.from_pretrained(model_id)
        model = PeftModel.from_pretrained(model, path0)
        model = model.load_adapter(path1, adapter_name="other")

        if init_method == "pissa":
            msg = "PiSSA changes the base weights of the model and should thus not be used with other adapters"
        else:
            msg = "OLoRA changes the base weights of the model and should thus not be used with other adapters"
        assert any(str(w.message).startswith(msg) for w in recwarn.list)

    def test_lora_rslora_scaling(self):
        # default is True
        torch.manual_seed(0)

        model = self.get_model()

        # check scaling factor use_rslora=True
        config = LoraConfig(target_modules=["linear", "embed", "conv2d"], lora_alpha=3, r=16, use_rslora=True)
        model = get_peft_model(model, config)

        expected_scaling = config.lora_alpha / (config.r**0.5)

        assert model.linear.scaling["default"] == expected_scaling
        assert model.embed.scaling["default"] == expected_scaling
        assert model.conv2d.scaling["default"] == expected_scaling

    def test_lora_default_scaling_pattern(self):
        # default is True
        torch.manual_seed(0)

        model = self.get_model()

        # check scaling factor use_rslora=False with rank and alpha pattern
        config = LoraConfig(
            target_modules=["linear", "embed", "conv2d"],
            rank_pattern={"embed": 9, "conv2d": 16},
            alpha_pattern={"linear": 11, "conv2d": 13},
            lora_alpha=17,
            r=25,
            use_rslora=False,
        )
        model = get_peft_model(model, config)

        expected_scaling = {
            "linear": config.alpha_pattern["linear"] / config.r,
            "embed": config.lora_alpha / config.rank_pattern["embed"],
            "conv2d": config.alpha_pattern["conv2d"] / config.rank_pattern["conv2d"],
        }

        assert model.linear.scaling["default"] == expected_scaling["linear"]
        assert model.embed.scaling["default"] == expected_scaling["embed"]
        assert model.conv2d.scaling["default"] == expected_scaling["conv2d"]

    def test_lora_rslora_scaling_pattern(self):
        # default is True
        torch.manual_seed(0)

        model = self.get_model()

        # check scaling factor use_rslora=True with rank and alpha pattern
        config = LoraConfig(
            target_modules=["linear", "embed", "conv2d"],
            rank_pattern={"embed": 9, "conv2d": 16},
            alpha_pattern={"linear": 11, "conv2d": 13},
            lora_alpha=17,
            r=25,
            use_rslora=True,
        )
        model = get_peft_model(model, config)

        expected_scaling = {
            "linear": config.alpha_pattern["linear"] / (config.r**0.5),
            "embed": config.lora_alpha / (config.rank_pattern["embed"] ** 0.5),
            "conv2d": config.alpha_pattern["conv2d"] / (config.rank_pattern["conv2d"] ** 0.5),
        }

        assert model.linear.scaling["default"] == expected_scaling["linear"]
        assert model.embed.scaling["default"] == expected_scaling["embed"]
        assert model.conv2d.scaling["default"] == expected_scaling["conv2d"]

    def test_modules_to_save_targets_lora_layer_raises(self):
        # There is no good reason to have auxiliary modules to target a LoRA layer. As auxiliary modules are applied
        # *after* BaseTunerLayers, a possible way for this to happen accidentally is if the
        # modules_to_save/trainable_token_indices coincide with the adapter name, e.g. if the adapter name is "foobar",
        # we can have a module named model.base_model.model.self_attn.lora_A.foobar. If
        # modules_to_save/trainable_token_indices is also "foobar", there would be a match.
        # Note: Theoretically, a lot more PEFT methods support modules_to_save, so would have to be tested, but the code
        # path is the same for all of them, so only testing LoRA.
        model = self.get_model()

        config = LoraConfig(
            target_modules=["linear"],
            modules_to_save=["foobar"],
        )
        msg = (
            "You are trying to target a module with <class 'peft.utils.other.ModulesToSaveWrapper'> that is a child of "
            "<class 'peft.tuners.lora.layer.Linear'>. This is almost certainly not the intended behavior. Please "
            "ensure that the adapter name, 'foobar', does not conflict with any of the targeted modules."
        )
        with pytest.raises(ValueError, match=msg):
            get_peft_model(model, config, adapter_name="foobar")

    def test_trainable_token_indices_targets_lora_layer_raises(self):
        # Same test as test_modules_to_save_targets_lora_layer_raises, but using trainable_token_indices
        model = self.get_model()

        # check scaling factor use_rslora=True with rank and alpha pattern
        config = LoraConfig(target_modules=["embed"], trainable_token_indices={"foobar": [1, 2, 3]})
        msg = (
            "You are trying to target a module with <class 'peft.utils.other.TrainableTokensWrapper'> that is a child "
            "of <class 'peft.tuners.lora.layer.Embedding'>. This is almost certainly not the intended behavior. Please "
            "ensure that the adapter name, 'foobar', does not conflict with any of the targeted modules."
        )
        with pytest.raises(ValueError, match=msg):
            get_peft_model(model, config, adapter_name="foobar")

    @require_deterministic_for_xpu
    def test_lora_use_dora_linear(self, data):
        # check that dora is a no-op when initialized
        torch.manual_seed(0)
        model = self.get_model()
        output_base, _, _ = model(data)

        # check scaling factor use_rslora=True
        config = LoraConfig(target_modules=["linear"], use_dora=True)
        model = get_peft_model(model, config)

        with model.disable_adapter():
            output_disabled, _, _ = model(data)
        output_dora, _, _ = model(data)

        assert torch.allclose(output_base, output_disabled)
        assert torch.allclose(output_base, output_dora)

    @require_deterministic_for_xpu
    def test_lora_use_dora_linear_init_false(self, data):
        # with init_lora_weights=False, dora should not be a no-op
        torch.manual_seed(0)
        model = self.get_model()
        output_base, _, _ = model(data)

        # check scaling factor use_rslora=True
        config = LoraConfig(target_modules=["linear"], use_dora=True, init_lora_weights=False)
        model = get_peft_model(model, config)

        with model.disable_adapter():
            output_disabled, _, _ = model(data)
        output_dora, _, _ = model(data)

        assert torch.allclose(output_base, output_disabled)
        assert not torch.allclose(output_base, output_dora)

    def test_lora_use_dora_with_megatron_core_raises(self):
        megatron_config = {"does-not": "matter-here"}
        with pytest.raises(ValueError, match="DoRA does not support megatron_core"):
            LoraConfig(target_modules=["linear"], use_dora=True, megatron_config=megatron_config)

    @pytest.fixture
    def mha_cls(self):
        class ModelMha(nn.Module):
            def __init__(self, kdim=None, vdim=None):
                super().__init__()
                self.mha = nn.MultiheadAttention(10, 2, kdim=kdim, vdim=vdim)
                self.lin0 = nn.Linear(10, 2)
                self.sm = nn.LogSoftmax(dim=-1)

            def forward(self, X):
                X = X.float()
                X, _ = self.mha(X, X, X)
                X = self.lin0(X)
                X = self.sm(X)
                return X

        return ModelMha

    def test_mha_load_init_model_first(self, mha_cls):
        # This test used to fail and require a workaround, for more context, see:
        # https://github.com/huggingface/peft/pull/1324#issuecomment-2252473980
        # The workaround was that _restore_weights had to be called manually on lora.MHA layers in order to make loading
        # the state dict work. With recent changes, this workaround is no longer required, so that test has been
        # deleted.
        inputs = torch.rand(10, 10, 10)
        model = mha_cls()
        config = LoraConfig(target_modules=["mha"], init_lora_weights=False)
        model = get_peft_model(model, config).eval()
        restore_state_dict = {k: v.detach().cpu() for k, v in model.state_dict().items()}

        del model

        model = mha_cls()
        model = get_peft_model(model, config)
        # the workaround used to be:
        # for module in model.modules():
        #     if isinstance(module, peft.tuners.lora.layer.MultiheadAttention):
        #         module._restore_weights()
        model(inputs)
        model.load_state_dict(restore_state_dict)

    def test_mha_with_separate_qkv_embed_raises(self, mha_cls):
        # passing different kdim and vdim results in separate parameters for q, k, v, which is not supported (yet)
        model = mha_cls(kdim=20, vdim=30)
        config = LoraConfig(target_modules=["mha"])
        msg = "Only same embed for query/key/value is supported as of now for MultiheadAttention"
        with pytest.raises(ValueError, match=msg):
            get_peft_model(model, config)

    def test_mha_with_dora_raises(self, mha_cls):
        model = mha_cls()
        config = LoraConfig(target_modules=["mha"], use_dora=True)
        msg = re.escape("MultiheadAttention does not support DoRA (yet), please set use_dora to False")
        with pytest.raises(ValueError, match=msg):
            get_peft_model(model, config)

    def test_mha_exposes_attributes(self, mha_cls):
        # MHA requires a bunch of attributes to be exposed, try to check them exhaustively here
        model = mha_cls()
        embed_dim = model.mha.embed_dim
        kdim = model.mha.kdim
        vdim = model.mha.vdim
        qkv_same_embed_dim = model.mha._qkv_same_embed_dim
        num_heads = model.mha.num_heads
        dropout = model.mha.dropout
        batch_first = model.mha.batch_first
        head_dim = model.mha.head_dim
        in_proj_weight = model.mha.in_proj_weight
        in_proj_bias = model.mha.in_proj_bias
        out_proj = model.mha.out_proj
        bias_k = model.mha.bias_k
        bias_v = model.mha.bias_v
        add_zero_attn = model.mha.add_zero_attn

        config = LoraConfig(target_modules=["mha"])
        peft_model = get_peft_model(model, config)
        assert peft_model.base_model.mha.embed_dim == embed_dim
        assert peft_model.base_model.mha.kdim == kdim
        assert peft_model.base_model.mha.vdim == vdim
        assert peft_model.base_model.mha._qkv_same_embed_dim == qkv_same_embed_dim
        assert peft_model.base_model.mha.num_heads == num_heads
        assert peft_model.base_model.mha.dropout == dropout
        assert peft_model.base_model.mha.batch_first == batch_first
        assert peft_model.base_model.mha.head_dim == head_dim
        if in_proj_weight is not None:
            assert torch.allclose(peft_model.base_model.mha.in_proj_weight, in_proj_weight)
        else:
            assert peft_model.base_model.mha.in_proj_weight is None
        if in_proj_bias is not None:
            assert torch.allclose(peft_model.base_model.mha.in_proj_bias, in_proj_bias)
        else:
            assert peft_model.base_model.mha.in_proj_bias is None
        assert peft_model.base_model.mha.out_proj is out_proj
        if bias_k is not None:
            assert torch.allclose(peft_model.base_model.mha.bias_k, bias_k)
        else:
            assert peft_model.base_model.mha.bias_k is None
        if bias_v is not None:
            assert torch.allclose(peft_model.base_model.mha.bias_v, bias_v)
        else:
            assert peft_model.base_model.mha.bias_v is None
        assert peft_model.base_model.mha.add_zero_attn == add_zero_attn

    def test_mha_merge_masks_method(self, mha_cls):
        # MHA requires a merge_masks method to be exposed, check that it works
        model = mha_cls()
        config = LoraConfig(target_modules=["mha"])
        peft_model = get_peft_model(model, config)

        attn_mask = torch.randint(0, 2, (10, 10))
        key_padding_mask = torch.randint(0, 2, (10, 10))
        query = torch.rand(10, 10, 10)
        merged_mask0, mask_type0 = model.mha.merge_masks(attn_mask, key_padding_mask, query)
        merged_mask1, mask_type1 = peft_model.base_model.mha.merge_masks(attn_mask, key_padding_mask, query)

        assert torch.allclose(merged_mask0, merged_mask1)
        assert mask_type0 == mask_type1

    @pytest.mark.parametrize("bias", ["none", "all", "lora_only", "invalid"])
    def test_lora_with_bias_argument(self, bias):
        model = self.get_model()
        config = LoraConfig(target_modules=["linear", "conv2d"], bias=bias)

        if bias == "invalid":
            with pytest.raises(NotImplementedError):
                get_peft_model(model, config)
            return

        model = get_peft_model(model, config)  # does not raise
        for name, param in model.named_parameters():
            if not name.endswith("bias"):
                continue
            if bias == "none":
                assert param.requires_grad is False
            elif bias == "all":
                assert param.requires_grad is True
            elif bias == "lora_only":
                # only layers targeted with target_modules
                assert param.requires_grad is ("linear" in name) or ("conv2d" in name)

    def test_lora_with_bias_extra_params(self):
        # lora with lora_bias=True
        model = self.get_model()
        config = LoraConfig(target_modules=["linear", "conv2d"], lora_bias=False)
        model_no_bias = get_peft_model(model, config)

        model = self.get_model()
        config = LoraConfig(target_modules=["linear", "conv2d"], lora_bias=True)
        model_bias = get_peft_model(model, config)

        # check that bias for LoRA B is set
        assert model_no_bias.base_model.model.linear.lora_B["default"].bias is None
        assert model_bias.base_model.model.linear.lora_B["default"].bias.shape == (1000,)
        assert model_no_bias.base_model.model.conv2d.lora_B["default"].bias is None
        assert model_bias.base_model.model.conv2d.lora_B["default"].bias.shape == (100,)

        # check that the same params are present except for the extra bias term
        params_no_bias = {name for name, _ in model_no_bias.named_parameters()}
        params_bias = {name for name, _ in model_bias.named_parameters()}
        extra_params = {
            "base_model.model.linear.lora_B.default.bias",
            "base_model.model.conv2d.lora_B.default.bias",
        }
        assert params_bias - params_no_bias == extra_params
        assert params_no_bias.issubset(params_bias)

    def test_lora_with_bias_embedding_raises(self):
        # lora with lora_bias=True is not supported for embedding layers
        model = self.get_model()
        config = LoraConfig(target_modules=["embed"], lora_bias=True)
        msg = "lora_bias=True is not supported for Embedding"
        with pytest.raises(ValueError, match=msg):
            get_peft_model(model, config)

    @pytest.mark.parametrize(
        "extra_kwargs",
        [
            {"use_dora": True},
            {"init_lora_weights": "eva"},
            {"init_lora_weights": "gaussian"},
            {"init_lora_weights": "loftq", "loftq_config": LoftQConfig()},
            {"init_lora_weights": "olora"},
            {"init_lora_weights": "pissa"},
            {"init_lora_weights": "pissa_niter_3"},
            {"init_lora_weights": "orthogonal"},
        ],
    )
    def test_lora_with_bias_incompatible_arguments(self, extra_kwargs):
        # some arguments don't work in conjunction with lora_bias and should raise
        # just check the common chunk of the error message
        msg = "The argument lora_bias=True is"
        with pytest.raises(ValueError, match=msg):
            LoraConfig(target_modules=["linear"], lora_bias=True, **extra_kwargs)

    def test_lora_linear_with_bias_when_base_layer_has_no_bias_warns(self):
        model = self.get_model(bias=False)
        config = LoraConfig(target_modules=["linear"], lora_bias=True)
        msg = re.escape("`lora_bias=True` was passed but the targeted layer of type Linear has no bias")
        with pytest.warns(PeftWarning, match=msg):
            get_peft_model(model, config)

    def test_lora_conv2d_with_bias_when_base_layer_has_no_bias_warns(self):
        model = self.get_model(bias=False)
        config = LoraConfig(target_modules=["conv2d"], lora_bias=True)
        msg = re.escape("`lora_bias=True` was passed but the targeted layer of type Conv2d has no bias")
        with pytest.warns(PeftWarning, match=msg):
            get_peft_model(model, config)

    def test_lora_incompatible_mamba_modules(self):
        # Ensure LoRA raises an error when applying to forbidden modules
        # ('out_proj', 'conv1d') in Mamba-based architectures like Falcon-Mamba tiny.
        model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-mamba-tiny-dev")

        config = LoraConfig(
            task_type="CAUSAL_LM",
            target_modules=["out_proj", "conv1d"],  # Forbidden modules for Mamba-based models
        )
        msg = "is incompatible with Mamba-based models"
        with pytest.raises(ValueError, match=msg):
            get_peft_model(model, config)

    def get_model_conv2d_groups(self):
        class ModelConv2DGroups(nn.Module):
            """For testing when groups argument is used in conv layer"""

            def __init__(self):
                super().__init__()
                self.conv2d = nn.Conv2d(16, 32, 3, padding=1, groups=2)
                self.relu = nn.ReLU()
                self.flat = nn.Flatten()
                self.lin0 = nn.Linear(12800, 2)
                self.sm = nn.LogSoftmax(dim=-1)
                self.dtype = torch.float

            def forward(self, X):
                # This is ignoring input since main usage is for checking raising of error when peft is applied
                X = torch.arange(9 * 16 * 20 * 20).view([9, 16, 20, 20]).to(self.conv2d.weight.device)
                X = X.to(self.dtype)
                X = self.conv2d(X)
                X = self.relu(X)
                X = self.flat(X)
                X = self.lin0(X)
                X = self.sm(X)
                return X

        return ModelConv2DGroups().eval().to(self.torch_device)

    @pytest.mark.parametrize(
        "config_cls, config_kwargs",
        [
            pytest.param(LoraConfig, {"r": 8, "target_modules": ["conv2d"]}, id="lora with rank divisible by groups"),
            pytest.param(LoraConfig, {"r": 2, "target_modules": ["conv2d"]}, id="lora with rank equal to groups"),
            pytest.param(
                LoraConfig, {"r": 1, "target_modules": ["conv2d"]}, id="lora with rank not divisible by groups"
            ),
            pytest.param(
                LoraConfig,
                {"r": 8, "target_modules": ["conv2d"], "use_dora": True},
                id="dora with rank divisible by groups",
            ),
            pytest.param(
                LoraConfig,
                {"r": 2, "target_modules": ["conv2d"], "use_dora": True},
                id="dora with rank equal to groups",
            ),
            pytest.param(
                LoraConfig,
                {"r": 1, "target_modules": ["conv2d"], "use_dora": True},
                id="dora with rank not divisible by groups",
            ),
        ],
    )
    def test_error_raised_if_rank_not_divisible_by_groups(self, config_cls, config_kwargs):
        # This test checks if error is raised when rank is not divisible by groups for conv layer since
        # currently, support is limited to conv layers where the rank is divisible by groups in lora and dora
        base_model = self.get_model_conv2d_groups()
        peft_config = config_cls(**config_kwargs)
        r = config_kwargs["r"]
        base_layer = base_model.conv2d
        groups = base_layer.groups
        if r % groups != 0:
            with pytest.raises(
                ValueError,
                match=(
                    f"Targeting a {base_layer.__class__.__name__} with groups={base_layer.groups} and rank {r}. "
                    "Currently, support is limited to conv layers where the rank is divisible by groups. "
                    "Either choose a different rank or do not target this specific layer."
                ),
            ):
                peft_model = get_peft_model(base_model, peft_config)
        else:
            # No error should be raised
            peft_model = get_peft_model(base_model, peft_config)

    def test_target_module_and_target_parameter_on_same_layer(self):
        # When targeting an nn.Parameter with LoRA using target_parameters, ensure that this is not already another LoRA
        # layer (i.e. avoid double wrapping).
        class MyModule(nn.Module):
            def __init__(self):
                super().__init__()
                self.linear = nn.Linear(10, 10)

        base_model = MyModule()
        config = LoraConfig(target_modules=["linear"], target_parameters=["linear.weight"])
        msg = "Trying to wrap an `nn.Parameter` of layer 'linear' of type Linear, which is not a valid target."
        with pytest.raises(ValueError, match=msg):
            get_peft_model(base_model, config)

    @pytest.mark.parametrize("target_parameters", [["linear"], ["foobar"], ["foobar.weight"], ["foo", "bar"]])
    @pytest.mark.parametrize("target_modules", [None, [], ""])
    def test_valid_no_target_module_nor_target_parameter_match_raises(self, target_parameters, target_modules):
        model = self.get_model()
        config = LoraConfig(target_modules=target_modules, target_parameters=target_parameters)
        msg = re.escape(
            "No `target_modules` passed but also no `target_parameters` found. Please check the values for "
            "these arguments."
        )
        with pytest.raises(ValueError, match=msg):
            get_peft_model(model, config)

    def test_target_parameters_wrong_type_raises(self):
        # Check that target_parameters being a string raises a useful error message -- this is an easy mistake to make
        # because strings are allowed for target_modules
        model = self.get_model()
        msg = "`target_parameters` must be a list of strings or None."
        with pytest.raises(TypeError, match=msg):
            LoraConfig(target_parameters="linear.weight")

    def test_valid_target_parameters_invalid_target_modules_warns(self):
        model = self.get_model()
        config = LoraConfig(target_modules=["foobar"], target_parameters=["linear.weight"])
        msg = re.escape("target_modules={'foobar'} were set but no module was matched.")
        with pytest.warns(RuntimeWarning, match=msg):
            get_peft_model(model, config)

    def test_valid_target_modules_invalid_target_parameters_warns(self):
        model = self.get_model()
        config = LoraConfig(target_modules=["linear"], target_parameters=["foobar.weight"])
        msg = re.escape("target_parameters=['foobar.weight'] were set but no parameter was matched.")
        with pytest.warns(RuntimeWarning, match=msg):
            get_peft_model(model, config)

    def test_adding_multiple_adapters_with_target_parameters_raises(self):
        model = self.get_model()
        config = LoraConfig(target_modules=[], target_parameters=["linear.weight"])
        model = get_peft_model(model, config)
        msg = re.escape("only one LoRA adapter per model with `target_parameters` is allowed")
        with pytest.raises(ValueError, match=msg):
            model.add_adapter(adapter_name="other", peft_config=config)

    def test_loading_loading_adapters_with_target_parameters_raises(self, tmp_path):
        model = self.get_model()
        config = LoraConfig(target_modules=[], target_parameters=["linear.weight"])
        model = get_peft_model(model, config)
        model.save_pretrained(tmp_path)

        model = self.get_model()
        model = PeftModel.from_pretrained(model, tmp_path)
        msg = re.escape("only one LoRA adapter per model with `target_parameters` is allowed")
        with pytest.raises(ValueError, match=msg):
            model.load_adapter(tmp_path, adapter_name="other")

    def test_multiple_configs_with_bias_raises(self, tmp_path):
        # There cannot be more than one config with bias != "none".
        # Note: This would need to be tested for all PEFT methods that support the bias parameter, but as this method
        # comes from BaseTuner, it's fine to only check LoRA.
        model = self.get_model()
        config0 = LoraConfig(target_modules=["linear"], bias="all")
        model = get_peft_model(model, config0)

        config1 = LoraConfig(target_modules=["linear"], bias="lora_only")
        msg = "supports only 1 adapter with bias. When using multiple adapters"
        with pytest.raises(ValueError, match=msg):
            model.add_adapter("other", config1)

        # the invalid peft config was not added
        assert len(model.peft_config) == 1

        # it's okay to add a config with bias="none" (the default)
        config2 = LoraConfig(target_modules=["linear"], bias="none")
        model.add_adapter("other", config2)  # does not raise


class TestLokrInitialization:
    torch_device = infer_device()

    def get_model(self):
        class MyModule(nn.Module):
            def __init__(self):
                super().__init__()
                # Choose a large weight so that averages are close to expected values.
                self.linear = nn.Linear(1000, 1000)
                self.conv2d = nn.Conv2d(100, 100, 3)

            def forward(self, x):
                x_4d = x.flatten().reshape(1, 100, 10, 10)
                return self.linear(x), self.conv2d(x_4d)

        return MyModule().eval().to(self.torch_device)

    @pytest.fixture
    def data(self):
        return torch.rand(10, 1000).to(self.torch_device)

    @require_deterministic_for_xpu
    def test_lokr_linear_init_default(self, data):
        torch.manual_seed(0)

        model = self.get_model()
        output_before = model(data)[0]
        config = LoKrConfig(target_modules=["linear"])
        model = get_peft_model(model, config)
        output_after = model(data)[0]

        assert torch.allclose(output_before, output_after)

    def test_lokr_linear_init_false(self, data):
        torch.manual_seed(0)

        model = self.get_model()
        output_before = model(data)[0]
        config = LoKrConfig(target_modules=["linear"], init_weights=False)
        model = get_peft_model(model, config)
        output_after = model(data)[0]

        assert not torch.allclose(output_before, output_after)

    @require_deterministic_for_xpu
    def test_lokr_linear_init_lycoris(self, data):
        torch.manual_seed(0)

        model = self.get_model()
        output_before = model(data)[0]
        config = LoKrConfig(target_modules=["linear"], init_weights="lycoris")
        model = get_peft_model(model, config)
        output_after = model(data)[0]

        assert torch.allclose(output_before, output_after)

    def test_lokr_conv2d_init_default(self, data):
        torch.manual_seed(0)

        model = self.get_model()
        output_before = model(data)[1]
        config = LoKrConfig(target_modules=["conv2d"])
        model = get_peft_model(model, config)
        output_after = model(data)[1]

        assert torch.allclose(output_before, output_after)

    def test_lokr_conv2d_init_false(self, data):
        torch.manual_seed(0)

        model = self.get_model()
        output_before = model(data)[1]
        config = LoKrConfig(target_modules=["conv2d"], init_weights=False)
        model = get_peft_model(model, config)
        output_after = model(data)[1]

        assert not torch.allclose(output_before, output_after)

    def test_lokr_conv2d_init_lycoris(self, data):
        torch.manual_seed(0)

        model = self.get_model()
        output_before = model(data)[1]
        config = LoKrConfig(target_modules=["conv2d"], init_weights="lycoris")
        model = get_peft_model(model, config)
        output_after = model(data)[1]

        assert torch.allclose(output_before, output_after)


class TestAdaLoraInitialization:
    torch_device = infer_device()

    def test_adalora_target_modules_set(self):
        config = AdaLoraConfig(target_modules=["linear", "embed", "conv2d"], total_step=1)
        assert config.target_modules == {"linear", "embed", "conv2d"}

    def test_adalora_use_dora_raises(self):
        with pytest.raises(ValueError, match="ADALORA does not support DoRA"):
            AdaLoraConfig(use_dora=True, total_step=1)

    def test_adalora_loftq_config_raises(self):
        with pytest.raises(ValueError, match="ADALORA does not support LOFTQ"):
            AdaLoraConfig(init_lora_weights="loftq", loftq_config={"loftq": "config"}, total_step=1)

    def get_model(self):
        class MyModule(nn.Module):
            def __init__(self):
                super().__init__()
                # choose a large weight so that averages are close to expected values
                self.linear = nn.Linear(1000, 1000)

            def forward(self, x):
                return self.linear(x)

        return MyModule().eval().to(self.torch_device)

    @pytest.fixture
    def data(self):
        return torch.rand(10, 1000).to(self.torch_device)

    @require_deterministic_for_xpu
    def test_adalora_default_init_identity(self, data):
        # default is True
        torch.manual_seed(0)

        model = self.get_model()
        output_before = model(data)
        config = AdaLoraConfig(target_modules=["linear"], total_step=1)
        model = get_peft_model(model, config)
        output_after = model(data)
        assert torch.allclose(output_before, output_after)


class TestPromptTuningInitialization:
    torch_device = infer_device()

    def get_model(self):
        class MyModule(nn.Module):
            def __init__(self):
                super().__init__()
                # choose a large weight so that averages are close to expected values
                self.linear = nn.Linear(1000, 1000)
                self.embed = nn.Embedding(1000, 1000)
                self.conv2d = nn.Conv2d(100, 100, 3)

            def forward(self, x):
                x_int = (100 * x).int()
                x_4d = x.flatten().reshape(1, 100, 10, 10)
                return self.linear(x), self.embed(x_int), self.conv2d(x_4d)

        return MyModule().eval().to(self.torch_device)

    def test_use_prompt_tuning_init_text_raises(self):
        with pytest.raises(ValueError, match="When prompt_tuning_init='TEXT', tokenizer_name_or_path can't be None"):
            PromptTuningConfig(prompt_tuning_init="TEXT", prompt_tuning_init_text="prompt tuning init text")
        with pytest.raises(ValueError, match="When prompt_tuning_init='TEXT', prompt_tuning_init_text can't be None"):
            PromptTuningConfig(prompt_tuning_init="TEXT", tokenizer_name_or_path="t5-base")


class TestVeraInitialization:
    torch_device = infer_device()

    def get_model(self):
        class MLP(nn.Module):
            def __init__(self, bias=True):
                super().__init__()
                self.lin0 = nn.Linear(10, 20, bias=bias)
                self.lin1 = nn.Linear(20, 2, bias=bias)

            def forward(self, X):
                X = self.lin0(X)
                X = self.lin1(X)
                return X

        return MLP().to(self.torch_device)

    def test_vera_mixing_save_projection_raises(self):
        # it is unclear what the right thing to do would be if some adapters save the projection weights and some don't
        # so we better raise an error

        config0 = VeraConfig(target_modules=["lin0"], init_weights=False, save_projection=True)
        model = self.get_model()
        model = get_peft_model(model, config0)
        config1 = VeraConfig(target_modules=["lin0"], init_weights=False, save_projection=False)
        msg = re.escape(
            "VeRA projection weights must be saved for all adapters or none, but got multiple different values: "
            "[False, True]"
        )
        with pytest.raises(ValueError, match=msg):
            model.add_adapter("other", config1)

    def test_vera_add_second_adapter_with_incompatible_input_shape(self):
        config0 = VeraConfig(target_modules=["lin0"], r=8)
        config1 = VeraConfig(target_modules=["lin1"])

        base_model = self.get_model()
        lin0_in_feat = base_model.lin0.in_features
        lin1_in_feat = base_model.lin1.in_features
        model = get_peft_model(base_model, config0)
        # not full message but enough to identify the error
        msg = f"vera_A has a size of {lin0_in_feat} but {lin1_in_feat} or greater is required"
        with pytest.raises(ValueError, match=msg):
            model.add_adapter("other", config1)

    def test_vera_add_second_adapter_with_higher_rank(self):
        rank0 = 123
        rank1 = 456
        config0 = VeraConfig(target_modules=["lin0"], r=rank0)
        # second adapter has higher rank
        config1 = VeraConfig(target_modules=["lin0"], r=rank1)

        model = get_peft_model(self.get_model(), config0)
        # not full message but enough to identify the error
        msg = f"vera_A has a size of {rank0} but {rank1} or greater is required"
        with pytest.raises(ValueError, match=msg):
            model.add_adapter("other", config1)


class TestVBLoraInitialization:
    torch_device = infer_device()

    def get_model(self):
        class MLP(nn.Module):
            def __init__(self, bias=True):
                super().__init__()
                self.lin0 = nn.Linear(10, 30, bias=bias)
                self.lin1 = nn.Linear(30, 2, bias=bias)

            def forward(self, X):
                X = self.lin0(X)
                X = self.lin1(X)
                return X

        return MLP().to(self.torch_device)

    def test_vblora_with_incompatible_vector_length_with_in_features(self):
        vector_length = 3
        model = self.get_model()
        config = VBLoRAConfig(target_modules=["lin0"], vector_length=vector_length)
        msg = f"`in_features` {model.lin0.in_features} must be divisible by `vector_length` {vector_length}"
        with pytest.raises(ValueError, match=msg):
            get_peft_model(model, config)

    def test_vblora_with_incompatible_vector_length_with_out_features(self):
        vector_length = 3
        model = self.get_model()
        config = VBLoRAConfig(target_modules=["lin1"], vector_length=vector_length)
        msg = f"`out_features` {model.lin1.out_features} must be divisible by `vector_length` {vector_length}"
        with pytest.raises(ValueError, match=msg):
            get_peft_model(model, config)


class TestC3AInitialization:
    torch_device = infer_device()

    def get_model(self):
        class MLP(nn.Module):
            def __init__(self, bias=True):
                super().__init__()
                self.lin0 = nn.Linear(10, 30, bias=bias)
                self.lin1 = nn.Linear(30, 2, bias=bias)

            def forward(self, X):
                X = self.lin0(X)
                X = self.lin1(X)
                return X

        return MLP().to(self.torch_device)

    def test_c3a_with_incompatible_block_size_with_in_features(self):
        block_size = 3
        model = self.get_model()
        config = C3AConfig(target_modules=["lin0"], block_size=block_size)
        msg = f"The block size should be a factor of the input size. However, the input size is {model.lin0.in_features} and the block size is {block_size}"
        with pytest.raises(ValueError, match=msg):
            get_peft_model(model, config)

    def test_c3a_with_incompatible_block_size_with_out_features(self):
        block_size = 3
        model = self.get_model()
        config = C3AConfig(target_modules=["lin1"], block_size=block_size)
        msg = f"The block size should be a factor of the output size. However, the output size is {model.lin1.out_features} and the block size is {block_size}"
        with pytest.raises(ValueError, match=msg):
            get_peft_model(model, config)


class TestWaveFTInitialization:
    """Test class to check the initialization of WaveFT adapters."""

    torch_device = infer_device()

    def get_model(self):
        class MyModule(nn.Module):
            def __init__(self):
                super().__init__()
                # Choose a large weight so that averages are close to expected values.
                self.linear = nn.Linear(1000, 1000)
                self.conv2d = nn.Conv2d(100, 100, 3)

            def forward(self, x):
                x_4d = x.flatten().reshape(1, 100, 10, 10)
                return self.linear(x), self.conv2d(x_4d)

        return MyModule().eval().to(self.torch_device)

    @pytest.fixture
    def data(self):
        return torch.rand(10, 1000).to(self.torch_device)

    @require_deterministic_for_xpu
    def test_waveft_linear_init_default(self, data):
        # Default initialization should result in no change to output (zeros initialization)
        torch.manual_seed(0)

        model = self.get_model()
        output_before = model(data)[0]
        config = WaveFTConfig(target_modules=["linear"], n_frequency=100, init_weights=True)
        model = get_peft_model(model, config)
        output_after = model(data)[0]

        assert torch.allclose(output_before, output_after, atol=1e-6)

    def test_waveft_linear_init_false(self, data):
        # With init_weights=False, output should change (random initialization)
        torch.manual_seed(0)

        model = self.get_model()
        output_before = model(data)[0]
        config = WaveFTConfig(target_modules=["linear"], n_frequency=100, init_weights=False)
        model = get_peft_model(model, config)
        output_after = model(data)[0]

        assert not torch.allclose(output_before, output_after, atol=1e-6)

    @require_deterministic_for_xpu
    def test_waveft_linear_with_scaling(self, data):
        # Test that scaling parameter affects output correctly
        torch.manual_seed(0)

        model = self.get_model()
        output_before = model(data)[0]
        config = WaveFTConfig(target_modules=["linear"], n_frequency=100, init_weights=False, scaling=10.0)
        model = get_peft_model(model, config)
        output_after = model(data)[0]

        assert not torch.allclose(output_before, output_after, atol=1e-6)

    @require_deterministic_for_xpu
    def test_waveft_different_wavelet_families(self, data):
        # Test different wavelet families
        torch.manual_seed(0)

        model1 = self.get_model()
        config1 = WaveFTConfig(target_modules=["linear"], n_frequency=100, wavelet_family="db1", init_weights=False)
        model1 = get_peft_model(model1, config1)
        output1 = model1(data)[0]

        torch.manual_seed(0)
        model2 = self.get_model()
        config2 = WaveFTConfig(target_modules=["linear"], n_frequency=100, wavelet_family="sym2", init_weights=False)
        model2 = get_peft_model(model2, config2)
        output2 = model2(data)[0]

        # Different wavelet families should produce different results
        assert not torch.allclose(output1, output2, atol=1e-6)

    @require_deterministic_for_xpu
    def test_waveft_use_idwt_flag(self, data):
        # Test use_idwt flag
        torch.manual_seed(0)

        model1 = self.get_model()
        config1 = WaveFTConfig(target_modules=["linear"], n_frequency=100, use_idwt=True, init_weights=False)
        model1 = get_peft_model(model1, config1)
        output1 = model1(data)[0]

        torch.manual_seed(0)
        model2 = self.get_model()
        config2 = WaveFTConfig(target_modules=["linear"], n_frequency=100, use_idwt=False, init_weights=False)
        model2 = get_peft_model(model2, config2)
        output2 = model2(data)[0]

        # Different use_idwt settings should produce different results
        assert not torch.allclose(output1, output2, atol=1e-6)

    def test_waveft_non_positive_n_frequency_raises(self):
        # Test that n_frequency <= 0 raises appropriate error
        model = self.get_model()

        # Test with n_frequency = 0
        n_frequency = 0
        msg = f"`n_frequency` should be a positive integer value but the value passed is {n_frequency}"
        with pytest.raises(ValueError, match=re.escape(msg)):
            config = WaveFTConfig(target_modules=["linear"], n_frequency=n_frequency)
            get_peft_model(model, config)

        # Test with negative n_frequency
        n_frequency = -1
        msg = f"`n_frequency` should be a positive integer value but the value passed is {n_frequency}"
        with pytest.raises(ValueError, match=re.escape(msg)):
            config = WaveFTConfig(target_modules=["linear"], n_frequency=n_frequency)
            get_peft_model(model, config)

    def test_waveft_excessive_n_frequency_raises(self):
        # Test that n_frequency > in_features * out_features raises appropriate error
        model = self.get_model()

        # The model has a linear layer with 1000 in_features and 1000 out_features
        # So the maximum n_frequency should be 1000 * 1000 = 1,000,000
        max_allowed = 1000 * 1000
        n_frequency = max_allowed + 1
        msg = (
            f"`n_frequency` should be less than or equal to the product of the input and output dimensions "
            f"but the value passed is {n_frequency} and the product is {max_allowed}"
        )
        with pytest.raises(ValueError, match=re.escape(msg)):
            config = WaveFTConfig(target_modules=["linear"], n_frequency=n_frequency)
            get_peft_model(model, config)

    def test_waveft_n_frequency_pattern(self, data):
        # Test n_frequency_pattern functionality
        torch.manual_seed(0)

        model = self.get_model()
        config = WaveFTConfig(
            target_modules=["linear"], n_frequency=50, n_frequency_pattern={"linear": 100}, init_weights=True
        )
        model = get_peft_model(model, config)

        # Check that the pattern was applied
        waveft_layer = model.base_model.model.linear
        assert hasattr(waveft_layer, "waveft_n_frequency")
        assert waveft_layer.waveft_n_frequency["default"] == 100

    def test_waveft_layers_pattern_without_layers_to_transform_raises(self):
        # Test that when layers_pattern is specified, layers_to_transform must also be specified
        msg = "When `layers_pattern` is specified, `layers_to_transform` must also be specified."
        with pytest.raises(ValueError, match=re.escape(msg)):
            WaveFTConfig(target_modules=["linear"], layers_pattern=["layers"], layers_to_transform=None)

    def test_waveft_invalid_wavelet_family_raises(self):
        # Test that invalid wavelet families raise appropriate errors
        invalid_family = "invalid_wavelet"
        msg = f"Wavelet family {invalid_family} not supported. Supported wavelet families are:"
        with pytest.raises(ValueError, match=re.escape(msg)):
            WaveFTConfig(target_modules=["linear"], wavelet_family=invalid_family)


class TestRoadInitialization:
    torch_device = infer_device()

    def get_model(self):
        class MLP(nn.Module):
            def __init__(self, bias=True):
                super().__init__()
                self.lin0 = nn.Linear(10, 30, bias=bias)
                self.lin1 = nn.Linear(30, 2, bias=bias)

            def forward(self, X):
                X = self.lin0(X)
                X = self.lin1(X)
                return X

        return MLP().to(self.torch_device)

    def get_conv2d_model(self):
        class MyModule(nn.Module):
            def __init__(self):
                super().__init__()
                # choose a large weight so that averages are close to expected values
                self.linear = nn.Linear(1000, 1000)
                self.embed = nn.Embedding(1000, 1000)
                self.conv2d = nn.Conv2d(100, 100, 3)

            def forward(self, x):
                x_int = (100 * x).int()
                x_4d = x.flatten().reshape(1, 100, 10, 10)
                return self.linear(x), self.embed(x_int), self.conv2d(x_4d)

        return MyModule().eval().to(self.torch_device)

    def test_road_default_initialization(self):
        torch.manual_seed(0)
        model = self.get_model()
        config = RoadConfig(target_modules=["lin0"], group_size=2)
        model = get_peft_model(model, config)
        weight_alpha = model.lin0.road_alpha["default"].data
        weight_theta = model.lin0.road_theta["default"].data
        torch.allclose(weight_alpha, torch.ones_like(weight_alpha))
        torch.allclose(weight_theta, torch.zeros_like(weight_theta))

    def test_road_with_odd_group_size(self):
        group_size = 3  # odd values are not allowed
        msg = f"The group_size must be divisible by 2 when using RoadLayer, but got {group_size}."
        with pytest.raises(ValueError, match=re.escape(msg)):
            RoadConfig(group_size=group_size)

    def test_road_with_too_large_group_size(self):
        group_size = 64  # larger than out_features
        msg = (
            f"The out_features of the base layer must be divisible by group_size ({group_size}) when using RoadLayer."
        )
        model = self.get_model()
        config = RoadConfig(target_modules=["lin0"], group_size=group_size)
        with pytest.raises(ValueError, match=re.escape(msg)):
            get_peft_model(model, config)

    def test_road_with_incompatible_group_size_with_out_features(self):
        group_size = 4  # even, but 30 does not divide by 4
        model = self.get_model()
        config = RoadConfig(target_modules=["lin0"], group_size=group_size)
        msg = (
            f"The out_features of the base layer must be divisible by group_size ({group_size}) when using RoadLayer."
        )
        with pytest.raises(ValueError, match=re.escape(msg)):
            get_peft_model(model, config)

    def test_road_with_conv2d_layer(self):
        model = self.get_conv2d_model()
        config = RoadConfig(target_modules=["conv2d"], group_size=2)
        msg = "Target module Conv2d(100, 100, kernel_size=(3, 3), stride=(1, 1)) is not supported. Currently, only the following modules are supported: `torch.nn.Linear`."
        with pytest.raises(ValueError, match=re.escape(msg)):
            get_peft_model(model, config)


class TestNoInfiniteRecursionDeepspeed:
    # see #1892 for details
    classes = [
        PeftModel,
        PeftMixedModel,
        PeftModelForSequenceClassification,
        PeftModelForQuestionAnswering,
        PeftModelForTokenClassification,
        PeftModelForCausalLM,
        PeftModelForSeq2SeqLM,
        PeftModelForFeatureExtraction,
    ]

    @pytest.fixture
    def wrap_init(self):
        # emulates the wrapper from DeepSpeed
        import functools

        def decorator(f):
            @functools.wraps(f)
            def wrapper(self, *args, **kwargs):
                hasattr(self, "abc")  # any hasattr will do
                f(self, *args, **kwargs)

            return wrapper

        return decorator

    @pytest.fixture
    def model(self):
        class MyModule(nn.Module):
            def __init__(self):
                super().__init__()
                self.linear = nn.Linear(10, 10)
                # to emulate LMs:
                self.prepare_inputs_for_generation = None
                self._prepare_encoder_decoder_kwargs_for_generation = None

        return MyModule()

    @pytest.mark.parametrize("cls", classes)
    def test_no_infinite_recursion(self, cls, model, wrap_init):
        original_init = cls.__init__
        try:
            cls.__init__ = wrap_init(cls.__init__)
            # this would trigger an infinite loop before the fix in 1892
            cls(model, LoraConfig(target_modules=["linear"]))
        finally:
            # ensure there are no side effects of this test
            cls.__init__ = original_init


class TestLoadAdapterOfflineMode:
    base_model = "hf-internal-testing/tiny-random-OPTForCausalLM"
    peft_model_id = "peft-internal-testing/tiny-OPTForCausalLM-lora"

    # make sure that PEFT honors offline mode
    @contextmanager
    def hub_offline_ctx(self):
        # this is required to simulate offline mode, setting the env var dynamically inside the test does not work
        # because the value is checked only once at the start of the session

        if reset_sessions is None:
            # this means we're using huggingface_hub >= 1.0.0, there is no need to call reset_sessions() anymore
            with patch("huggingface_hub.constants.HF_HUB_OFFLINE", True):
                yield
        else:
            # in huggingface_hub < 1.0.0, it's necessary to reset the session
            # TODO: remove once huggingface_hub < 1.0.0 is no longer supported
            with patch("huggingface_hub.constants.HF_HUB_OFFLINE", True):
                reset_sessions()
                yield
            reset_sessions()

    def test_load_from_hub_then_offline_model(self):
        # this uses LoRA but it's the same mechanism for other methods
        base_model = AutoModelForCausalLM.from_pretrained(self.base_model)

        # first ensure that the adapter model has been downloaded
        PeftModel.from_pretrained(base_model, self.peft_model_id)

        del base_model

        base_model = AutoModelForCausalLM.from_pretrained(self.base_model)
        with self.hub_offline_ctx():
            # does not raise
            PeftModel.from_pretrained(base_model, self.peft_model_id)

    @pytest.fixture
    def changed_default_cache_dir(self, tmp_path, monkeypatch):
        # ensure that this test does not interact with other tests that may use the HF cache
        monkeypatch.setattr("huggingface_hub.constants.HF_HOME", tmp_path)
        monkeypatch.setattr("huggingface_hub.constants.HF_HUB_CACHE", tmp_path / "hub")
        monkeypatch.setattr("huggingface_hub.constants.HF_TOKEN_PATH", tmp_path / "token")

    def load_checkpoints(self, cache_dir):
        # download model and lora checkpoint to a specific cache dir
        snapshot_download(self.base_model, cache_dir=cache_dir)
        snapshot_download(self.peft_model_id, cache_dir=cache_dir)

    def test_load_checkpoint_offline_non_default_cache_dir(self, changed_default_cache_dir, tmp_path):
        # See #2373 for context
        self.load_checkpoints(tmp_path)
        with self.hub_offline_ctx():
            base_model = AutoModelForCausalLM.from_pretrained(self.base_model, cache_dir=tmp_path)
            PeftModel.from_pretrained(base_model, self.peft_model_id, cache_dir=tmp_path)


class TestCustomModelConfigWarning:
    # Check potential warnings when the user provided base_model_name_or_path is overridden by PEFT. See #2001 for
    # context. We use LoRA for this test but the same applies to other methods
    @pytest.fixture
    def custom_module(self):
        class MyModule(nn.Module):
            def __init__(self):
                super().__init__()
                self.lin = nn.Linear(10, 10)

        return MyModule()

    def test_no_warning_by_default_transformers_model(self, recwarn):
        # first a sanity test that there is no warning by default when using a model from transformers
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-OPTForCausalLM")
        get_peft_model(model, LoraConfig())
        for warning in recwarn.list:
            assert "renamed" not in str(warning.message)

    def test_no_warning_by_default_custom_model(self, custom_module, recwarn):
        # same as above but with a custom model
        get_peft_model(custom_module, LoraConfig(target_modules=["lin"]))
        for warning in recwarn.list:
            assert "renamed" not in str(warning.message)

    def test_warning_name_transformers_model(self, recwarn):
        # The base_model_name_or_path provided by the user is overridden.
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-OPTForCausalLM")
        custom_name = "custom_name"
        get_peft_model(model, LoraConfig(base_model_name_or_path=custom_name))
        msg = f"was renamed from '{custom_name}' to 'hf-internal-testing/tiny-random-OPTForCausalLM'"
        assert any(msg in str(warning.message) for warning in recwarn.list)

    def test_warning_name_custom_model(self, custom_module, recwarn):
        custom_name = "custom_name"
        get_peft_model(custom_module, LoraConfig(target_modules=["lin"], base_model_name_or_path=custom_name))
        msg = f"was renamed from '{custom_name}' to 'None'"
        assert any(msg in str(warning.message) for warning in recwarn.list)

    def test_warning_name_custom_model_with_custom_name(self, custom_module, recwarn):
        custom_name = "custom_name"
        custom_module.name_or_path = "foobar"
        get_peft_model(custom_module, LoraConfig(target_modules=["lin"], base_model_name_or_path=custom_name))
        msg = f"was renamed from '{custom_name}' to 'foobar'"
        assert any(msg in str(warning.message) for warning in recwarn.list)


class TestLowCpuMemUsage:
    """Test for the low CPU memory usage option for loading PEFT models.

    Note that we have `test_load_model_low_cpu_mem_usage` in the custom model and stable diffusion tests. Those are
    broad tests (i.e. testing all the supported PEFT methods) but not very deep (only testing if loading works and the
    device is correctly set). The test class here goes deeper but only tests LoRA, as checking all PEFT methods would
    be too much.

    """

    # test on CPU and optionally on accelerator device
    devices = ["cpu"]
    _device = infer_device()
    if _device != "cpu":
        devices.append(_device)

    model_id = "hf-internal-testing/tiny-random-OPTForCausalLM"

    def get_model(self):
        return AutoModelForCausalLM.from_pretrained(self.model_id)

    @pytest.fixture(scope="class")
    def lora_config(self):
        return LoraConfig(init_lora_weights=False, target_modules="all-linear")

    @pytest.fixture(scope="class")
    def lora_path(self, tmp_path_factory, lora_config):
        torch.manual_seed(0)
        tmp_path = tmp_path_factory.mktemp("lora")
        model = self.get_model()
        model = get_peft_model(model, lora_config)
        model.save_pretrained(tmp_path)
        return tmp_path

    @pytest.fixture(scope="class")
    def inputs(self):
        return {"input_ids": torch.randint(0, 100, (1, 10)), "attention_mask": torch.ones(1, 10)}

    @pytest.mark.parametrize("device", devices)
    def test_from_pretrained_low_cpu_mem_usage_works(self, device, inputs, lora_path):
        model = self.get_model().to(device)
        inputs = {k: v.to(device) for k, v in inputs.items()}
        model = PeftModel.from_pretrained(model, lora_path, torch_device=device).eval()
        device_set_not_low_cpu_mem = {p.device.type for p in model.parameters()}
        logits_not_low_cpu_mem = model(**inputs).logits

        del model

        model = self.get_model().to(device)
        model = PeftModel.from_pretrained(model, lora_path, low_cpu_mem_usage=True, torch_device=device).eval()
        device_set_low_cpu_mem = {p.device.type for p in model.parameters()}
        logits_low_cpu_mem = model(**inputs).logits

        assert device_set_low_cpu_mem == device_set_not_low_cpu_mem
        assert torch.allclose(logits_low_cpu_mem, logits_not_low_cpu_mem, atol=1e-6, rtol=1e-6)

    @pytest.mark.parametrize("device", devices)
    def test_load_adapter_low_cpu_mem_usage_works(self, device, inputs, lora_path, lora_config):
        model = self.get_model().to(device)
        inputs = {k: v.to(device) for k, v in inputs.items()}

        torch.manual_seed(0)
        model = get_peft_model(model, lora_config)
        model.load_adapter(lora_path, adapter_name="other", torch_device=device)
        model.set_adapter("other")
        model.eval()
        device_set_not_low_cpu_mem = {p.device.type for p in model.parameters()}
        logits_not_low_cpu_mem = model(**inputs).logits

        del model

        model = self.get_model().to(device)
        torch.manual_seed(0)
        model = get_peft_model(model, lora_config)
        model.load_adapter(lora_path, adapter_name="other", low_cpu_mem_usage=True, torch_device=device)
        model.set_adapter("other")
        model.eval()
        device_set_low_cpu_mem = {p.device.type for p in model.parameters()}
        logits_low_cpu_mem = model(**inputs).logits

        assert device_set_low_cpu_mem == device_set_not_low_cpu_mem
        assert torch.allclose(logits_low_cpu_mem, logits_not_low_cpu_mem, atol=1e-6, rtol=1e-6)

    @pytest.mark.parametrize("device", devices)
    def test_get_peft_model_low_cpu_mem_usage_works(self, device, inputs):
        # when calling get_peft_model, the PEFT weights will not be initialized on device but remain on meta
        model = self.get_model().to(device)
        model = get_peft_model(model, LoraConfig(target_modules="all-linear"), low_cpu_mem_usage=True)

        devices_lora_weights = {p.device for n, p in model.named_parameters() if "lora_" in n}
        expected = {torch.device("meta")}
        assert devices_lora_weights == expected

    @pytest.mark.parametrize("device", devices)
    def test_get_peft_model_with_task_type_low_cpu_mem_usage_works(self, device, inputs):
        # same as the previous test, but pass the task_type argument
        model = self.get_model().to(device)
        model = get_peft_model(
            model, LoraConfig(target_modules="all-linear", task_type="CAUSAL_LM"), low_cpu_mem_usage=True
        )

        devices_lora_weights = {p.device for n, p in model.named_parameters() if "lora_" in n}
        expected = {torch.device("meta")}
        assert devices_lora_weights == expected

    @pytest.mark.parametrize("device", devices)
    def test_inject_adapter_low_cpu_mem_usage_works(self, device, inputs, lora_path, lora_config):
        # external libs like transformers and diffusers use inject_adapter_in_model, let's check that this also works
        model = self.get_model().to(device)
        inputs = {k: v.to(device) for k, v in inputs.items()}

        torch.manual_seed(0)
        model = get_peft_model(model, lora_config)
        model.load_adapter(lora_path, adapter_name="other", torch_device=device)
        model.set_adapter("other")
        model.eval()
        device_set_not_low_cpu_mem = {p.device.type for p in model.parameters()}
        logits_not_low_cpu_mem = model(**inputs).logits

        del model

        torch.manual_seed(0)
        model = self.get_model().to(device)
        inject_adapter_in_model(lora_config, model, low_cpu_mem_usage=True)
        device_set_before_loading = {p.device.type for p in model.parameters()}
        # at this stage, lora weights are still on meta device
        assert device_set_before_loading == {"meta", device}

        state_dict = load_file(lora_path / "adapter_model.safetensors")
        remapped_dict = {}
        prefix = "base_model.model."
        for key, val in state_dict.items():
            new_key = key[len(prefix) :]
            remapped_dict[new_key] = val.to(device)
        errors = set_peft_model_state_dict(model, remapped_dict, low_cpu_mem_usage=True)
        # sanity check: no unexpected keys
        assert not errors.unexpected_keys

        model.eval()
        device_set_low_cpu_mem = {p.device.type for p in model.parameters()}
        logits_low_cpu_mem = model(**inputs).logits

        assert device_set_low_cpu_mem == device_set_not_low_cpu_mem
        assert torch.allclose(logits_low_cpu_mem, logits_not_low_cpu_mem, atol=1e-6, rtol=1e-6)

    ############################
    # tests for PeftMixedModel #
    ############################

    @pytest.mark.parametrize("device", devices)
    def test_mixed_model_from_pretrained_low_cpu_mem_usage_works(self, device, inputs, lora_path):
        model = self.get_model().to(device)
        inputs = {k: v.to(device) for k, v in inputs.items()}
        model = PeftMixedModel.from_pretrained(model, lora_path, torch_device=device).eval()
        device_set_not_low_cpu_mem = {p.device.type for p in model.parameters()}
        logits_not_low_cpu_mem = model(**inputs).logits

        del model

        model = self.get_model().to(device)
        model = PeftMixedModel.from_pretrained(model, lora_path, low_cpu_mem_usage=True, torch_device=device).eval()
        device_set_low_cpu_mem = {p.device.type for p in model.parameters()}
        logits_low_cpu_mem = model(**inputs).logits

        assert device_set_low_cpu_mem == device_set_not_low_cpu_mem
        assert torch.allclose(logits_low_cpu_mem, logits_not_low_cpu_mem, atol=1e-6, rtol=1e-6)

    @pytest.mark.parametrize("device", devices)
    def test_mixed_model_load_adapter_low_cpu_mem_usage_works(self, device, inputs, lora_path, lora_config):
        model = self.get_model().to(device)
        inputs = {k: v.to(device) for k, v in inputs.items()}

        torch.manual_seed(0)
        model = PeftModel.from_pretrained(model, lora_path)
        model.load_adapter(lora_path, adapter_name="other", torch_device=device)
        model.set_adapter("other")
        model.eval()
        device_set_not_low_cpu_mem = {p.device.type for p in model.parameters()}
        logits_not_low_cpu_mem = model(**inputs).logits

        del model

        model = self.get_model().to(device)
        torch.manual_seed(0)
        model = PeftModel.from_pretrained(model, lora_path)
        model.load_adapter(lora_path, adapter_name="other", low_cpu_mem_usage=True, torch_device=device)
        model.set_adapter("other")
        model.eval()
        device_set_low_cpu_mem = {p.device.type for p in model.parameters()}
        logits_low_cpu_mem = model(**inputs).logits

        assert device_set_low_cpu_mem == device_set_not_low_cpu_mem
        assert torch.allclose(logits_low_cpu_mem, logits_not_low_cpu_mem, atol=1e-6, rtol=1e-6)


def test_from_pretrained_missing_keys_warning(recwarn, tmp_path):
    # For more context, see issue 2115
    # When loading a PEFT adapter and we're missing a PEFT-specific weight, there should be a warning.
    model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-OPTForCausalLM")
    config = LoraConfig()
    model = get_peft_model(model, config)
    state_dict = model.state_dict()

    # first, sanity check that there are no warnings if no key is missing
    model.save_pretrained(tmp_path)
    del model
    model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-OPTForCausalLM")
    model = PeftModel.from_pretrained(model, tmp_path)
    msg = "Found missing adapter keys"
    assert not any(msg in str(w.message) for w in recwarn.list)

    # remove a key from the state_dict
    missing_key = "base_model.model.model.decoder.layers.0.self_attn.v_proj.lora_A.default.weight"

    def new_state_dict():
        return {k: v for k, v in state_dict.items() if k != missing_key}

    model.state_dict = new_state_dict
    model.save_pretrained(tmp_path)
    del model

    model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-OPTForCausalLM")
    model = PeftModel.from_pretrained(model, tmp_path)
    assert any(msg in str(w.message) for w in recwarn.list)
    assert any(missing_key in str(w.message) for w in recwarn.list)


class TestNamingConflictWarning:
    """
    Tests for warnings related to naming conflicts between adapter names and tuner prefixes. References: Issue 2252
    """

    @pytest.fixture(autouse=True)
    def setup(self):
        self.peft_config = LoraConfig()
        self.prefix = PEFT_TYPE_TO_PREFIX_MAPPING[self.peft_config.peft_type]
        self.base_model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-OPTForCausalLM")

    def _save_and_reload_model(self, model, adapter_name, tmp_path):
        # Helper method to save and reload the PEFT model
        model.save_pretrained(tmp_path, selected_adapters=[adapter_name])
        del model
        reloaded_base_model = AutoModelForCausalLM.from_pretrained(tmp_path / adapter_name)
        return PeftModel.from_pretrained(reloaded_base_model, tmp_path / adapter_name)

    def test_no_warning_without_naming_conflict_get_peft_model(self, recwarn):
        # No warning should be raised when there is no naming conflict during get_peft_model.
        non_conflict_adapter = "adapter"
        _ = get_peft_model(self.base_model, self.peft_config, adapter_name=non_conflict_adapter)
        expected_msg = f"Adapter name '{non_conflict_adapter}' should not be contained in the prefix '{self.prefix}'."
        assert not any(expected_msg in str(w.message) for w in recwarn.list)

    def test_no_warning_without_naming_conflict_add_adapter(self, recwarn):
        # No warning should be raised when adding an adapter without naming conflict.
        non_conflict_adapter = "adapter"
        other_non_conflict_adapter = "other_adapter"
        model = get_peft_model(self.base_model, self.peft_config, adapter_name=non_conflict_adapter)
        _ = model.add_adapter(other_non_conflict_adapter, self.peft_config)
        expected_msg = (
            f"Adapter name '{other_non_conflict_adapter}' should not be contained in the prefix '{self.prefix}'."
        )
        assert not any(expected_msg in str(w.message) for w in recwarn.list)

    def test_no_warning_without_naming_conflict_save_and_load(self, recwarn, tmp_path):
        # No warning should be raised when saving and loading the model without naming conflict.
        non_conflict_adapter = "adapter"
        model = get_peft_model(self.base_model, self.peft_config, adapter_name=non_conflict_adapter)
        _ = self._save_and_reload_model(model, non_conflict_adapter, tmp_path)
        expected_msg = f"Adapter name '{non_conflict_adapter}' should not be contained in the prefix '{self.prefix}'."
        assert not any(expected_msg in str(w.message) for w in recwarn.list)

    def test_warning_naming_conflict_get_peft_model(self, recwarn):
        # Warning is raised when the adapter name conflicts with the prefix in get_peft_model.
        conflicting_adapter_name = self.prefix[:-1]
        _ = get_peft_model(self.base_model, self.peft_config, adapter_name=conflicting_adapter_name)
        expected_msg = (
            f"Adapter name '{conflicting_adapter_name}' should not be contained in the prefix '{self.prefix}'."
        )
        assert any(expected_msg in str(w.message) for w in recwarn.list)

    def test_warning_naming_conflict_add_adapter(self, recwarn):
        # Warning is raised when adding an adapter with a name that conflicts with the prefix.
        conflicting_adapter = self.prefix[1:]
        non_conflict_adapter = "adapter"
        model = get_peft_model(self.base_model, self.peft_config, adapter_name=non_conflict_adapter)
        _ = model.add_adapter(conflicting_adapter, self.peft_config)
        expected_msg = f"Adapter name '{conflicting_adapter}' should not be contained in the prefix '{self.prefix}'."
        assert any(expected_msg in str(w.message) for w in recwarn.list)

    def test_warning_naming_conflict_save_and_load(self, recwarn, tmp_path):
        # Warning is raised when saving and loading the model with a naming conflict.
        conflicting_adapter = self.prefix[:-1]
        model = get_peft_model(self.base_model, self.peft_config, adapter_name=conflicting_adapter)
        _ = self._save_and_reload_model(model, conflicting_adapter, tmp_path)
        expected_msg = f"Adapter name '{conflicting_adapter}' should not be contained in the prefix '{self.prefix}'."
        assert any(expected_msg in str(w.message) for w in recwarn.list)


class TestCordaInitialization:
    """Test class to check the initialization of CorDA adapters."""

    torch_device = infer_device()

    def get_model(self):
        class MyModule(nn.Module):
            def __init__(self):
                super().__init__()
                # choose a large weight so that averages are close to expected values
                self.linear = nn.Linear(1000, 1000)

            def forward(self, x):
                return self.linear(x)

        return MyModule().eval().to(self.torch_device)

    @pytest.fixture
    def data(self):
        # larger data is required to pass KPM test
        torch.manual_seed(233)
        return torch.rand(1000, 1000).to(self.torch_device)

    @pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
    def test_lora_corda_no_redundant_fields(self, data, corda_method):
        original_model = self.get_model()
        model = deepcopy(original_model)

        corda_config = CordaConfig(
            corda_method=corda_method,
        )
        config = LoraConfig(
            init_lora_weights="corda",
            target_modules=["linear"],
            corda_config=corda_config,
        )
        preprocess_corda(
            model,
            config,
            run_model=lambda: model(data),
            hooked_model=model,
        )
        peft_model = get_peft_model(model, config)

        # check if the redundant fields are removed
        assert not hasattr(peft_model.base_model.linear, "sample_count")
        assert not hasattr(peft_model.base_model.linear, "covariance_matrix")
        assert not hasattr(peft_model.base_model.linear, "corda_method")
        assert not hasattr(peft_model.base_model.linear, "rank")
        assert not hasattr(peft_model.base_model.linear, "eigens")

        # legacy debug fields
        assert not hasattr(peft_model.base_model.linear, "mean")
        assert not hasattr(peft_model.base_model.linear, "std")

    @pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
    def test_lora_corda_sample_count(self, data, corda_method):
        original_model = self.get_model()
        model = deepcopy(original_model)

        corda_config = CordaConfig(
            corda_method=corda_method,
            prune_temporary_fields=False,
        )
        config = LoraConfig(
            init_lora_weights="corda",
            target_modules=["linear"],
            corda_config=corda_config,
        )
        preprocess_corda(
            model,
            config,
            run_model=lambda: [model(data), model(data)],  # running model twice to test `sample_count`
            hooked_model=model,
        )

        # covariance of linear should be data.T @ data
        layer = model.linear
        assert hasattr(layer, "covariance_matrix")
        assert torch.allclose(layer.covariance_matrix, data.T @ data, atol=1e-06)

        # sample count of linear should be 2
        assert hasattr(layer, "sample_count")
        assert layer.sample_count == 2

    @pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
    def test_lora_corda_hook_unregister(self, data, corda_method):
        original_model = self.get_model()
        model = deepcopy(original_model)

        hook_call_count = 0

        def hook(*args):
            nonlocal hook_call_count
            hook_call_count += 1

        model.linear.register_forward_hook(hook)

        corda_config = CordaConfig(
            corda_method=corda_method,
            prune_temporary_fields=False,
        )
        config = LoraConfig(
            init_lora_weights="corda",
            target_modules=["linear"],
            corda_config=corda_config,
        )
        preprocess_corda(
            model,
            config,
            run_model=lambda: model(data),
            hooked_model=model,
        )

        # after preprocessing, external and internal hook should be run once
        assert hook_call_count == 1
        assert model.linear.sample_count == 1

        # run preprocessed model once
        model(data)[0]

        # the external hook should be kept, but the internal hook should be gone
        assert hook_call_count == 2
        assert model.linear.sample_count == 1

    @pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
    def test_lora_corda_linear_init_default(self, data, tmp_path, corda_method):
        original_model = self.get_model()
        model = deepcopy(original_model)
        output_base = model(data)[0]

        corda_config = CordaConfig(
            cache_file=tmp_path / "corda_cache.pt",
            covariance_file=tmp_path / "covariance_cache.pt",
            corda_method=corda_method,
        )
        config = LoraConfig(
            init_lora_weights="corda",
            target_modules=["linear"],
            corda_config=corda_config,
        )
        preprocess_corda(
            model,
            config,
            run_model=lambda: model(data),
            hooked_model=model,
        )
        peft_model = get_peft_model(model, config)

        # check if adapter performs an identity transformantion
        assert torch.allclose(output_base, peft_model(data)[0], atol=1e-06)

        # modify the weights, or else the adapter performs an identity transformation
        peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
        output_corda = peft_model(data)[0]

        # sanity check
        tol = 1e-06
        assert not torch.allclose(output_base, output_corda, atol=tol, rtol=tol)

        # if load SVD result from cache, the output should be the same
        model = deepcopy(original_model)
        config = LoraConfig(
            init_lora_weights="corda",
            target_modules=["linear"],
            corda_config=CordaConfig(cache_file=tmp_path / "corda_cache.pt", corda_method=corda_method),
        )
        preprocess_corda(model, config)
        peft_model = get_peft_model(model, config)
        peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
        assert torch.allclose(output_corda, peft_model(data)[0], atol=1e-06)

        # if load covariance from cache, the output should be the same
        model = deepcopy(original_model)
        config = LoraConfig(
            init_lora_weights="corda",
            target_modules=["linear"],
            corda_config=CordaConfig(covariance_file=tmp_path / "covariance_cache.pt", corda_method=corda_method),
        )
        preprocess_corda(model, config)
        peft_model = get_peft_model(model, config)
        peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
        assert torch.allclose(output_corda, peft_model(data)[0], atol=1e-06)

    @pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
    def test_lora_corda_hooked_model_linear_init_default(self, data, tmp_path, corda_method):
        original_model = self.get_model()
        model = deepcopy(original_model)
        hooked_model = deepcopy(model)
        output_base = model(data)[0]

        corda_config = CordaConfig(
            cache_file=tmp_path / "corda_cache.pt",
            covariance_file=tmp_path / "covariance_cache.pt",
            corda_method=corda_method,
        )
        config = LoraConfig(
            init_lora_weights="corda",
            target_modules=["linear"],
            corda_config=corda_config,
        )

        # difference from the above test: this test uses a copied model as hooked model
        preprocess_corda(
            model,
            config,
            run_model=lambda: hooked_model(data),
            hooked_model=hooked_model,
        )
        peft_model = get_peft_model(model, config)

        # check if adapter performs an identity transformantion
        assert torch.allclose(output_base, peft_model(data)[0], atol=1e-06)

        # modify the weights, or else the adapter performs an identity transformation
        peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
        output_corda = peft_model(data)[0]

        # sanity check
        tol = 1e-06
        assert not torch.allclose(output_base, output_corda, atol=tol, rtol=tol)

        # if load SVD result from cache, the output should be the same
        model = deepcopy(original_model)
        config = LoraConfig(
            init_lora_weights="corda",
            target_modules=["linear"],
            corda_config=CordaConfig(cache_file=tmp_path / "corda_cache.pt", corda_method=corda_method),
        )
        preprocess_corda(model, config)
        peft_model = get_peft_model(model, config)
        peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
        assert torch.allclose(output_corda, peft_model(data)[0], atol=1e-06)

        # if load covariance from cache, the output should be the same
        model = deepcopy(original_model)
        config = LoraConfig(
            init_lora_weights="corda",
            target_modules=["linear"],
            corda_config=CordaConfig(covariance_file=tmp_path / "covariance_cache.pt", corda_method=corda_method),
        )
        preprocess_corda(model, config)
        peft_model = get_peft_model(model, config)
        peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
        assert torch.allclose(output_corda, peft_model(data)[0], atol=1e-06)

    @pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
    def test_lora_corda_linear_init_default_with_rank_pattern(self, data, tmp_path, corda_method):
        original_model = self.get_model()
        model = deepcopy(original_model)
        output_base = model(data)[0]

        corda_config = CordaConfig(
            cache_file=tmp_path / "corda_cache.pt",
            covariance_file=tmp_path / "covariance_cache.pt",
            corda_method=corda_method,
        )
        config = LoraConfig(
            rank_pattern={"linear": 8, "embed": 16, "conv2d": 32},
            init_lora_weights="corda",
            target_modules=["linear"],
            corda_config=corda_config,
        )
        preprocess_corda(
            model,
            config,
            run_model=lambda: model(data),
        )
        peft_model = get_peft_model(model, config)

        # check if adapter performs an identity transformantion
        assert torch.allclose(output_base, peft_model(data)[0], atol=1e-06)

        # modify the weights, or else the adapter performs an identity transformation
        peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
        output_corda = peft_model(data)[0]

        # sanity check
        tol = 1e-06
        assert not torch.allclose(output_base, output_corda, atol=tol, rtol=tol)

        # if load SVD result from cache, the output should be the same
        model = deepcopy(original_model)
        config = LoraConfig(
            rank_pattern={"linear": 8, "embed": 16, "conv2d": 32},
            init_lora_weights="corda",
            target_modules=["linear"],
            corda_config=CordaConfig(cache_file=tmp_path / "corda_cache.pt", corda_method=corda_method),
        )
        preprocess_corda(model, config)
        peft_model = get_peft_model(model, config)
        peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
        assert torch.allclose(output_corda, peft_model(data)[0], atol=1e-06)

        # if load covariance from cache, the output should be the same
        model = deepcopy(original_model)
        config = LoraConfig(
            rank_pattern={"linear": 8, "embed": 16, "conv2d": 32},
            init_lora_weights="corda",
            target_modules=["linear"],
            corda_config=CordaConfig(covariance_file=tmp_path / "covariance_cache.pt", corda_method=corda_method),
        )
        preprocess_corda(model, config)
        peft_model = get_peft_model(model, config)
        peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
        assert torch.allclose(output_corda, peft_model(data)[0], atol=1e-06)

    @pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
    def test_lora_corda_conversion_same_output_after_loading(self, data, tmp_path, corda_method):
        model = self.get_model()
        output_base = model(data)[0]

        corda_config = CordaConfig(corda_method=corda_method)
        config = LoraConfig(init_lora_weights="corda", target_modules=["linear"], r=8, corda_config=corda_config)
        preprocess_corda(model, config, run_model=lambda: model(data), hooked_model=model)
        peft_model = get_peft_model(deepcopy(model), config)
        # save the initial model
        peft_model.peft_config["default"].init_lora_weights = True
        peft_model.save_pretrained(tmp_path / "init-model")
        peft_model.peft_config["default"].init_lora_weights = "corda"

        # modify the weights, or else the adapter performs an identity transformation
        peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
        output_corda = peft_model(data)[0]

        # sanity check
        tol = 1e-06
        assert not torch.allclose(output_base, output_corda, atol=tol, rtol=tol)

        # save the model normally
        peft_model.save_pretrained(tmp_path / "corda-model")
        model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "corda-model")
        output_loaded = model_loaded(data)[0]

        assert torch.allclose(output_corda, output_loaded, atol=tol, rtol=tol)
        # sanity check: ranks should still be 8 as initially
        assert model_loaded.peft_config["default"].r == 8
        assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 8
        # sanity check: the base model weights were indeed changed
        assert not torch.allclose(
            model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
        )

        # save the model with conversion
        peft_config_keys_before = list(peft_model.peft_config.keys())
        peft_config_dict_before = peft_model.peft_config["default"].to_dict()
        peft_model.save_pretrained(
            tmp_path / "corda-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
        )
        peft_config_keys_after = list(peft_model.peft_config.keys())
        peft_config_dict_after = peft_model.peft_config["default"].to_dict()
        assert peft_config_keys_before == peft_config_keys_after
        assert peft_config_dict_before == peft_config_dict_after

        model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "corda-model-converted")
        output_converted = model_converted(data)[0]

        assert torch.allclose(output_corda, output_converted, atol=tol, rtol=tol)
        # rank should be double of what it was initially
        assert model_converted.peft_config["default"].r == 16
        assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 16
        # base model weights should be the same as the initial model
        assert torch.allclose(
            model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
        )

    @pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
    def test_lora_corda_conversion_same_output_after_loading_with_rank_pattern(self, data, tmp_path, corda_method):
        # same as above, but using rank_pattern
        model = self.get_model()
        output_base = model(data)[0]

        # use rank_pattern here; note that since there is only a single linear layer, r is completely overridden
        corda_config = CordaConfig(corda_method=corda_method)
        config = LoraConfig(
            init_lora_weights="corda",
            target_modules=["linear"],
            r=8,
            rank_pattern={"linear": 32},
            corda_config=corda_config,
        )
        preprocess_corda(model, config, run_model=lambda: model(data), hooked_model=model)
        peft_model = get_peft_model(deepcopy(model), config)
        # save the initial model
        peft_model.peft_config["default"].init_lora_weights = True
        peft_model.save_pretrained(tmp_path / "init-model")
        peft_model.peft_config["default"].init_lora_weights = "corda"

        # modify the weights, or else the adapter performs an identity transformation
        peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
        output_corda = peft_model(data)[0]

        # sanity check
        tol = 1e-06
        assert not torch.allclose(output_base, output_corda, atol=tol, rtol=tol)

        # save the model normally
        peft_model.save_pretrained(tmp_path / "corda-model")
        model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "corda-model")
        output_loaded = model_loaded(data)[0]

        assert torch.allclose(output_corda, output_loaded, atol=tol, rtol=tol)
        # sanity check: ranks should still be 8 as initially
        assert model_loaded.peft_config["default"].r == 8
        assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 32
        # sanity check: the base model weights were indeed changed
        assert not torch.allclose(
            model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
        )

        # save the model with conversion
        peft_model.save_pretrained(
            tmp_path / "corda-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
        )
        model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "corda-model-converted")
        output_converted = model_converted(data)[0]

        assert torch.allclose(output_corda, output_converted, atol=tol, rtol=tol)
        # rank should be double of what it was initially
        assert model_converted.peft_config["default"].r == 16
        assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 64
        # base model weights should be the same as the initial model
        assert torch.allclose(
            model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
        )

    @pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
    def test_lora_corda_conversion_same_output_after_loading_with_alpha_pattern(self, data, tmp_path, corda_method):
        # same as above, but using alpha_pattern
        model = self.get_model()
        output_base = model(data)[0]

        # use alpha_pattern here; note that since there is only a single linear layer, lora_alpha is completely
        # overridden
        corda_config = CordaConfig(corda_method=corda_method)
        config = LoraConfig(
            init_lora_weights="corda",
            target_modules=["linear"],
            alpha_pattern={"linear": 5},
            corda_config=corda_config,
        )
        preprocess_corda(model, config, run_model=lambda: model(data), hooked_model=model)
        peft_model = get_peft_model(deepcopy(model), config)
        # save the initial model
        peft_model.peft_config["default"].init_lora_weights = True
        peft_model.save_pretrained(tmp_path / "init-model")
        peft_model.peft_config["default"].init_lora_weights = "corda"

        # modify the weights, or else the adapter performs an identity transformation
        peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
        output_corda = peft_model(data)[0]

        # sanity check
        tol = 1e-06
        assert not torch.allclose(output_base, output_corda, atol=tol, rtol=tol)

        # save the model normally
        peft_model.save_pretrained(tmp_path / "corda-model")
        model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "corda-model")
        output_loaded = model_loaded(data)[0]

        assert torch.allclose(output_corda, output_loaded, atol=tol, rtol=tol)
        # sanity check: ranks should still be 8 as initially
        assert model_loaded.peft_config["default"].r == 8
        assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 8
        assert model_loaded.base_model.model.linear.scaling["default"] == 5 / 8
        # sanity check: the base model weights were indeed changed
        assert not torch.allclose(
            model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
        )

        # save the model with conversion
        peft_model.save_pretrained(
            tmp_path / "corda-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
        )
        model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "corda-model-converted")
        output_converted = model_converted(data)[0]

        assert torch.allclose(output_corda, output_converted, atol=tol, rtol=tol)
        # rank should be double of what it was initially
        assert model_converted.peft_config["default"].r == 16
        assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 16
        assert model_converted.base_model.model.linear.scaling["default"] == 10 / 16
        # base model weights should be the same as the initial model
        assert torch.allclose(
            model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
        )

    @pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
    def test_lora_corda_conversion_same_output_after_loading_with_rslora(self, data, tmp_path, corda_method):
        model = self.get_model()
        output_base = model(data)[0]

        corda_config = CordaConfig(corda_method=corda_method)
        config = LoraConfig(
            init_lora_weights="corda", target_modules=["linear"], r=8, use_rslora=True, corda_config=corda_config
        )
        preprocess_corda(model, config, run_model=lambda: model(data), hooked_model=model)
        peft_model = get_peft_model(deepcopy(model), config)
        # save the initial model
        peft_model.peft_config["default"].init_lora_weights = True
        peft_model.save_pretrained(tmp_path / "init-model")
        peft_model.peft_config["default"].init_lora_weights = "corda"

        # modify the weights, or else the adapter performs an identity transformation
        peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
        output_corda = peft_model(data)[0]

        # sanity check
        tol = 1e-06
        assert not torch.allclose(output_base, output_corda, atol=tol, rtol=tol)

        # save the model normally
        peft_model.save_pretrained(tmp_path / "corda-model")
        model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "corda-model")
        output_loaded = model_loaded(data)[0]

        assert torch.allclose(output_corda, output_loaded, atol=tol, rtol=tol)
        # sanity check: ranks should still be 8 as initially
        assert model_loaded.peft_config["default"].r == 8
        assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 8
        assert model_loaded.base_model.model.linear.scaling["default"] == 8 / (8**0.5)
        # sanity check: the base model weights were indeed changed
        assert not torch.allclose(
            model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
        )

        # save the model with conversion
        peft_model.save_pretrained(
            tmp_path / "corda-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
        )
        model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "corda-model-converted")
        output_converted = model_converted(data)[0]

        assert torch.allclose(output_corda, output_converted, atol=tol, rtol=tol)
        # rank should be double of what it was initially
        assert model_converted.peft_config["default"].r == 16
        assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 16
        # same scale as before with a little bit of floating point imprecision
        assert model_converted.base_model.model.linear.scaling["default"] == pytest.approx(8 / (8**0.5))
        # base model weights should be the same as the initial model
        assert torch.allclose(
            model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
        )

    @pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
    def test_lora_corda_rank_pattern_and_rslora_raises(self, data, tmp_path, corda_method):
        # it's not possible to determine the correct scale when using rslora with rank or alpha pattern, because the
        # scale is not stored in the state_dict
        model = self.get_model()
        corda_config = CordaConfig(corda_method=corda_method)
        config = LoraConfig(
            init_lora_weights="corda",
            target_modules=["linear"],
            r=8,
            rank_pattern={"linear": 2},
            use_rslora=True,
            corda_config=corda_config,
        )
        preprocess_corda(model, config, run_model=lambda: model(data), hooked_model=model)
        peft_model = get_peft_model(model, config)
        peft_model.save_pretrained(tmp_path / "init-model")

        msg = re.escape("Passing `path_initial_model_for_weight_conversion` to `save_pretrained`")
        with pytest.raises(ValueError, match=msg):
            peft_model.save_pretrained(
                tmp_path / "corda-model", path_initial_model_for_weight_conversion=tmp_path / "init-model"
            )

    @pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
    def test_lora_corda_alpha_pattern_and_rslora_raises(self, data, tmp_path, corda_method):
        # it's not possible to determine the correct scale when using rslora with rank or alpha pattern, because the
        # scale is not stored in the state_dict
        model = self.get_model()
        corda_config = CordaConfig(corda_method=corda_method)
        config = LoraConfig(
            init_lora_weights="corda",
            target_modules=["linear"],
            r=8,
            alpha_pattern={"linear": 2},
            use_rslora=True,
            corda_config=corda_config,
        )
        preprocess_corda(model, config, run_model=lambda: model(data), hooked_model=model)
        peft_model = get_peft_model(model, config)
        peft_model.save_pretrained(tmp_path / "init-model")

        msg = re.escape("Passing `path_initial_model_for_weight_conversion` to `save_pretrained`")
        with pytest.raises(ValueError, match=msg):
            peft_model.save_pretrained(
                tmp_path / "corda-model", path_initial_model_for_weight_conversion=tmp_path / "init-model"
            )


class TestEvaInitialization:
    """Tests for the EVA (Explained Variance Adaptation) initialization method.

    This test suite verifies:
    1. Consistency of initialization across different seeds
    2. Proper error handling for invalid inputs
    3. Compatibility with different model architectures
    4. Reproducibility of results
    5. Proper handling of edge cases
    """

    # Constants for test configuration
    COSINE_SIMILARITY_THRESHOLD = 0.75
    NUM_SEEDS = 2
    BATCH_SIZE = 4
    MAX_LENGTH = 256
    LORA_DIM = 8
    LORA_ALPHA = 1
    DEVICE = infer_device()
    # for caching purposes:
    _dataset = load_dataset_english_quotes()["train"]

    @pytest.fixture
    def tokenizer(self):
        tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
        tokenizer.pad_token = tokenizer.eos_token
        return tokenizer

    @pytest.fixture
    def dataset(self, tokenizer):
        # concatenate examples
        examples = []
        example = ""
        for data in self._dataset:
            if len(example) >= self.MAX_LENGTH:
                examples.append(example)
                example = ""
            example = example + " " + data["quote"]
        dataset = Dataset.from_dict({"text": examples})
        # tokenize
        dataset = dataset.map(
            lambda x: tokenizer(x["text"], padding="max_length", truncation=True, max_length=self.MAX_LENGTH),
            batched=True,
            remove_columns=dataset.column_names,
        )
        dataset.set_format(type="torch")
        return dataset

    @pytest.fixture
    def model(self):
        model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
        model.transformer.h = model.transformer.h[:2]  # truncate to 2 layers
        return model.to(self.DEVICE)

    @pytest.fixture
    def peft_config(self):
        return LoraConfig(
            r=self.LORA_DIM,
            lora_alpha=self.LORA_ALPHA,
            target_modules=["c_attn"],
            init_lora_weights="eva",
            eva_config=EvaConfig(rho=2),
        )

    @staticmethod
    def collate_fn(examples):
        return {k: torch.stack([v[k] for v in examples], dim=0) for k in examples[0].keys()}

    @staticmethod
    def prepare_layer_inputs_fn(layer_input, model_input, layer_name):
        return layer_input[0].view(-1, layer_input[0].size(-1))

    def get_dataloader(self, dataset):
        return DataLoader(
            dataset,
            batch_size=self.BATCH_SIZE,
            collate_fn=self.collate_fn,
            shuffle=False,
        )

    @pytest.mark.parametrize(
        "prepare_layer_inputs_keys, expected_outcome",
        [
            (None, "success"),
            (["transformer.h.0.attn.c_attn"], "success"),
            (
                ["transformer.h.0.attn.c_attn", "transformer.h.1.attn.c_attn", "transformer.h.2.attn.c_attn"],
                "value_error",
            ),
        ],
    )
    def test_eva_state_dict_prepare_inputs_mapping(
        self, model, dataset, peft_config, prepare_layer_inputs_keys, expected_outcome
    ):
        """
        Tests for cases where prepare_layer_inputs_fn is a mapping. Checks that if not all target modules are present,
        the prepare_layer_inputs_fn for the remaining modules is set to None. Also checks that if more keys than target
        modules are present, a ValueError is raised.
        """

        def fn(x, *args):
            return x[0].view(-1, x[0].size(-1))

        if prepare_layer_inputs_keys is None:
            prepare_layer_inputs_fn = fn
        else:
            prepare_layer_inputs_fn = {k: fn for k in prepare_layer_inputs_keys}

        shuffled_dataset = dataset.shuffle(seed=0)
        dataloader = self.get_dataloader(shuffled_dataset)
        modified_peft_config = deepcopy(peft_config)
        modified_peft_config.eva_config.tau = 0  # converge immediately
        if expected_outcome == "success":
            sd = get_eva_state_dict(
                model,
                dataloader,
                modified_peft_config,
                prepare_model_inputs_fn=None,
                prepare_layer_inputs_fn=prepare_layer_inputs_fn,
            )
            assert len(sd) == 2
            assert "transformer.h.0.attn.c_attn" in sd
            assert "transformer.h.1.attn.c_attn" in sd
        else:
            with pytest.raises(
                ValueError, match="prepare_layer_inputs_fn is a mapping but the following module names were not found"
            ):
                get_eva_state_dict(
                    model,
                    dataloader,
                    modified_peft_config,
                    prepare_model_inputs_fn=None,
                    prepare_layer_inputs_fn=prepare_layer_inputs_fn,
                )

    @pytest.mark.parametrize(
        "eva_config",
        [EvaConfig(rho=2, adjust_scaling_factors=True)],
    )
    def test_eva_state_dict_adjust_scaling_factors(self, model, dataset, peft_config, eva_config):
        """
        Tests that the scaling factors are adjusted so that all LoRA gradients have the same scale regardless of their
        rank.
        """
        modified_peft_config = deepcopy(peft_config)
        modified_peft_config.eva_config = eva_config
        dataloader = self.get_dataloader(dataset)
        peft_model = get_peft_model(deepcopy(model), modified_peft_config)
        scaling_factors_before = {}
        for n, m in peft_model.named_modules():
            if isinstance(m, LoraLayer):
                scaling_factors_before[n] = m.scaling["default"]
        initialize_lora_eva_weights(peft_model, dataloader)
        for n, m in peft_model.named_modules():
            if isinstance(m, LoraLayer):
                assert m.scaling["default"] == scaling_factors_before[n]

    @pytest.mark.parametrize(
        "eva_config",
        [
            # note: lower tau to decrease number of iterations until convergence, as tests are slow on CPU
            EvaConfig(rho=2, tau=0.9),
            EvaConfig(rho=1, tau=0.9),
            EvaConfig(rho=1, whiten=True, tau=0.9),
            EvaConfig(rho=1.0001, tau=0.9),
        ],
    )
    def test_eva_initialization_consistency(self, model, dataset, peft_config, eva_config):
        """
        Tests that the state dict returned by `get_eva_state_dict` is consistent across different seeds based on the
        cosine similarity of the svd components.
        """
        modified_peft_config = deepcopy(peft_config)
        modified_peft_config.eva_config = eva_config
        state_dicts = []
        for seed in range(self.NUM_SEEDS):
            shuffled_dataset = dataset.shuffle(seed=seed)
            dataloader = self.get_dataloader(shuffled_dataset)
            sd = get_eva_state_dict(model, dataloader, modified_peft_config, show_progress_bar=False)
            state_dicts.append(sd)

        cos_sims = defaultdict(list)
        for i, j in itertools.combinations(range(self.NUM_SEEDS), 2):
            for k, v1 in state_dicts[i].items():
                v2 = state_dicts[j][k]
                min_size = min(v1.size(0), v2.size(0))
                cos_sims[k].extend(torch.cosine_similarity(v1[:min_size].abs(), v2[:min_size].abs(), dim=1).tolist())

        mean_cosine_similarities = {k: torch.tensor(v).mean() for k, v in cos_sims.items()}
        for layer_name, mean_cosine_similarity in mean_cosine_similarities.items():
            assert mean_cosine_similarity > self.COSINE_SIMILARITY_THRESHOLD, (
                f"Mean absolute cosine similarity {mean_cosine_similarity:.4f} "
                f"is not greater than {self.COSINE_SIMILARITY_THRESHOLD}"
            )

    @pytest.mark.parametrize("has_rank_zero", [True, False])
    def test_load_eva_state_dict(self, model, dataset, peft_config, tmp_path, has_rank_zero):
        """
        Tests that the `eva_state_dict` argument in `initialize_lora_eva_weights` can be used to initialize a model
        with EVA weights and that the initialized model can be saved and loaded correctly.
        """
        dataloader = self.get_dataloader(dataset)
        peft_model = get_peft_model(deepcopy(model), peft_config)
        sd = get_eva_state_dict(peft_model, dataloader)
        if has_rank_zero:
            k = "base_model.model.transformer.h.0.attn.c_attn"
            sd[k] = sd[k][:0]
        initialize_lora_eva_weights(peft_model, eva_state_dict=sd)
        if has_rank_zero:
            assert not isinstance(peft_model.model.transformer.h[0].attn.c_attn, LoraLayer)
        else:
            assert isinstance(peft_model.model.transformer.h[0].attn.c_attn, LoraLayer)
        peft_model.save_pretrained(tmp_path)
        peft_model = PeftModel.from_pretrained(model, tmp_path, torch_device=self.DEVICE, low_cpu_mem_usage=True)
        peft_model(**{k: v.to(self.DEVICE) for k, v in next(iter(dataloader)).items()})

    def test_missing_eva_inits(self, model, dataset, peft_config):
        """
        Tests that a warning is raised when some adapter modules were not initialized with EVA weights.
        """
        modified_peft_config = deepcopy(peft_config)
        modified_peft_config.target_modules = ["wte"]
        dataloader = self.get_dataloader(dataset)
        peft_model = get_peft_model(deepcopy(model), modified_peft_config)
        with pytest.warns(
            UserWarning,
            match="the following layers were initialized with init_lora_weights=True because they were not found in the eva state_dict:*",
        ):
            initialize_lora_eva_weights(peft_model, dataloader)

    def test_load_eva_model(self, model, dataset, peft_config, tmp_path):
        """
        Tests that a model initialized with EVA weights can be loaded correctly.
        """
        dataloader = self.get_dataloader(dataset)
        peft_model = get_peft_model(deepcopy(model), peft_config)
        initialize_lora_eva_weights(peft_model, dataloader)
        peft_model.save_pretrained(tmp_path)
        peft_model = PeftModel.from_pretrained(model, tmp_path, torch_device=self.DEVICE, low_cpu_mem_usage=True)
        peft_model(**{k: v.to(self.DEVICE) for k, v in next(iter(dataloader)).items()})

    def test_eva_initialization_with_invalid_dataloader(self, model, peft_config):
        """Test that appropriate error is raised when dataloader is empty."""
        empty_dataset = Dataset.from_dict({"text": []})
        dataloader = self.get_dataloader(empty_dataset)

        with pytest.raises(ValueError, match="dataloader is empty"):
            get_eva_state_dict(model, dataloader, peft_config)

    def test_eva_config_rho(self):
        """
        Tests that EvaConfig.__init__ raises a ValueError when rho is negative.
        """
        with pytest.raises(ValueError, match="`rho` must be >= 1.0"):
            EvaConfig(rho=-1)

    def test_eva_config_tau(self):
        """
        Tests that EvaConfig.__init__ raises a ValueError when tau is not between 0.0 and 1.0.
        """
        with pytest.raises(ValueError, match="`tau` must be between 0.0 and 1.0."):
            EvaConfig(tau=-0.1)
        with pytest.raises(ValueError, match="`tau` must be between 0.0 and 1.0."):
            EvaConfig(tau=1.1)

    def test_lora_config_raises_warning_with_eva_init_but_not_eva_config(self):
        """
        Tests that LoraConfig.__init__ raises a warning when init_lora_weights='eva' but eva_config is not set.
        """
        with pytest.warns(
            UserWarning,
            match="`init_lora_weights` is 'eva' but `eva_config` is not specified. Using default EVA config.",
        ):
            LoraConfig(init_lora_weights="eva")

    def test_lora_config_raises_warning_with_eva_config_but_not_eva_init(self):
        """
        Tests that LoraConfig.__init__ raises a warning when init_lora_weights is not 'eva' but eva_config is set.
        """
        with pytest.warns(
            UserWarning, match="`eva_config` specified but will be ignored when `init_lora_weights` is not 'eva'."
        ):
            LoraConfig(init_lora_weights=True, eva_config=EvaConfig())


@pytest.mark.skipif(
    platform.system() != "Linux", reason="Out of the box, torch.compile does not work on Windows or MacOS"
)
class TestHotSwapping:
    """Tests for the hotswapping function"""

    torch_device = infer_device()

    def compile(self, model, do_compile):
        if not do_compile:
            return model
        return torch.compile(model)

    def get_model(self):
        class MLP(nn.Module):
            def __init__(self, bias=True):
                super().__init__()
                self.lin0 = nn.Linear(10, 20, bias=True)
                self.relu = nn.ReLU()
                self.lin1 = nn.Linear(20, 5, bias=False)

            def forward(self, X):
                X = X.float()
                X = self.lin0(X)
                X = self.relu(X)
                X = self.lin1(X)
                return X

        torch.manual_seed(0)
        return MLP().to(self.torch_device)

    def get_model_conv2d(self):
        class ConvModel(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv = nn.Conv2d(3, 10, kernel_size=3)

            def forward(self, X):
                return self.conv(X)

        torch.manual_seed(0)
        return ConvModel().to(self.torch_device)

    # this works with all adapters except prompt learning, but we don't test all
    # as it is unnecessary and would be slow
    @pytest.mark.parametrize(
        "config",
        [
            LoraConfig(init_lora_weights=0, target_modules=["lin0"]),
            LoraConfig(init_lora_weights=0, target_modules=["lin0", "lin1"]),
        ],
    )
    @pytest.mark.parametrize("do_compile", [False, True])
    def test_hotswap_works(self, config, do_compile, tmp_path):
        # Load 2 different adapters and check that we can hotswap between them, with the model optionally being
        # compiled.
        atol, rtol = 1e-4, 1e-4
        inputs = torch.rand(3, 10).to(self.torch_device)

        # create adapter 0
        model = self.get_model()
        torch.manual_seed(0)
        model = get_peft_model(model, config)
        model = self.compile(model, do_compile=do_compile)
        model.eval()
        with torch.inference_mode():
            output0 = model(inputs)
        model.save_pretrained(tmp_path / "adapter0")

        del model

        # create adapter 1
        model = self.get_model()
        torch.manual_seed(1)
        model = get_peft_model(model, config)
        model = self.compile(model, do_compile=do_compile)
        model.eval()
        with torch.inference_mode():
            output1 = model(inputs)
        model.save_pretrained(tmp_path / "adapter1")

        # sanity check: they're not the same
        assert not torch.allclose(output0, output1, atol=atol, rtol=rtol)

        del model

        # load adapter 0
        model = self.get_model()
        model = PeftModel.from_pretrained(model, tmp_path / "adapter0")
        model = self.compile(model, do_compile=do_compile)
        with torch.inference_mode():
            output_loaded0 = model(inputs)

        # sanity check: same output after loading for adapter 0
        assert torch.allclose(output0, output_loaded0, atol=atol, rtol=rtol)

        # hotswap with adapter 1
        hotswap_adapter(model, tmp_path / "adapter1", adapter_name="default")
        with torch.inference_mode():
            output_loaded1 = model(inputs)

        # real check: model now behaves like adapter 1
        assert torch.allclose(output1, output_loaded1, atol=atol, rtol=rtol)

        # hotswap back to adapter 0
        hotswap_adapter(model, tmp_path / "adapter0", adapter_name="default")
        with torch.inference_mode():
            output_loaded_back0 = model(inputs)

        # real check: model now behaves again like adapter 0
        assert torch.allclose(output0, output_loaded_back0, atol=atol, rtol=rtol)

    def test_hotswap_different_peft_types_raises(self, tmp_path):
        # When the configs of the two adapters are different PEFT methods, raise
        config0 = LoraConfig(target_modules=["lin0"])
        config1 = IA3Config(target_modules=["lin0"], feedforward_modules=[])

        model = self.get_model()
        model = get_peft_model(model, config0)
        model.save_pretrained(tmp_path / "adapter0")
        del model

        model = self.get_model()
        model = get_peft_model(model, config1)
        model.save_pretrained(tmp_path / "adapter1")
        del model

        # load adapter 0
        model = self.get_model()
        model = PeftModel.from_pretrained(model, tmp_path / "adapter0")

        msg = r"Incompatible PEFT types found: LORA and IA3"
        with pytest.raises(ValueError, match=msg):
            hotswap_adapter(model, tmp_path / "adapter1", adapter_name="default")

    def test_hotswap_wrong_peft_types_raises(self, tmp_path):
        # Only LoRA is supported at the moment
        config0 = IA3Config(target_modules=["lin0"], feedforward_modules=[])
        config1 = IA3Config(target_modules=["lin0"], feedforward_modules=[])

        model = self.get_model()
        model = get_peft_model(model, config0)
        model.save_pretrained(tmp_path / "adapter0")
        del model

        model = self.get_model()
        model = get_peft_model(model, config1)
        model.save_pretrained(tmp_path / "adapter1")
        del model

        # load adapter 0
        model = self.get_model()
        model = PeftModel.from_pretrained(model, tmp_path / "adapter0")

        msg = r"Hotswapping only supports LORA but IA3 was passed"
        with pytest.raises(ValueError, match=msg):
            hotswap_adapter(model, tmp_path / "adapter1", adapter_name="default")

    def test_hotswap_missing_key_works(self, tmp_path):
        # When a key is missing, it is fine, the extra weight is zeroed out
        config = LoraConfig(target_modules=["lin0", "lin1"])

        model = self.get_model()
        model = get_peft_model(model, config)
        model.save_pretrained(tmp_path / "adapter0")
        del model

        model = self.get_model()
        model = get_peft_model(model, config)

        # remove one key from the state_dict
        key = "base_model.model.lin1.lora_A.default.weight"
        state_dict = model.state_dict()
        del state_dict[key]
        model.state_dict = lambda: state_dict
        model.save_pretrained(tmp_path / "adapter1")
        del model

        # load adapter 0
        model = self.get_model()
        model = PeftModel.from_pretrained(model, tmp_path / "adapter0")

        # sanity check: the missing weight is not already all zeros
        assert not (model.base_model.model.lin1.lora_A["default"].weight == 0).all()
        hotswap_adapter(model, tmp_path / "adapter1", adapter_name="default")
        # after hotswapping, it is zeroed out
        assert (model.base_model.model.lin1.lora_A["default"].weight == 0).all()

    def test_hotswap_extra_key_raises(self, tmp_path):
        # When there is an extra key, raise
        config = LoraConfig(target_modules=["lin0"])

        model = self.get_model()
        model = get_peft_model(model, config)
        model.save_pretrained(tmp_path / "adapter0")
        del model

        model = self.get_model()
        model = get_peft_model(model, config)

        # add an unexpected key
        state_dict = model.state_dict()
        new_key = "base_model.model.lin1.lora_A.default.weight"
        state_dict[new_key] = torch.zeros(8, 20)
        model.state_dict = lambda: state_dict
        model.save_pretrained(tmp_path / "adapter1")
        del model

        # load adapter 0
        model = self.get_model()
        model = PeftModel.from_pretrained(model, tmp_path / "adapter0")

        msg = f"Hot swapping the adapter did not succeed, unexpected keys found: {new_key}"
        with pytest.raises(RuntimeError, match=msg):
            hotswap_adapter(model, tmp_path / "adapter1", adapter_name="default")

    @pytest.mark.parametrize("ranks", [(7, 13), (13, 7)])
    def test_hotswap_works_different_ranks_alphas(self, ranks, tmp_path):
        # same as test_hotswap_works but different rank and alpha
        # Load 2 different adapters and check that we can hotswap between them, with the model optionally being
        # compiled.
        atol, rtol = 1e-4, 1e-4
        inputs = torch.rand(3, 10).to(self.torch_device)

        # create adapter 0
        config0 = LoraConfig(target_modules=["lin0", "lin1"], r=ranks[0], lora_alpha=ranks[0], init_lora_weights=False)
        model = self.get_model()
        torch.manual_seed(0)
        model = get_peft_model(model, config0)
        model.eval()
        with torch.inference_mode():
            output0 = model(inputs)
        model.save_pretrained(tmp_path / "adapter0")

        del model

        # create adapter 1
        config1 = LoraConfig(target_modules=["lin0"], r=ranks[1], lora_alpha=ranks[1], init_lora_weights=False)
        model = self.get_model()
        torch.manual_seed(1)
        model = get_peft_model(model, config1)
        model.eval()
        with torch.inference_mode():
            output1 = model(inputs)
        model.save_pretrained(tmp_path / "adapter1")

        # sanity check: they're not the same
        assert not torch.allclose(output0, output1, atol=atol, rtol=rtol)

        del model

        # load adapter 0
        model = self.get_model()
        model = PeftModel.from_pretrained(model, tmp_path / "adapter0")
        with torch.inference_mode():
            output_loaded0 = model(inputs)

        # sanity check: same output after loading for adapter 0
        assert torch.allclose(output0, output_loaded0, atol=atol, rtol=rtol)

        # hotswap with adapter 1
        hotswap_adapter(model, tmp_path / "adapter1", adapter_name="default")
        with torch.inference_mode():
            output_loaded1 = model(inputs)

        # real check: model now behaves like adapter 1
        assert torch.allclose(output1, output_loaded1, atol=atol, rtol=rtol)

        # hotswap back to adapter 0
        hotswap_adapter(model, tmp_path / "adapter0", adapter_name="default")
        with torch.inference_mode():
            output_loaded_back0 = model(inputs)

        # real check: model now behaves again like adapter 0
        assert torch.allclose(output0, output_loaded_back0, atol=atol, rtol=rtol)

    @pytest.mark.parametrize("ranks", [(7, 13), (13, 7)])
    def test_hotswap_works_different_ranks_alphas_conv2d(self, ranks, tmp_path):
        # same as previous test, but for a Conv2d model
        atol, rtol = 1e-4, 1e-4
        inputs = torch.rand(3, 3, 10, 10).to(self.torch_device)

        # create adapter 0
        config0 = LoraConfig(target_modules=["conv"], r=ranks[0], init_lora_weights=False)
        model = self.get_model_conv2d()
        torch.manual_seed(0)
        model = get_peft_model(model, config0)
        model.eval()
        with torch.inference_mode():
            output0 = model(inputs)
        model.save_pretrained(tmp_path / "adapter0")

        del model

        # create adapter 1
        config1 = LoraConfig(target_modules=["conv"], r=ranks[1], init_lora_weights=False)
        model = self.get_model_conv2d()
        torch.manual_seed(1)
        model = get_peft_model(model, config1)
        model.eval()
        with torch.inference_mode():
            output1 = model(inputs)
        model.save_pretrained(tmp_path / "adapter1")

        # sanity check: they're not the same
        assert not torch.allclose(output0, output1, atol=atol, rtol=rtol)

        del model

        # load adapter 0
        model = self.get_model_conv2d()
        model = PeftModel.from_pretrained(model, tmp_path / "adapter0")
        with torch.inference_mode():
            output_loaded0 = model(inputs)

        # sanity check: same output after loading for adapter 0
        assert torch.allclose(output0, output_loaded0, atol=atol, rtol=rtol)

        # hotswap with adapter 1
        hotswap_adapter(model, tmp_path / "adapter1", adapter_name="default")
        with torch.inference_mode():
            output_loaded1 = model(inputs)

        # real check: model now behaves like adapter 1
        assert torch.allclose(output1, output_loaded1, atol=atol, rtol=rtol)

        # hotswap back to adapter 0
        hotswap_adapter(model, tmp_path / "adapter0", adapter_name="default")
        with torch.inference_mode():
            output_loaded_back0 = model(inputs)

        # real check: model now behaves again like adapter 0
        assert torch.allclose(output0, output_loaded_back0, atol=atol, rtol=rtol)

    def test_prepare_model_for_compiled_hotswap_scalings_are_tensors(self):
        config = LoraConfig(target_modules=["lin0", "lin1"])
        model = self.get_model()
        model = get_peft_model(model, config)

        # sanity check: all scalings are floats
        scalings_before = {}
        for name, module in model.named_modules():
            if hasattr(module, "scaling"):
                for key, val in module.scaling.items():
                    assert isinstance(val, float)
                    scalings_before[f"{name}.{key}"] = val

        prepare_model_for_compiled_hotswap(model)

        scalings_after = {}
        for name, module in model.named_modules():
            if hasattr(module, "scaling"):
                for key, val in module.scaling.items():
                    assert isinstance(val, torch.Tensor)
                    scalings_after[f"{name}.{key}"] = val.item()

        assert scalings_before == scalings_after

    def test_prepare_model_for_compiled_hotswap_rank_padding_works(self):
        old_rank = 8
        config = LoraConfig(target_modules=["lin0", "lin1"], r=old_rank)
        model = self.get_model()
        model = get_peft_model(model, config)

        # sanity check
        for name, param in model.named_parameters():
            if "lora_A" in name:
                assert param.shape[0] == old_rank
            elif "lora_B" in name:
                assert param.shape[1] == old_rank

        new_rank = 13
        prepare_model_for_compiled_hotswap(model, target_rank=new_rank)

        for name, param in model.named_parameters():
            if "lora_A" in name:
                assert param.shape[0] == new_rank
            elif "lora_B" in name:
                assert param.shape[1] == new_rank

    def test_prepare_model_for_compiled_hotswap_same_rank_padding_works(self):
        # same as previous test, but ensure there is no error if the rank to pad to is the same
        old_rank = 8
        config = LoraConfig(target_modules=["lin0", "lin1"], r=old_rank)
        model = self.get_model()
        model = get_peft_model(model, config)
        prepare_model_for_compiled_hotswap(model, target_rank=old_rank)

        for name, param in model.named_parameters():
            if "lora_A" in name:
                assert param.shape[0] == old_rank
            elif "lora_B" in name:
                assert param.shape[1] == old_rank

    def test_prepare_model_for_compiled_hotswap_conv2d_rank_padding_works(self):
        # same as previous test, but for a Conv2d model
        old_rank = 8
        config = LoraConfig(target_modules=["conv"], r=old_rank)
        model = self.get_model_conv2d()
        model = get_peft_model(model, config)

        # sanity check
        for name, param in model.named_parameters():
            if "lora_A" in name:
                assert param.shape[0] == old_rank
            elif "lora_B" in name:
                assert param.shape[1] == old_rank

        new_rank = 13
        prepare_model_for_compiled_hotswap(model, target_rank=new_rank)

        for name, param in model.named_parameters():
            if "lora_A" in name:
                assert param.shape[0] == new_rank
            elif "lora_B" in name:
                assert param.shape[1] == new_rank

    def test_prepare_model_for_compiled_hotswap_lower_rank_padding_raises(self):
        # when trying to pad to a lower rank, raise an error
        old_rank0 = 8
        old_rank1 = 10
        new_rank = 9
        config = LoraConfig(target_modules=["lin0", "lin1"], r=old_rank0, rank_pattern={"lin1": old_rank1})
        model = self.get_model()
        model = get_peft_model(model, config)

        msg = re.escape("Trying to pad the adapter to the target rank 9, but the original rank is larger (10)")
        with pytest.raises(ValueError, match=msg):
            prepare_model_for_compiled_hotswap(model, target_rank=new_rank)

    def test_prepare_model_for_compiled_hotswap_with_rank_pattern(self):
        old_rank0 = 8
        old_rank1 = 9
        config = LoraConfig(target_modules=["lin0", "lin1"], r=old_rank0, rank_pattern={"lin1": old_rank1})
        model = self.get_model()
        model = get_peft_model(model, config)

        # sanity check
        for name, param in model.named_parameters():
            if "lora_A" in name:
                if "lin0" in name:
                    assert param.shape[0] == old_rank0
                else:
                    assert param.shape[0] == old_rank1
            elif "lora_B" in name:
                if "lin0" in name:
                    assert param.shape[1] == old_rank0
                else:
                    assert param.shape[1] == old_rank1

        new_rank = 13
        prepare_model_for_compiled_hotswap(model, target_rank=new_rank)

        for name, param in model.named_parameters():
            if "lora_A" in name:
                assert param.shape[0] == new_rank
            elif "lora_B" in name:
                assert param.shape[1] == new_rank

    def test_prepare_model_for_compiled_hotswap_model_already_compiled_raises(self):
        config = LoraConfig(target_modules=["lin0"])
        model = self.get_model()
        model = get_peft_model(model, config)
        model = torch.compile(model, mode="reduce-overhead")

        msg = re.escape("Call prepare_model_for_compiled_hotswap *before* compiling the model")
        with pytest.raises(ValueError, match=msg):
            prepare_model_for_compiled_hotswap(model)

    def test_prepare_model_for_compiled_hotswap_model_already_compiled_warns(self, recwarn):
        config = LoraConfig(target_modules=["lin0"])
        model = self.get_model()
        model = get_peft_model(model, config)
        model = torch.compile(model, mode="reduce-overhead")

        msg = "prepare_model_for_compiled_hotswap was called with a model that is already compiled"
        prepare_model_for_compiled_hotswap(model, check_compiled="warn")
        assert any(msg in str(w.message) for w in recwarn)

    def test_prepare_model_for_compiled_hotswap_model_already_compiled_ignore(self, recwarn):
        config = LoraConfig(target_modules=["lin0"])
        model = self.get_model()
        model = get_peft_model(model, config)
        model = torch.compile(model, mode="reduce-overhead")

        msg = "prepare_model_for_compiled_hotswap was called with a model that is already compiled"
        prepare_model_for_compiled_hotswap(model, check_compiled="ignore")
        # no error, no warning
        assert not any(msg in str(w.message) for w in recwarn)

    def test_prepare_model_for_compiled_hotswap_model_already_compiled_wrong_argument(self, recwarn):
        config = LoraConfig(target_modules=["lin0"])
        model = self.get_model()
        model = get_peft_model(model, config)
        model = torch.compile(model, mode="reduce-overhead")

        msg = re.escape("check_compiles should be one of 'error', 'warn', or 'ignore', got 'wrong-option' instead.")
        with pytest.raises(ValueError, match=msg):
            prepare_model_for_compiled_hotswap(model, check_compiled="wrong-option")

    def test_prepare_model_for_compiled_hotswap_model_no_adapter_raises(self):
        model = self.get_model()
        msg = re.escape("No adapter layers found on the model")
        with pytest.raises(ValueError, match=msg):
            prepare_model_for_compiled_hotswap(model)

    def test_prepare_model_for_compiled_hotswap_does_not_change_output(self):
        # preparing the model for hotswapping should not change the model output
        inputs = torch.rand(3, 10).to(self.torch_device)
        model = self.get_model().eval()
        with torch.inference_mode():
            output_base = model(inputs)

        old_rank = 8
        config = LoraConfig(target_modules=["lin0", "lin1"], r=old_rank, init_lora_weights=False)
        model = get_peft_model(model, config).eval()
        with torch.inference_mode():
            output_before = model(inputs)

        # sanity check: LoRA changed output
        assert not torch.allclose(output_base, output_before)

        new_rank = 13
        prepare_model_for_compiled_hotswap(model, target_rank=new_rank)
        with torch.inference_mode():
            output_after = model(inputs)

        assert torch.allclose(output_before, output_after)

    def test_prepare_model_for_compiled_hotswap_does_not_change_output_conv2d(self):
        # preparing the model for hotswapping should not change the model output
        inputs = torch.rand(3, 3, 10, 10).to(self.torch_device)
        model = self.get_model_conv2d().eval()
        with torch.inference_mode():
            output_base = model(inputs)

        old_rank = 8
        config = LoraConfig(target_modules=["conv"], r=old_rank, init_lora_weights=False)
        model = get_peft_model(model, config).eval()
        with torch.inference_mode():
            output_before = model(inputs)

        # sanity check: LoRA changed output
        assert not torch.allclose(output_base, output_before)

        new_rank = 13
        prepare_model_for_compiled_hotswap(model, target_rank=new_rank)
        with torch.inference_mode():
            output_after = model(inputs)

        assert torch.allclose(output_before, output_after)

    def test_prepare_model_for_compiled_hotswap_scalings_update_config(self):
        old_rank0 = 11
        old_rank1 = 13
        config = LoraConfig(target_modules=["lin0", "lin1"], r=old_rank0, rank_pattern={"lin1": old_rank1})
        model = self.get_model()
        model = get_peft_model(model, config)

        new_rank = 15
        prepare_model_for_compiled_hotswap(model, target_rank=new_rank, config=model.peft_config)

        assert model.peft_config["default"].r == new_rank
        assert model.peft_config["default"].rank_pattern == {"lin1": new_rank}

    def test_prepare_model_for_compiled_hotswap_lora_bias(self):
        # When setting lora_bias=True in the LoraConfig, the LoRA B parameter will have a bias term. Check that padding
        # still works correctly. Note that the LoRA A parameter still won't have a bias term.
        old_rank = 8
        config = LoraConfig(target_modules=["lin0", "lin1"], r=old_rank, lora_bias=True)
        model = self.get_model()
        model = get_peft_model(model, config)

        # sanity check
        for name, param in model.named_parameters():
            if "lora_A" in name and name.endswith(".weight"):
                assert param.shape[0] == old_rank
            elif "lora_B" in name and name.endswith(".weight"):
                assert param.shape[1] == old_rank
            elif "lora_A" in name and name.endswith(".bias"):
                assert False, "LoRA A should not have a bias term"
            elif "lora_B" in name and name.endswith(".bias"):
                assert param.shape[0] in (5, 20)  # output shapes of the 2 layers

        new_rank = 13
        prepare_model_for_compiled_hotswap(model, target_rank=new_rank)

        for name, param in model.named_parameters():
            if "lora_A" in name and name.endswith(".weight"):
                assert param.shape[0] == new_rank
            elif "lora_B" in name and name.endswith(".weight"):
                assert param.shape[1] == new_rank
            elif "lora_A" in name and name.endswith(".bias"):
                assert False, "LoRA A should not have a bias term"
            elif "lora_B" in name and name.endswith(".bias"):
                assert param.shape[0] in (5, 20)  # output shapes of the 2 layers

    def test_prepare_model_for_compiled_hotswap_conv2d_lora_bias(self):
        # same as previous test, but for a Conv2d model
        old_rank = 8
        config = LoraConfig(target_modules=["conv"], r=old_rank, lora_bias=True)
        model = self.get_model_conv2d()
        model = get_peft_model(model, config)

        # sanity check
        for name, param in model.named_parameters():
            if "lora_A" in name and name.endswith(".weight"):
                assert param.shape[0] == old_rank
            elif "lora_B" in name and name.endswith(".weight"):
                assert param.shape[1] == old_rank
            elif "lora_A" in name and name.endswith(".bias"):
                assert False, "LoRA A should not have a bias term"
            elif "lora_B" in name and name.endswith(".bias"):
                assert param.shape[0] == 10  # output shape of conv layer

        new_rank = 13
        prepare_model_for_compiled_hotswap(model, target_rank=new_rank)

        for name, param in model.named_parameters():
            if "lora_A" in name and name.endswith(".weight"):
                assert param.shape[0] == new_rank
            elif "lora_B" in name and name.endswith(".weight"):
                assert param.shape[1] == new_rank
            elif "lora_A" in name and name.endswith(".bias"):
                assert False, "LoRA A should not have a bias term"
            elif "lora_B" in name and name.endswith(".bias"):
                assert param.shape[0] == 10  # output shape of conv layer


def test_import_peft_type_to_model_mapping_deprecation_warning(recwarn):
    # This is for backwards compatibility: In #2282, PEFT_TYPE_TO_MODEL_MAPPING was removed as it was redundant with
    # PEFT_TYPE_TO_TUNER_MAPPING. However, third party code could still use this mapping, e.g.:
    # https://github.com/AutoGPTQ/AutoGPTQ/blob/6689349625de973b9ee3016c28c11f32acf7f02c/auto_gptq/utils/peft_utils.py#L8
    # TODO: Remove after 2026-01

    # first check that there is no warning under normal circumstances
    from peft.peft_model import PeftModel  # noqa

    expected = (
        "PEFT_TYPE_TO_MODEL_MAPPING is deprecated, please use `from peft import PEFT_TYPE_TO_TUNER_MAPPING` instead"
    )
    warnings = (w.message.args[0] for w in recwarn.list)
    assert not any(w.startswith(expected) for w in warnings)

    from peft.peft_model import PEFT_TYPE_TO_MODEL_MAPPING  # noqa

    # check that there is a warning with this message after importing the variable
    warnings = (w.message.args[0] for w in recwarn.list)
    assert any(w.startswith(expected) for w in warnings)


class TestScaling:
    """Tests for scaling and unscaling

    Those methods are currently only implemented for LoRA and were added for use in diffusers.
    """

    @pytest.fixture
    def model(self):
        # tiny opt with 5 attention layers
        model_id = "hf-internal-testing/tiny-random-OPTForCausalLM"
        return AutoModelForCausalLM.from_pretrained(model_id)

    def get_scalings(self, model, adapter_name="default"):
        # helper function, returns the scalings of the 5 attention layers
        return [m.scaling[adapter_name] for m in model.modules() if isinstance(m, LoraLayer)]

    def set_scale(self, model, adapter_name, scale):
        for module in model.modules():
            if isinstance(module, LoraLayer):
                module.set_scale(adapter_name, scale)

    def scale_layer(self, model, scale):
        for module in model.modules():
            if isinstance(module, LoraLayer):
                module.scale_layer(scale)

    def unscale_layer(self, model, scale):
        for module in model.modules():
            if isinstance(module, LoraLayer):
                module.unscale_layer(scale)

    def test_scaling_simple(self, model):
        n_layers = 5
        rank, lora_alpha = 8, 16
        config = LoraConfig(
            r=rank,
            lora_alpha=lora_alpha,
            target_modules=["k_proj"],
        )
        model = get_peft_model(model, config)
        scalings = self.get_scalings(model)
        expected = [lora_alpha / rank] * n_layers
        assert scalings == expected

        # double
        self.scale_layer(model, 2)
        scalings = self.get_scalings(model)
        expected = [4.0] * n_layers
        assert scalings == expected

        # back to original
        self.unscale_layer(model, None)
        scalings = self.get_scalings(model)
        expected = [2.0] * n_layers
        assert scalings == expected

        # triple
        self.set_scale(model, "default", 3)
        scalings = self.get_scalings(model)
        expected = [6.0] * n_layers
        assert scalings == expected

        # back to original
        self.unscale_layer(model, 3)
        scalings = self.get_scalings(model)
        expected = [2.0] * n_layers
        assert scalings == expected

    def test_scaling_with_rslora(self, model):
        n_layers = 5
        rank, lora_alpha = 8, 16
        config = LoraConfig(
            r=rank,
            lora_alpha=lora_alpha,
            use_rslora=True,
            target_modules=["k_proj"],
        )
        model = get_peft_model(model, config)
        scalings = self.get_scalings(model)
        expected = [lora_alpha / math.sqrt(rank)] * n_layers
        assert scalings == expected

        # double
        self.scale_layer(model, 2)
        scalings = self.get_scalings(model)
        expected = [2 * lora_alpha / math.sqrt(rank)] * n_layers
        assert scalings == expected

        # back to original
        self.unscale_layer(model, None)
        scalings = self.get_scalings(model)
        expected = [lora_alpha / math.sqrt(rank)] * n_layers
        assert scalings == expected

        # triple
        self.set_scale(model, "default", 3)
        scalings = self.get_scalings(model)
        expected = [3 * lora_alpha / math.sqrt(rank)] * n_layers
        assert scalings == expected

        # back to original
        self.unscale_layer(model, 3)
        scalings = self.get_scalings(model)
        expected = [lora_alpha / math.sqrt(rank)] * n_layers
        assert scalings == expected

    def test_scaling_rank_pattern_alpha_pattern(self, model):
        # layer 0: 8 / 8
        # layer 1: 8 / 16
        # layer 2: 4 / 32
        # layer 3: 16 / 8
        # layer 4: 8 / 8
        config = LoraConfig(
            r=8,
            lora_alpha=8,
            target_modules=["k_proj"],
            rank_pattern={"layers.1.self_attn.k_proj": 16, "layers.2.self_attn.k_proj": 32},
            alpha_pattern={"layers.2.self_attn.k_proj": 4, "layers.3.self_attn.k_proj": 16},
        )
        model = get_peft_model(model, config)
        scalings = self.get_scalings(model)
        expected = [1.0, 0.5, 0.125, 2.0, 1.0]
        assert scalings == expected

        # double
        self.scale_layer(model, 2)
        scalings = self.get_scalings(model)
        expected = [2.0, 1.0, 0.25, 4.0, 2.0]
        assert scalings == expected

        # back to original
        self.unscale_layer(model, None)
        scalings = self.get_scalings(model)
        expected = [1.0, 0.5, 0.125, 2.0, 1.0]
        assert scalings == expected

        # triple
        self.set_scale(model, "default", 3)
        scalings = self.get_scalings(model)
        expected = [3.0, 1.5, 0.375, 6.0, 3.0]
        assert scalings == expected

        # back to original
        self.unscale_layer(model, 3)
        scalings = self.get_scalings(model)
        expected = [1.0, 0.5, 0.125, 2.0, 1.0]
        assert scalings == expected

    def test_scaling_multiple_times(self, model):
        # same as previous test, but scale and unscale multiple times in a row
        # layer 0: 8 / 8
        # layer 1: 8 / 16
        # layer 2: 4 / 32
        # layer 3: 16 / 8
        # layer 4: 8 / 8
        config = LoraConfig(
            r=8,
            lora_alpha=8,
            target_modules=["k_proj"],
            rank_pattern={"layers.1.self_attn.k_proj": 16, "layers.2.self_attn.k_proj": 32},
            alpha_pattern={"layers.2.self_attn.k_proj": 4, "layers.3.self_attn.k_proj": 16},
        )
        model = get_peft_model(model, config)
        scalings = self.get_scalings(model)
        expected = [1.0, 0.5, 0.125, 2.0, 1.0]
        assert scalings == expected

        # scale of 1 makes no difference
        self.scale_layer(model, 1)
        scalings = self.get_scalings(model)
        expected = [1.0, 0.5, 0.125, 2.0, 1.0]

        # double
        self.scale_layer(model, 2)
        scalings = self.get_scalings(model)
        expected = [2.0, 1.0, 0.25, 4.0, 2.0]
        assert scalings == expected

        # triple, on top of previous double
        self.scale_layer(model, 3)
        scalings = self.get_scalings(model)
        expected = [6.0, 3.0, 0.75, 12.0, 6.0]
        assert scalings == expected

        # half
        self.unscale_layer(model, 2)
        scalings = self.get_scalings(model)
        expected = [3.0, 1.5, 0.375, 6.0, 3.0]
        assert scalings == expected

        # divide by 3, on top of previous half
        self.unscale_layer(model, 3)
        scalings = self.get_scalings(model)
        expected = [1.0, 0.5, 0.125, 2.0, 1.0]
        assert scalings == expected

        # set scale to 2
        self.set_scale(model, "default", 2)
        scalings = self.get_scalings(model)
        expected = [2.0, 1.0, 0.25, 4.0, 2.0]
        assert scalings == expected

        # set scale to 3, it is cumulative but based on the initial scaling, so factor 3, not 6
        self.set_scale(model, "default", 3)
        scalings = self.get_scalings(model)
        expected = [3.0, 1.5, 0.375, 6.0, 3.0]
        assert scalings == expected

        # back to original
        self.unscale_layer(model, None)
        scalings = self.get_scalings(model)
        expected = [1.0, 0.5, 0.125, 2.0, 1.0]
        assert scalings == expected

        # back to original again
        self.unscale_layer(model, None)
        scalings = self.get_scalings(model)
        expected = [1.0, 0.5, 0.125, 2.0, 1.0]
        assert scalings == expected

    def test_scaling_multiple_adapters(self, model):
        # ensure that scaling works with multiple adapters
        n_layers = 5
        rank0, lora_alpha0 = 8, 16
        config0 = LoraConfig(
            r=rank0,
            lora_alpha=lora_alpha0,
            target_modules=["k_proj"],
        )
        rank1, lora_alpha1 = 16, 8
        config1 = LoraConfig(
            r=rank1,
            lora_alpha=lora_alpha1,
            target_modules=["k_proj"],
        )
        model = get_peft_model(model, config0)
        model.add_adapter("other", config1)

        scalings_default = self.get_scalings(model, "default")
        scalings_other = self.get_scalings(model, "other")
        expected_default = [lora_alpha0 / rank0] * n_layers
        expected_other = [lora_alpha1 / rank1] * n_layers
        assert scalings_default == expected_default
        assert scalings_other == expected_other

        # double the scale for other
        self.set_scale(model, "other", 2)
        scalings_default = self.get_scalings(model, "default")
        scalings_other = self.get_scalings(model, "other")
        expected_default = [lora_alpha0 / rank0] * n_layers
        expected_other = [2 * lora_alpha1 / rank1] * n_layers
        assert scalings_default == expected_default
        assert scalings_other == expected_other

        # quarter the scale for default
        self.set_scale(model, "default", 0.25)
        scalings_default = self.get_scalings(model, "default")
        scalings_other = self.get_scalings(model, "other")
        expected_default = [lora_alpha0 / rank0 / 4] * n_layers
        expected_other = [2 * lora_alpha1 / rank1] * n_layers
        assert scalings_default == expected_default
        assert scalings_other == expected_other

        # unscale resets for all *active* adapters
        self.unscale_layer(model, None)
        scalings_default = self.get_scalings(model, "default")
        scalings_other = self.get_scalings(model, "other")
        expected_default = [lora_alpha0 / rank0] * n_layers
        expected_other = [2 * lora_alpha1 / rank1] * n_layers  # stays the same as 'other' is not active
        assert scalings_default == expected_default
        assert scalings_other == expected_other

        # scale all *active* adapters by 2
        self.scale_layer(model, 2)
        scalings_default = self.get_scalings(model, "default")
        scalings_other = self.get_scalings(model, "other")
        expected_default = [2 * lora_alpha0 / rank0] * n_layers
        expected_other = [2 * lora_alpha1 / rank1] * n_layers  # stays the same as 'other' is not active
        assert scalings_default == expected_default
        assert scalings_other == expected_other

        # switch to 'other'
        model.set_adapter("other")

        # unscale, this time 'other'
        self.unscale_layer(model, None)
        scalings_default = self.get_scalings(model, "default")
        scalings_other = self.get_scalings(model, "other")
        expected_default = [2 * lora_alpha0 / rank0] * n_layers  # stays the same as 'other' is not active
        expected_other = [lora_alpha1 / rank1] * n_layers
        assert scalings_default == expected_default
        assert scalings_other == expected_other

        # scale all *active* adapters by 3
        self.scale_layer(model, 3)
        scalings_default = self.get_scalings(model, "default")
        scalings_other = self.get_scalings(model, "other")
        expected_default = [2 * lora_alpha0 / rank0] * n_layers  # stays the same as 'other' is not active
        expected_other = [3 * lora_alpha1 / rank1] * n_layers
        assert scalings_default == expected_default
        assert scalings_other == expected_other


class TestLoadPeftKeyMapping:
    # See discussion in https://github.com/huggingface/transformers/pull/38627

    # transformers PR #37033 re-arranges the way visual language models are built by moving the LM head from the
    # language model to the top-level VLM (among other things). A consequence of this is that the keys in the PEFT
    # state_dict now also follow the new architecture. This test class serves to ensure that old checkpoints can be
    # loaded with the changed architecture. Unfortunately, new checkpoints cannot be loaded with the old architecture,
    # the corresponding test is marked as xfail.

    # Note: We only test prefix tuning (prompt learning method), LoRA (non-prompt learning method), and VBLoRA (shared
    # parameters) as the other PEFT methods should work the same way. It would be excessive to test all of them here.

    @pytest.fixture
    def fake_model_config(self):
        # mimics a transformers model config
        class FakeConfig(dict):
            def __init__(self):
                self.vocab_size = 10

            def __getattr__(self, item):
                if item in self:
                    return self[item]
                raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{item}'")

        return FakeConfig()

    @pytest.fixture
    def old_model(self, fake_model_config):
        # create a small model that mimics the old architecture of, for instance, Qwen/Qwen2-VL-2B-Instruct
        # Qwen2VLForConditionalGeneration(
        #   (visual): Qwen2VisionTransformerPretrainedModel(
        #     (patch_embed): PatchEmbed(
        #       (proj): Conv3d(3, 1280, kernel_size=(2, 14, 14), stride=(2, 14, 14), bias=False)
        #     )
        #     (rotary_pos_emb): VisionRotaryEmbedding()
        #     (blocks): ModuleList(
        #       (0-31): 32 x Qwen2VLVisionBlock(
        #         (norm1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
        #         (norm2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
        #         (attn): VisionSdpaAttention(
        #           (qkv): Linear(in_features=1280, out_features=3840, bias=True)
        #           (proj): Linear(in_features=1280, out_features=1280, bias=True)
        #         )
        #         (mlp): VisionMlp(
        #           (fc1): Linear(in_features=1280, out_features=5120, bias=True)
        #           (act): QuickGELUActivation()
        #           (fc2): Linear(in_features=5120, out_features=1280, bias=True)
        #         )
        #       )
        #     )
        #     (merger): PatchMerger(
        #       (ln_q): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
        #       (mlp): Sequential(
        #         (0): Linear(in_features=5120, out_features=5120, bias=True)
        #         (1): GELU(approximate='none')
        #         (2): Linear(in_features=5120, out_features=1536, bias=True)
        #       )
        #     )
        #   )
        #   (model): Qwen2VLModel(
        #     (embed_tokens): Embedding(151936, 1536)
        #     (layers): ModuleList(
        #       (0-27): 28 x Qwen2VLDecoderLayer(
        #         (self_attn): Qwen2VLSdpaAttention(
        #           (q_proj): Linear(in_features=1536, out_features=1536, bias=True)
        #           (k_proj): Linear(in_features=1536, out_features=256, bias=True)
        #           (v_proj): Linear(in_features=1536, out_features=256, bias=True)
        #           (o_proj): Linear(in_features=1536, out_features=1536, bias=False)
        #           (rotary_emb): Qwen2VLRotaryEmbedding()
        #         )
        #         (mlp): Qwen2MLP(
        #           (gate_proj): Linear(in_features=1536, out_features=8960, bias=False)
        #           (up_proj): Linear(in_features=1536, out_features=8960, bias=False)
        #           (down_proj): Linear(in_features=8960, out_features=1536, bias=False)
        #           (act_fn): SiLU()
        #         )
        #         (input_layernorm): Qwen2RMSNorm((1536,), eps=1e-06)
        #         (post_attention_layernorm): Qwen2RMSNorm((1536,), eps=1e-06)
        #       )
        #     )
        #     (norm): Qwen2RMSNorm((1536,), eps=1e-06)
        #     (rotary_emb): Qwen2VLRotaryEmbedding()
        #   )
        #   (lm_head): Linear(in_features=1536, out_features=151936, bias=False)
        # )
        class Block(nn.Module):
            def __init__(self):
                super().__init__()
                self.attn = nn.Linear(10, 10)

        class OldModel(nn.Module):
            def __init__(self):
                super().__init__()
                self.config = fake_model_config
                self.device = "cpu"
                self.proj = nn.Conv3d(3, 10, 3)
                self.visual = nn.ModuleDict(
                    {
                        "blocks": nn.ModuleList([Block() for _ in range(2)]),
                    }
                )
                self.model = nn.ModuleDict(
                    {
                        "layers": nn.ModuleList([Block() for _ in range(2)]),
                    }
                )
                self.lm_head = nn.Linear(10, 10)

            def prepare_inputs_for_generation(self):
                return

        model = OldModel()
        return model

    @pytest.fixture
    def new_model(self, fake_model_config):
        # create a small model that mimics the new architecture of, for instance, Qwen/Qwen2-VL-2B-Instruct
        # Qwen2VLForConditionalGeneration(
        #   (model): Qwen2VLModel(
        #     (visual): Qwen2VisionTransformerPretrainedModel(
        #       (patch_embed): PatchEmbed(
        #         (proj): Conv3d(3, 1280, kernel_size=(2, 14, 14), stride=(2, 14, 14), bias=False)
        #       )
        #       (rotary_pos_emb): VisionRotaryEmbedding()
        #       (blocks): ModuleList(
        #         (0-31): 32 x Qwen2VLVisionBlock(
        #           (norm1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
        #           (norm2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
        #           (attn): VisionSdpaAttention(
        #             (qkv): Linear(in_features=1280, out_features=3840, bias=True)
        #             (proj): Linear(in_features=1280, out_features=1280, bias=True)
        #           )
        #           (mlp): VisionMlp(
        #             (fc1): Linear(in_features=1280, out_features=5120, bias=True)
        #             (act): QuickGELUActivation()
        #             (fc2): Linear(in_features=5120, out_features=1280, bias=True)
        #           )
        #         )
        #       )
        #       (merger): PatchMerger(
        #         (ln_q): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
        #         (mlp): Sequential(
        #           (0): Linear(in_features=5120, out_features=5120, bias=True)
        #           (1): GELU(approximate='none')
        #           (2): Linear(in_features=5120, out_features=1536, bias=True)
        #         )
        #       )
        #     )
        #     (language_model): Qwen2VLTextModel(
        #       (embed_tokens): Embedding(151936, 1536)
        #       (layers): ModuleList(
        #         (0-27): 28 x Qwen2VLDecoderLayer(
        #           (self_attn): Qwen2VLAttention(
        #             (q_proj): Linear(in_features=1536, out_features=1536, bias=True)
        #             (k_proj): Linear(in_features=1536, out_features=256, bias=True)
        #             (v_proj): Linear(in_features=1536, out_features=256, bias=True)
        #             (o_proj): Linear(in_features=1536, out_features=1536, bias=False)
        #             (rotary_emb): Qwen2VLRotaryEmbedding()
        #           )
        #           (mlp): Qwen2MLP(
        #             (gate_proj): Linear(in_features=1536, out_features=8960, bias=False)
        #             (up_proj): Linear(in_features=1536, out_features=8960, bias=False)
        #             (down_proj): Linear(in_features=8960, out_features=1536, bias=False)
        #             (act_fn): SiLU()
        #           )
        #           (input_layernorm): Qwen2RMSNorm((1536,), eps=1e-06)
        #           (post_attention_layernorm): Qwen2RMSNorm((1536,), eps=1e-06)
        #         )
        #       )
        #       (norm): Qwen2RMSNorm((1536,), eps=1e-06)
        #       (rotary_emb): Qwen2VLRotaryEmbedding()
        #     )
        #   )
        #   (lm_head): Linear(in_features=1536, out_features=151936, bias=False)
        # )
        class Block(nn.Module):
            def __init__(self):
                super().__init__()
                self.attn = nn.Linear(10, 10)

        class InnerModel(nn.Module):
            def __init__(self):
                super().__init__()
                self.visual = nn.ModuleDict(
                    {
                        "blocks": nn.ModuleList([Block() for _ in range(2)]),
                    }
                )
                self.language_model = nn.ModuleDict(
                    {
                        "layers": nn.ModuleList([Block() for _ in range(2)]),
                    }
                )

        class NewModel(nn.Module):
            def __init__(self):
                super().__init__()
                self.config = fake_model_config
                self.device = "cpu"
                self.model = InnerModel()
                self.lm_head = nn.Linear(10, 10)
                # new transformers models have this attribute to map old checkpoints to new ones:
                self._checkpoint_conversion_mapping = {
                    "^visual": "model.visual",
                    "^model(?!\\.(language_model|visual))": "model.language_model",
                }

            def prepare_inputs_for_generation(self):
                return

        model = NewModel()
        return model

    def check_lora_load_no_warning(self, model1, model2, path):
        # helper method: save with model1, load with model2, ensure that there is no warning about missing keys and that
        # the parameters are loaded correctly
        model1 = copy.deepcopy(model1)
        model2 = copy.deepcopy(model2)
        config = LoraConfig(target_modules=["attn"])
        peft_model = get_peft_model(copy.deepcopy(model1), config)

        # set all values to 1.0 or 2.0 so we can check that they are loaded correctly
        for name, param in peft_model.named_parameters():
            if name.endswith("lora_A.default.weight"):
                param.data.fill_(1.0)
            elif name.endswith("lora_B.default.weight"):
                param.data.fill_(2.0)

        peft_model.save_pretrained(path)
        del peft_model

        # ensure that there is no warning: UserWarning: Found missing adapter keys while loading the checkpoint
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")
            loaded = PeftModel.from_pretrained(copy.deepcopy(model2), path)
            assert not any("Found missing adapter keys" in str(warning.message) for warning in w)

        # sanity check on parameter values to not only rely on the absence of warnings
        for name, param in loaded.named_parameters():
            if name.endswith("lora_A.default.weight"):
                assert torch.allclose(param, torch.full_like(param, 1.0))
            elif name.endswith("lora_B.default.weight"):
                assert torch.allclose(param, torch.full_like(param, 2.0))

    def check_prefix_tuning_load_no_warning(self, model1, model2, path):
        # helper method: save with model1, load with model2, ensure that there is no warning about missing keys and that
        # the parameters are loaded correctly.
        model1 = copy.deepcopy(model1)
        model2 = copy.deepcopy(model2)
        config = PrefixTuningConfig(
            task_type="CAUSAL_LM", num_virtual_tokens=5, num_layers=2, token_dim=10, num_attention_heads=2
        )
        peft_model = get_peft_model(copy.deepcopy(model1), config)

        # set all values to 1.0 so we can check that they are loaded correctly
        peft_model.prompt_encoder.default.embedding.weight.data.fill_(1.0)

        peft_model.save_pretrained(path)
        del peft_model

        # ensure that there is no warning: UserWarning: Found missing adapter keys while loading the checkpoint
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")
            loaded = PeftModel.from_pretrained(copy.deepcopy(model2), path)
            assert not any("Found missing adapter keys" in str(warning.message) for warning in w)

        # sanity check on parameter values to not only rely on the absence of warnings
        weight = loaded.prompt_encoder.default.embedding.weight
        assert torch.allclose(weight, torch.full_like(weight, 1.0))

    def check_vblora_load_no_warning(self, model1, model2, path):
        # helper method: save with model1, load with model2, ensure that there is no warning about missing keys and that
        # the parameters are loaded correctly
        model1 = copy.deepcopy(model1)
        model2 = copy.deepcopy(model2)

        config = VBLoRAConfig(target_modules=["attn"], vector_length=2, num_vectors=4)
        peft_model = get_peft_model(copy.deepcopy(model1), config)

        # set all values to 1.0 or 2.0 so we can check that they are loaded correctly
        peft_model.base_model.vblora_vector_bank["default"].data.fill_(1.0)
        for name, param in peft_model.named_parameters():
            if "logits" in name:
                param.data.fill_(2.0)

        peft_model.save_pretrained(path)
        del peft_model

        # ensure that there is no warning: UserWarning: Found missing adapter keys while loading the checkpoint
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")
            loaded = PeftModel.from_pretrained(copy.deepcopy(model2), path)
            assert not any("Found missing adapter keys" in str(warning.message) for warning in w)

        # sanity check on parameter values to not only rely on the absence of warnings
        param = loaded.base_model.vblora_vector_bank["default"]
        assert torch.allclose(param, torch.full_like(param, 1.0))
        for name, param in loaded.named_parameters():
            if "logits" in name:
                assert torch.allclose(param, torch.full_like(param, 2.0))

    def test_key_mapping_save_new_load_new_lora(self, new_model, tmp_path):
        # save and load the new model, should work without issues
        self.check_lora_load_no_warning(new_model, new_model, tmp_path)

    def test_key_mapping_save_old_load_old_lora(self, old_model, tmp_path):
        # save and load the old model, should work without issues
        self.check_lora_load_no_warning(old_model, old_model, tmp_path)

    def test_key_mapping_save_old_load_new_lora(self, old_model, new_model, tmp_path):
        # save the old model, load it into the new model, should work without issues (backwards compatibility)
        self.check_lora_load_no_warning(old_model, new_model, tmp_path)

    @pytest.mark.xfail(reason="Loading new checkpoints with old transformers is not supported.", strict=True)
    def test_key_mapping_save_new_load_old_lora(self, old_model, new_model, tmp_path):
        # save the new model, load it into the old model, should work without issues (forwards compatibility)
        self.check_lora_load_no_warning(new_model, old_model, tmp_path)

    def test_key_mapping_save_new_load_new_prefix_tuning(self, new_model, tmp_path):
        # save and load the new model, should work without issues
        self.check_prefix_tuning_load_no_warning(new_model, new_model, tmp_path)

    def test_key_mapping_save_old_load_old_prefix_tuning(self, old_model, tmp_path):
        # save and load the old model, should work without issues
        self.check_prefix_tuning_load_no_warning(old_model, old_model, tmp_path)

    def test_key_mapping_save_old_load_new_prefix_tuning(self, old_model, new_model, tmp_path):
        # save the old model, load it into the new model, should work without issues (backwards compatibility)
        self.check_prefix_tuning_load_no_warning(old_model, new_model, tmp_path)

    def test_key_mapping_save_new_load_old_prefix_tuning(self, old_model, new_model, tmp_path):
        # save the new model, load it into the old model, should work without issues (forwards compatibility)
        self.check_prefix_tuning_load_no_warning(new_model, old_model, tmp_path)

    def test_key_mapping_save_new_load_new_vblora(self, new_model, tmp_path):
        # save and load the new model, should work without issues
        self.check_vblora_load_no_warning(new_model, new_model, tmp_path)

    def test_key_mapping_save_old_load_old_vblora(self, old_model, tmp_path):
        # save and load the old model, should work without issues
        self.check_vblora_load_no_warning(old_model, old_model, tmp_path)

    def test_key_mapping_save_old_load_new_vblora(self, old_model, new_model, tmp_path):
        # save the old model, load it into the new model, should work without issues (backwards compatibility)
        self.check_vblora_load_no_warning(old_model, new_model, tmp_path)

    @pytest.mark.xfail(reason="Loading new checkpoints with old transformers is not supported.", strict=True)
    def test_key_mapping_save_new_load_old_vblora(self, old_model, new_model, tmp_path):
        # save the new model, load it into the old model, should work without issues (forwards compatibility)
        self.check_vblora_load_no_warning(new_model, old_model, tmp_path)