File size: 209,721 Bytes
302920f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 |
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import itertools
import math
import platform
import re
import warnings
from collections import defaultdict
from contextlib import contextmanager
from copy import deepcopy
from unittest.mock import patch
import pytest
import torch
from datasets import Dataset
from huggingface_hub import snapshot_download
from safetensors.torch import load_file
from scipy import stats
from torch import nn
from torch.utils.data import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import (
AdaLoraConfig,
C3AConfig,
EvaConfig,
IA3Config,
LoftQConfig,
LoKrConfig,
LoraConfig,
PeftMixedModel,
PeftModel,
PeftModelForCausalLM,
PeftModelForFeatureExtraction,
PeftModelForQuestionAnswering,
PeftModelForSeq2SeqLM,
PeftModelForSequenceClassification,
PeftModelForTokenClassification,
PeftWarning,
PrefixTuningConfig,
PromptTuningConfig,
RoadConfig,
VBLoRAConfig,
VeraConfig,
WaveFTConfig,
get_eva_state_dict,
get_peft_model,
initialize_lora_eva_weights,
inject_adapter_in_model,
set_peft_model_state_dict,
)
from peft.mapping import PEFT_TYPE_TO_PREFIX_MAPPING
from peft.tuners.lora.config import CordaConfig
from peft.tuners.lora.corda import preprocess_corda
from peft.tuners.lora.layer import LoraLayer
from peft.utils import infer_device
from peft.utils.hotswap import hotswap_adapter, prepare_model_for_compiled_hotswap
from .testing_utils import load_dataset_english_quotes, require_deterministic_for_xpu
try:
from huggingface_hub.utils import reset_sessions
except ImportError:
# this function was removed in hfh v1.0.0
reset_sessions = None
class TestLoraInitialization:
"""Test class to check the initialization of LoRA adapters."""
torch_device = infer_device()
def get_uniform(self, amin, amax, size=(10000,)):
unif = torch.distributions.uniform.Uniform(amin, amax)
samples = unif.sample(size)
return samples
def get_normal(self, mean, std, size=(10000,)):
normal = torch.distributions.normal.Normal(mean, std)
samples = normal.sample(size)
return samples
def get_model(self, bias=True):
class MyModule(nn.Module):
def __init__(self):
super().__init__()
# choose a large weight so that averages are close to expected values
self.linear = nn.Linear(1000, 1000, bias=bias)
self.embed = nn.Embedding(1000, 1000)
self.conv2d = nn.Conv2d(100, 100, 3, bias=bias)
def forward(self, x):
x_int = (100 * x).int()
x_4d = x.flatten().reshape(1, 100, 10, 10)
return self.linear(x), self.embed(x_int), self.conv2d(x_4d)
return MyModule().eval().to(self.torch_device)
@pytest.fixture
def data(self):
return torch.rand(10, 1000).to(self.torch_device)
def test_lora_linear_init_default(self):
# default is True
torch.manual_seed(0)
model = self.get_model()
config = LoraConfig(target_modules=["linear"])
model = get_peft_model(model, config)
weight_A = model.linear.lora_A["default"].weight
weight_B = model.linear.lora_B["default"].weight
# use statistical test to check if weight A is from a uniform distribution
unif = self.get_uniform(weight_A.min().item(), weight_A.max().item())
_, p_value = stats.kstest(weight_A.detach().flatten().cpu().numpy(), unif.flatten().cpu().numpy())
assert p_value > 0.5
# check that weight A is *not* from a normal distribution
normal = self.get_normal(weight_A.mean().item(), weight_A.std().item())
_, p_value = stats.kstest(weight_A.detach().flatten().cpu().numpy(), normal.flatten().cpu().numpy())
assert p_value < 0.05
# check that weight B is zero
assert (weight_B == 0.0).all()
def test_lora_linear_init_gaussian(self):
# use gaussian init
torch.manual_seed(0)
model = self.get_model()
config = LoraConfig(target_modules=["linear"], init_lora_weights="gaussian")
model = get_peft_model(model, config)
weight_A = model.linear.lora_A["default"].weight
weight_B = model.linear.lora_B["default"].weight
# use statistical test to check if weight A is from a normal distribution
normal = self.get_normal(0.0, 1 / config.r)
_, p_value = stats.kstest(weight_A.detach().flatten().cpu().numpy(), normal.flatten().cpu().numpy())
assert p_value > 0.5
# check that weight A is *not* from a uniform distribution
unif = self.get_uniform(weight_A.min().item(), weight_A.max().item())
_, p_value = stats.kstest(weight_A.detach().flatten().cpu().numpy(), unif.flatten().cpu().numpy())
assert p_value < 0.05
# check that weight B is zero
assert (weight_B == 0.0).all()
def test_lora_linear_false(self):
torch.manual_seed(0)
model = self.get_model()
config = LoraConfig(target_modules=["linear"], init_lora_weights=False)
model = get_peft_model(model, config)
weight_B = model.linear.lora_B["default"].weight
# with init_lora_weights=False, weight B should *not* be zero. We don't care so much about the actual values
# as long as they are not zero, in order to avoid identity transformation.
assert not torch.allclose(weight_B, torch.zeros_like(weight_B))
def test_lora_embedding_default(self):
# embedding is initialized as a normal distribution, not kaiming uniform
torch.manual_seed(0)
model = self.get_model()
config = LoraConfig(target_modules=["embed"])
model = get_peft_model(model, config)
weight_A = model.embed.lora_embedding_A["default"]
weight_B = model.embed.lora_embedding_B["default"]
# use statistical test to check if weight B is from a normal distribution
normal = self.get_normal(0.0, 1.0)
_, p_value = stats.kstest(weight_B.detach().flatten().cpu().numpy(), normal.flatten().cpu().numpy())
assert p_value > 0.5
# check that weight B is *not* from a uniform distribution
unif = self.get_uniform(weight_B.min().item(), weight_B.max().item())
_, p_value = stats.kstest(weight_B.detach().flatten().cpu().numpy(), unif.flatten().cpu().numpy())
assert p_value < 0.05
# check that weight A is zero
assert (weight_A == 0.0).all()
def test_lora_embedding_gaussian(self):
# embedding does not change with init_lora_weights="gaussian" vs True
torch.manual_seed(0)
model = self.get_model()
config = LoraConfig(target_modules=["embed"], init_lora_weights="gaussian")
model = get_peft_model(model, config)
weight_A = model.embed.lora_embedding_A["default"]
weight_B = model.embed.lora_embedding_B["default"]
# use statistical test to check if weight B is from a normal distribution
normal = self.get_normal(0.0, 1.0)
_, p_value = stats.kstest(weight_B.detach().flatten().cpu().numpy(), normal.flatten().cpu().numpy())
assert p_value > 0.5
# check that weight B is *not* from a uniform distribution
unif = self.get_uniform(weight_B.min().item(), weight_B.max().item())
_, p_value = stats.kstest(weight_B.detach().flatten().cpu().numpy(), unif.flatten().cpu().numpy())
assert p_value < 0.05
# check that weight A is zero
assert (weight_A == 0.0).all()
def test_lora_embedding_false(self):
torch.manual_seed(0)
model = self.get_model()
config = LoraConfig(target_modules=["embed"], init_lora_weights=False)
model = get_peft_model(model, config)
weight_A = model.embed.lora_embedding_B["default"]
# with init_lora_weights=False, weight A should *not* be zero. We don't care so much about the actual values
# as long as they are not zero, in order to avoid identity transformation.
assert not torch.allclose(weight_A, torch.zeros_like(weight_A))
def test_lora_conv2d_default(self):
# default is True
torch.manual_seed(0)
model = self.get_model()
config = LoraConfig(target_modules=["conv2d"])
model = get_peft_model(model, config)
weight_A = model.conv2d.lora_A["default"].weight
weight_B = model.conv2d.lora_B["default"].weight
# use statistical test to check if weight A is from a uniform distribution
unif = self.get_uniform(weight_A.min().item(), weight_A.max().item())
_, p_value = stats.kstest(weight_A.detach().flatten().cpu().numpy(), unif.flatten().cpu().numpy())
assert p_value > 0.5
# check that weight A is *not* from a normal distribution
normal = self.get_normal(weight_A.mean().item(), weight_A.std().item())
_, p_value = stats.kstest(weight_A.detach().flatten().cpu().numpy(), normal.flatten().cpu().numpy())
assert p_value < 0.05
# check that weight B is zero
assert (weight_B == 0.0).all()
def test_lora_conv2d_init_gaussian(self):
# use gaussian init
torch.manual_seed(0)
model = self.get_model()
config = LoraConfig(target_modules=["conv2d"], init_lora_weights="gaussian")
model = get_peft_model(model, config)
weight_A = model.conv2d.lora_A["default"].weight
weight_B = model.conv2d.lora_B["default"].weight
# use statistical test to check if weight A is from a normal distribution
normal = self.get_normal(0.0, 1 / config.r)
_, p_value = stats.kstest(weight_A.detach().flatten().cpu().numpy(), normal.flatten().cpu().numpy())
assert p_value > 0.5
# check that weight A is *not* from a uniform distribution
unif = self.get_uniform(weight_A.min().item(), weight_A.max().item())
_, p_value = stats.kstest(weight_A.detach().flatten().cpu().numpy(), unif.flatten().cpu().numpy())
assert p_value < 0.05
# check that weight B is zero
assert (weight_B == 0.0).all()
def test_lora_conv2d_false(self):
torch.manual_seed(0)
model = self.get_model()
config = LoraConfig(target_modules=["conv2d"], init_lora_weights=False)
model = get_peft_model(model, config)
weight_B = model.conv2d.lora_B["default"].weight
# with init_lora_weights=False, weight B should *not* be zero. We don't care so much about the actual values
# as long as they are not zero, in order to avoid identity transformation.
assert not torch.allclose(weight_B, torch.zeros_like(weight_B))
def test_lora_init_orthogonal(self):
torch.manual_seed(0)
model = self.get_model()
config = LoraConfig(target_modules=["linear"], init_lora_weights="orthogonal")
model = get_peft_model(model, config)
weight_A = model.linear.lora_A["default"].weight
weight_B = model.linear.lora_B["default"].weight
assert not torch.allclose(weight_A, torch.zeros_like(weight_A))
assert not torch.allclose(weight_B, torch.zeros_like(weight_B))
assert (weight_B @ weight_A).abs().max() < 1e-6
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
def test_lora_init_orthogonal_half_precision_dtype(self, dtype):
try:
torch.zeros(1, dtype=dtype)
except Exception:
pytest.skip(f"dtype {dtype} not supported on this system, skipping test")
torch.manual_seed(0)
model = self.get_model()
config = LoraConfig(target_modules=["linear"], init_lora_weights="orthogonal")
model = get_peft_model(model, config).to(dtype)
weight_A = model.linear.lora_A["default"].weight
weight_B = model.linear.lora_B["default"].weight
assert weight_A.dtype == dtype
assert weight_B.dtype == dtype
def test_lora_init_orthogonal_odd_rank_raises(self):
torch.manual_seed(0)
model = self.get_model()
config = LoraConfig(target_modules=["linear"], init_lora_weights="orthogonal", r=7)
msg = "Orthogonal initialization requires the LoRA rank to be even, got 7 instead."
with pytest.raises(ValueError, match=msg):
get_peft_model(model, config)
def test_lora_scaling_default(self):
# default is True
torch.manual_seed(0)
model = self.get_model()
# check scaling factor use_rslora=False
config = LoraConfig(target_modules=["linear", "embed", "conv2d"], lora_alpha=3, r=16, use_rslora=False)
model = get_peft_model(model, config)
expected_scaling = config.lora_alpha / config.r
assert model.linear.scaling["default"] == expected_scaling
assert model.embed.scaling["default"] == expected_scaling
assert model.conv2d.scaling["default"] == expected_scaling
# testcase for bugfix for issue 2194
def test_rank_alpha_pattern_override(self):
torch.manual_seed(0)
layer = self.get_model()
model = nn.Sequential(layer, layer)
config = LoraConfig(
target_modules=["linear"],
lora_alpha=1,
r=8,
use_rslora=False,
rank_pattern={"linear": 8},
alpha_pattern={"0.linear": 2},
)
model = get_peft_model(model, config)
scaling_with_rank_pattern = model.model[0].linear.scaling
layer = self.get_model()
model = nn.Sequential(layer, layer)
config = LoraConfig(
target_modules=["linear"], lora_alpha=1, r=8, use_rslora=False, alpha_pattern={"0.linear": 2}
)
model = get_peft_model(model, config)
scaling_without_rank_pattern = model.model[0].linear.scaling
assert scaling_with_rank_pattern == scaling_without_rank_pattern
def test_lora_pissa_linear_init_default(self, data):
model = self.get_model()
output = model(data)[0]
config = LoraConfig(init_lora_weights="pissa", target_modules=["linear"])
peft_model = get_peft_model(deepcopy(model), config)
assert torch.allclose(output, peft_model(data)[0], atol=1e-06)
config = LoraConfig(init_lora_weights="pissa_niter_16", target_modules=["linear"])
peft_model = get_peft_model(deepcopy(model), config)
assert torch.allclose(output, peft_model(data)[0], atol=1e-06)
def test_lora_olora_linear_init_default(self, data):
model = self.get_model()
output = model(data)[0]
# Both OLoRA and olora should work
config = LoraConfig(init_lora_weights="OLoRA", target_modules=["linear"])
peft_model = get_peft_model(deepcopy(model), config)
assert torch.allclose(output, peft_model(data)[0], atol=1e-06)
def test_lora_pissa_conversion_same_output_after_loading(self, data, tmp_path):
model = self.get_model()
output_base = model(data)[0]
config = LoraConfig(init_lora_weights="pissa", target_modules=["linear"], r=8)
peft_model = get_peft_model(deepcopy(model), config)
# save the initial model
peft_model.peft_config["default"].init_lora_weights = True
peft_model.save_pretrained(tmp_path / "init-model")
peft_model.peft_config["default"].init_lora_weights = "pissa"
# modify the weights, or else the adapter performs an identity transformation
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
output_pissa = peft_model(data)[0]
# sanity check
tol = 1e-06
assert not torch.allclose(output_base, output_pissa, atol=tol, rtol=tol)
# save the model normally
peft_model.save_pretrained(tmp_path / "pissa-model")
model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "pissa-model")
output_loaded = model_loaded(data)[0]
assert torch.allclose(output_pissa, output_loaded, atol=tol, rtol=tol)
# sanity check: ranks should still be 8 as initially
assert model_loaded.peft_config["default"].r == 8
assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 8
# sanity check: the base model weights were indeed changed
assert not torch.allclose(
model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
)
# save the model with conversion
peft_config_keys_before = list(peft_model.peft_config.keys())
peft_config_dict_before = peft_model.peft_config["default"].to_dict()
peft_model.save_pretrained(
tmp_path / "pissa-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
)
peft_config_keys_after = list(peft_model.peft_config.keys())
peft_config_dict_after = peft_model.peft_config["default"].to_dict()
assert peft_config_keys_before == peft_config_keys_after
assert peft_config_dict_before == peft_config_dict_after
model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "pissa-model-converted")
output_converted = model_converted(data)[0]
assert torch.allclose(output_pissa, output_converted, atol=tol, rtol=tol)
# rank should be double of what it was initially
assert model_converted.peft_config["default"].r == 16
assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 16
# base model weights should be the same as the initial model
assert torch.allclose(
model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
)
def test_lora_pissa_conversion_same_output_after_loading_with_rank_pattern(self, data, tmp_path):
# same as above, but using rank_pattern
model = self.get_model()
output_base = model(data)[0]
# use rank_pattern here; note that since there is only a single linear layer, r is completely overridden
config = LoraConfig(init_lora_weights="pissa", target_modules=["linear"], r=8, rank_pattern={"linear": 32})
peft_model = get_peft_model(deepcopy(model), config)
# save the initial model
peft_model.peft_config["default"].init_lora_weights = True
peft_model.save_pretrained(tmp_path / "init-model")
peft_model.peft_config["default"].init_lora_weights = "pissa"
# modify the weights, or else the adapter performs an identity transformation
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
output_pissa = peft_model(data)[0]
# sanity check
tol = 1e-06
assert not torch.allclose(output_base, output_pissa, atol=tol, rtol=tol)
# save the model normally
peft_model.save_pretrained(tmp_path / "pissa-model")
model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "pissa-model")
output_loaded = model_loaded(data)[0]
assert torch.allclose(output_pissa, output_loaded, atol=tol, rtol=tol)
# sanity check: ranks should still be 8 as initially
assert model_loaded.peft_config["default"].r == 8
assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 32
# sanity check: the base model weights were indeed changed
assert not torch.allclose(
model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
)
# save the model with conversion
peft_model.save_pretrained(
tmp_path / "pissa-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
)
model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "pissa-model-converted")
output_converted = model_converted(data)[0]
assert torch.allclose(output_pissa, output_converted, atol=tol, rtol=tol)
# rank should be double of what it was initially
assert model_converted.peft_config["default"].r == 16
assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 64
# base model weights should be the same as the initial model
assert torch.allclose(
model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
)
def test_lora_pissa_conversion_same_output_after_loading_with_alpha_pattern(self, data, tmp_path):
# same as above, but using alpha_pattern
model = self.get_model()
output_base = model(data)[0]
# use alpha_pattern here; note that since there is only a single linear layer, lora_alpha is completely
# overridden
config = LoraConfig(init_lora_weights="pissa", target_modules=["linear"], alpha_pattern={"linear": 5})
peft_model = get_peft_model(deepcopy(model), config)
# save the initial model
peft_model.peft_config["default"].init_lora_weights = True
peft_model.save_pretrained(tmp_path / "init-model")
peft_model.peft_config["default"].init_lora_weights = "pissa"
# modify the weights, or else the adapter performs an identity transformation
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
output_pissa = peft_model(data)[0]
# sanity check
tol = 1e-06
assert not torch.allclose(output_base, output_pissa, atol=tol, rtol=tol)
# save the model normally
peft_model.save_pretrained(tmp_path / "pissa-model")
model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "pissa-model")
output_loaded = model_loaded(data)[0]
assert torch.allclose(output_pissa, output_loaded, atol=tol, rtol=tol)
# sanity check: ranks should still be 8 as initially
assert model_loaded.peft_config["default"].r == 8
assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 8
assert model_loaded.base_model.model.linear.scaling["default"] == 5 / 8
# sanity check: the base model weights were indeed changed
assert not torch.allclose(
model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
)
# save the model with conversion
peft_model.save_pretrained(
tmp_path / "pissa-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
)
model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "pissa-model-converted")
output_converted = model_converted(data)[0]
assert torch.allclose(output_pissa, output_converted, atol=tol, rtol=tol)
# rank should be double of what it was initially
assert model_converted.peft_config["default"].r == 16
assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 16
assert model_converted.base_model.model.linear.scaling["default"] == 10 / 16
# base model weights should be the same as the initial model
assert torch.allclose(
model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
)
def test_lora_pissa_conversion_same_output_after_loading_with_rslora(self, data, tmp_path):
model = self.get_model()
output_base = model(data)[0]
config = LoraConfig(init_lora_weights="pissa", target_modules=["linear"], r=8, use_rslora=True)
peft_model = get_peft_model(deepcopy(model), config)
# save the initial model
peft_model.peft_config["default"].init_lora_weights = True
peft_model.save_pretrained(tmp_path / "init-model")
peft_model.peft_config["default"].init_lora_weights = "pissa"
# modify the weights, or else the adapter performs an identity transformation
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
output_pissa = peft_model(data)[0]
# sanity check
tol = 1e-06
assert not torch.allclose(output_base, output_pissa, atol=tol, rtol=tol)
# save the model normally
peft_model.save_pretrained(tmp_path / "pissa-model")
model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "pissa-model")
output_loaded = model_loaded(data)[0]
assert torch.allclose(output_pissa, output_loaded, atol=tol, rtol=tol)
# sanity check: ranks should still be 8 as initially
assert model_loaded.peft_config["default"].r == 8
assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 8
assert model_loaded.base_model.model.linear.scaling["default"] == 8 / (8**0.5)
# sanity check: the base model weights were indeed changed
assert not torch.allclose(
model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
)
# save the model with conversion
peft_model.save_pretrained(
tmp_path / "pissa-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
)
model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "pissa-model-converted")
output_converted = model_converted(data)[0]
assert torch.allclose(output_pissa, output_converted, atol=tol, rtol=tol)
# rank should be double of what it was initially
assert model_converted.peft_config["default"].r == 16
assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 16
# same scale as before with a little bit of floating point imprecision
assert model_converted.base_model.model.linear.scaling["default"] == pytest.approx(8 / (8**0.5))
# base model weights should be the same as the initial model
assert torch.allclose(
model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
)
def test_pissa_rank_pattern_and_rslora_raises(self, tmp_path):
# it's not possible to determine the correct scale when using rslora with rank or alpha pattern, because the
# scale is not stored in the state_dict
model = self.get_model()
config = LoraConfig(
init_lora_weights="pissa", target_modules=["linear"], r=8, rank_pattern={"linear": 2}, use_rslora=True
)
peft_model = get_peft_model(model, config)
peft_model.save_pretrained(tmp_path / "init-model")
msg = re.escape("Passing `path_initial_model_for_weight_conversion` to `save_pretrained`")
with pytest.raises(ValueError, match=msg):
peft_model.save_pretrained(
tmp_path / "pissa-model", path_initial_model_for_weight_conversion=tmp_path / "init-model"
)
def test_pissa_alpha_pattern_and_rslora_raises(self, tmp_path):
# it's not possible to determine the correct scale when using rslora with rank or alpha pattern, because the
# scale is not stored in the state_dict
model = self.get_model()
config = LoraConfig(
init_lora_weights="pissa", target_modules=["linear"], r=8, alpha_pattern={"linear": 2}, use_rslora=True
)
peft_model = get_peft_model(model, config)
peft_model.save_pretrained(tmp_path / "init-model")
msg = re.escape("Passing `path_initial_model_for_weight_conversion` to `save_pretrained`")
with pytest.raises(ValueError, match=msg):
peft_model.save_pretrained(
tmp_path / "pissa-model", path_initial_model_for_weight_conversion=tmp_path / "init-model"
)
def test_olora_conversion_same_output_after_loading(self, data, tmp_path):
model = self.get_model()
output_base = model(data)[0]
config = LoraConfig(init_lora_weights="olora", target_modules=["linear"], r=8)
peft_model = get_peft_model(deepcopy(model), config)
# save the initial model
peft_model.save_pretrained(tmp_path / "init-model")
# modify the weights, or else the adapter performs an identity transformation
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
output_olora = peft_model(data)[0]
# sanity check
tol = 1e-06
assert not torch.allclose(output_base, output_olora, atol=tol, rtol=tol)
# save the model normally
peft_model.save_pretrained(tmp_path / "olora-model")
model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "olora-model")
output_loaded = model_loaded(data)[0]
assert torch.allclose(output_olora, output_loaded, atol=tol, rtol=tol)
# sanity check: ranks should still be 8 as initially
assert model_loaded.peft_config["default"].r == 8
assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 8
# sanity check: the base model weights were indeed changed
assert not torch.allclose(
model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
)
# save the model with conversion
peft_config_keys_before = list(peft_model.peft_config.keys())
peft_config_dict_before = peft_model.peft_config["default"].to_dict()
peft_model.save_pretrained(
tmp_path / "olora-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
)
peft_config_keys_after = list(peft_model.peft_config.keys())
peft_config_dict_after = peft_model.peft_config["default"].to_dict()
assert peft_config_keys_before == peft_config_keys_after
assert peft_config_dict_before == peft_config_dict_after
model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "olora-model-converted")
output_converted = model_converted(data)[0]
assert torch.allclose(output_olora, output_converted, atol=tol, rtol=tol)
# rank should be double of what it was initially
assert model_converted.peft_config["default"].r == 16
assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 16
# base model weights should be the same as the initial model
assert torch.allclose(
model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
)
def test_olora_conversion_same_output_after_loading_with_rank_pattern(self, data, tmp_path):
# same as above, but using rank_pattern
model = self.get_model()
output_base = model(data)[0]
# use rank_pattern here; note that since there is only a single linear layer, r is completely overridden
config = LoraConfig(init_lora_weights="olora", target_modules=["linear"], r=8, rank_pattern={"linear": 32})
peft_model = get_peft_model(deepcopy(model), config)
# save the initial model
peft_model.save_pretrained(tmp_path / "init-model")
# modify the weights, or else the adapter performs an identity transformation
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
output_olora = peft_model(data)[0]
# sanity check
tol = 1e-06
assert not torch.allclose(output_base, output_olora, atol=tol, rtol=tol)
# save the model normally
peft_model.save_pretrained(tmp_path / "olora-model")
model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "olora-model")
output_loaded = model_loaded(data)[0]
assert torch.allclose(output_olora, output_loaded, atol=tol, rtol=tol)
# sanity check: ranks should still be 8 as initially
assert model_loaded.peft_config["default"].r == 8
assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 32
# sanity check: the base model weights were indeed changed
assert not torch.allclose(
model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
)
# save the model with conversion
peft_model.save_pretrained(
tmp_path / "olora-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
)
model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "olora-model-converted")
output_converted = model_converted(data)[0]
assert torch.allclose(output_olora, output_converted, atol=tol, rtol=tol)
# rank should be double of what it was initially
assert model_converted.peft_config["default"].r == 16
assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 64
# base model weights should be the same as the initial model
assert torch.allclose(
model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
)
def test_olora_conversion_same_output_after_loading_with_alpha_pattern(self, data, tmp_path):
# same as above, but using alpha_pattern
model = self.get_model()
output_base = model(data)[0]
# use alpha_pattern here; note that since there is only a single linear layer, lora_alpha is completely
# overridden
config = LoraConfig(init_lora_weights="olora", target_modules=["linear"], alpha_pattern={"linear": 5})
peft_model = get_peft_model(deepcopy(model), config)
# save the initial model
peft_model.save_pretrained(tmp_path / "init-model")
# modify the weights, or else the adapter performs an identity transformation
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
output_olora = peft_model(data)[0]
# sanity check
tol = 1e-06
assert not torch.allclose(output_base, output_olora, atol=tol, rtol=tol)
# save the model normally
peft_model.save_pretrained(tmp_path / "olora-model")
model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "olora-model")
output_loaded = model_loaded(data)[0]
assert torch.allclose(output_olora, output_loaded, atol=tol, rtol=tol)
# sanity check: ranks should still be 8 as initially
assert model_loaded.peft_config["default"].r == 8
assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 8
assert model_loaded.base_model.model.linear.scaling["default"] == 5 / 8
# sanity check: the base model weights were indeed changed
assert not torch.allclose(
model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
)
# save the model with conversion
peft_model.save_pretrained(
tmp_path / "olora-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
)
model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "olora-model-converted")
output_converted = model_converted(data)[0]
assert torch.allclose(output_olora, output_converted, atol=tol, rtol=tol)
# rank should be double of what it was initially
assert model_converted.peft_config["default"].r == 16
assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 16
assert model_converted.base_model.model.linear.scaling["default"] == 10 / 16
# base model weights should be the same as the initial model
assert torch.allclose(
model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
)
def test_olora_conversion_same_output_after_loading_with_rslora(self, data, tmp_path):
# same as above, but using alpha_pattern
model = self.get_model()
output_base = model(data)[0]
config = LoraConfig(init_lora_weights="olora", target_modules=["linear"], r=8, use_rslora=True)
peft_model = get_peft_model(deepcopy(model), config)
# save the initial model
peft_model.save_pretrained(tmp_path / "init-model")
# modify the weights, or else the adapter performs an identity transformation
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
output_olora = peft_model(data)[0]
# sanity check
tol = 1e-06
assert not torch.allclose(output_base, output_olora, atol=tol, rtol=tol)
# save the model normally
peft_model.save_pretrained(tmp_path / "olora-model")
model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "olora-model")
output_loaded = model_loaded(data)[0]
assert torch.allclose(output_olora, output_loaded, atol=tol, rtol=tol)
# sanity check: ranks should still be 8 as initially
assert model_loaded.peft_config["default"].r == 8
assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 8
assert model_loaded.base_model.model.linear.scaling["default"] == 8 / (8**0.5)
# sanity check: the base model weights were indeed changed
assert not torch.allclose(
model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
)
# save the model with conversion
peft_model.save_pretrained(
tmp_path / "olora-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
)
model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "olora-model-converted")
output_converted = model_converted(data)[0]
assert torch.allclose(output_olora, output_converted, atol=tol, rtol=tol)
# rank should be double of what it was initially
assert model_converted.peft_config["default"].r == 16
assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 16
# same scale as before with a little bit of floating point imprecision
assert model_converted.base_model.model.linear.scaling["default"] == pytest.approx(8 / (8**0.5))
# base model weights should be the same as the initial model
assert torch.allclose(
model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
)
def test_olora_rank_pattern_and_rslora_raises(self, tmp_path):
# it's not possible to determine the correct scale when using rslora with rank or alpha pattern, because the
# scale is not stored in the state_dict
model = self.get_model()
config = LoraConfig(
init_lora_weights="olora", target_modules=["linear"], r=8, rank_pattern={"linear": 2}, use_rslora=True
)
peft_model = get_peft_model(model, config)
peft_model.save_pretrained(tmp_path / "init-model")
msg = re.escape("Passing `path_initial_model_for_weight_conversion` to `save_pretrained`")
with pytest.raises(ValueError, match=msg):
peft_model.save_pretrained(
tmp_path / "olora-model", path_initial_model_for_weight_conversion=tmp_path / "init-model"
)
def test_olora_alpha_pattern_and_rslora_raises(self, tmp_path):
# it's not possible to determine the correct scale when using rslora with rank or alpha pattern, because the
# scale is not stored in the state_dict
model = self.get_model()
config = LoraConfig(
init_lora_weights="olora", target_modules=["linear"], r=8, alpha_pattern={"linear": 2}, use_rslora=True
)
peft_model = get_peft_model(model, config)
peft_model.save_pretrained(tmp_path / "init-model")
msg = re.escape("Passing `path_initial_model_for_weight_conversion` to `save_pretrained`")
with pytest.raises(ValueError, match=msg):
peft_model.save_pretrained(
tmp_path / "olora-model", path_initial_model_for_weight_conversion=tmp_path / "init-model"
)
@pytest.mark.parametrize(
"config_kwargs, should_warn",
[
# no warning
({"init_lora_weights": "pissa", "target_modules": ["linear"]}, False),
({"init_lora_weights": "pissa_niter_3", "target_modules": ["linear"]}, False),
({"init_lora_weights": "olora", "target_modules": ["linear"]}, False),
({"init_lora_weights": "pissa", "target_modules": ["linear"], "use_rslora": True}, False),
({"init_lora_weights": "pissa_niter_3", "target_modules": ["linear"], "use_rslora": True}, False),
({"init_lora_weights": "olora", "target_modules": ["linear"], "use_rslora": True}, False),
({"init_lora_weights": "pissa", "target_modules": ["linear"], "rank_pattern": {"linear": 8}}, False),
(
{"init_lora_weights": "pissa_niter_3", "target_modules": ["linear"], "rank_pattern": {"linear": 8}},
False,
),
({"init_lora_weights": "olora", "target_modules": ["linear"], "rank_pattern": {"linear": 8}}, False),
({"init_lora_weights": "pissa", "target_modules": ["linear"], "alpha_pattern": {"linear": 8}}, False),
(
{"init_lora_weights": "pissa_niter_3", "target_modules": ["linear"], "alpha_pattern": {"linear": 8}},
False,
),
({"init_lora_weights": "olora", "target_modules": ["linear"], "alpha_pattern": {"linear": 8}}, False),
# warning
(
{
"init_lora_weights": "pissa",
"target_modules": ["linear"],
"use_rslora": True,
"rank_pattern": {"linear": 8},
},
True,
),
(
{
"init_lora_weights": "pissa_niter_3",
"target_modules": ["linear"],
"use_rslora": True,
"rank_pattern": {"linear": 8},
},
True,
),
(
{
"init_lora_weights": "olora",
"target_modules": ["linear"],
"use_rslora": True,
"rank_pattern": {"linear": 8},
},
True,
),
(
{
"init_lora_weights": "pissa",
"target_modules": ["linear"],
"use_rslora": True,
"alpha_pattern": {"linear": 8},
},
True,
),
(
{
"init_lora_weights": "pissa_niter_3",
"target_modules": ["linear"],
"use_rslora": True,
"alpha_pattern": {"linear": 8},
},
True,
),
(
{
"init_lora_weights": "olora",
"target_modules": ["linear"],
"use_rslora": True,
"alpha_pattern": {"linear": 8},
},
True,
),
(
{
"init_lora_weights": "pissa",
"target_modules": ["linear"],
"use_rslora": True,
"rank_pattern": {"linear": 8},
"alpha_pattern": {"linear": 8},
},
True,
),
(
{
"init_lora_weights": "pissa_niter_3",
"target_modules": ["linear"],
"use_rslora": True,
"rank_pattern": {"linear": 8},
"alpha_pattern": {"linear": 8},
},
True,
),
(
{
"init_lora_weights": "olora",
"target_modules": ["linear"],
"use_rslora": True,
"rank_pattern": {"linear": 8},
"alpha_pattern": {"linear": 8},
},
True,
),
],
)
def test_lora_config_pissa_olora_warns(self, config_kwargs, should_warn, recwarn):
# Using post training conversion of modified base weights to restore their initial values (PiSSA, OLoRA) cannot
# be correctly done when using rslora + rank_pattern/alpha_pattern. We can't really know if the user intends
# this when they'll eventually call save_pretrained (i.e. if they'll pass
# path_initial_model_for_weight_conversionl). Therefore, we only warn but don't raise an error here.
msg = re.escape("Using Rank-Stabilized LoRA with rank_pattern/alpha_pattern and post-training conversion")
if should_warn:
LoraConfig(**config_kwargs)
assert len(recwarn.list) == 1
with pytest.warns(UserWarning, match=msg):
LoraConfig(**config_kwargs)
else:
LoraConfig(**config_kwargs)
assert not recwarn.list
@pytest.mark.parametrize("init_method", ["pissa", "olora"])
@pytest.mark.parametrize("pissa_olora_loaded_first", [False, True])
def test_load_pissa_olora_with_other_adapter_warns(self, init_method, pissa_olora_loaded_first, recwarn, tmp_path):
# Since PiSSA/OLoRA modifies the base weights, it should not be combined with other adapters. Check for a
# warning. See #2184.
# create an adapter without PiSSA/OloRA
model_id = "hf-internal-testing/tiny-random-OPTForCausalLM"
model = AutoModelForCausalLM.from_pretrained(model_id)
model = get_peft_model(model, LoraConfig(init_lora_weights=True))
model.save_pretrained(tmp_path / "adapter0")
del model
# create a model with PiSSA/OLoRA
model = AutoModelForCausalLM.from_pretrained(model_id)
model = get_peft_model(model, LoraConfig(init_lora_weights=init_method))
model.save_pretrained(tmp_path / "adapter1")
del model
# load the model
if pissa_olora_loaded_first:
path0, path1 = tmp_path / "adapter1", tmp_path / "adapter0"
else:
path0, path1 = tmp_path / "adapter0", tmp_path / "adapter1"
model = AutoModelForCausalLM.from_pretrained(model_id)
model = PeftModel.from_pretrained(model, path0)
model = model.load_adapter(path1, adapter_name="other")
if init_method == "pissa":
msg = "PiSSA changes the base weights of the model and should thus not be used with other adapters"
else:
msg = "OLoRA changes the base weights of the model and should thus not be used with other adapters"
assert any(str(w.message).startswith(msg) for w in recwarn.list)
def test_lora_rslora_scaling(self):
# default is True
torch.manual_seed(0)
model = self.get_model()
# check scaling factor use_rslora=True
config = LoraConfig(target_modules=["linear", "embed", "conv2d"], lora_alpha=3, r=16, use_rslora=True)
model = get_peft_model(model, config)
expected_scaling = config.lora_alpha / (config.r**0.5)
assert model.linear.scaling["default"] == expected_scaling
assert model.embed.scaling["default"] == expected_scaling
assert model.conv2d.scaling["default"] == expected_scaling
def test_lora_default_scaling_pattern(self):
# default is True
torch.manual_seed(0)
model = self.get_model()
# check scaling factor use_rslora=False with rank and alpha pattern
config = LoraConfig(
target_modules=["linear", "embed", "conv2d"],
rank_pattern={"embed": 9, "conv2d": 16},
alpha_pattern={"linear": 11, "conv2d": 13},
lora_alpha=17,
r=25,
use_rslora=False,
)
model = get_peft_model(model, config)
expected_scaling = {
"linear": config.alpha_pattern["linear"] / config.r,
"embed": config.lora_alpha / config.rank_pattern["embed"],
"conv2d": config.alpha_pattern["conv2d"] / config.rank_pattern["conv2d"],
}
assert model.linear.scaling["default"] == expected_scaling["linear"]
assert model.embed.scaling["default"] == expected_scaling["embed"]
assert model.conv2d.scaling["default"] == expected_scaling["conv2d"]
def test_lora_rslora_scaling_pattern(self):
# default is True
torch.manual_seed(0)
model = self.get_model()
# check scaling factor use_rslora=True with rank and alpha pattern
config = LoraConfig(
target_modules=["linear", "embed", "conv2d"],
rank_pattern={"embed": 9, "conv2d": 16},
alpha_pattern={"linear": 11, "conv2d": 13},
lora_alpha=17,
r=25,
use_rslora=True,
)
model = get_peft_model(model, config)
expected_scaling = {
"linear": config.alpha_pattern["linear"] / (config.r**0.5),
"embed": config.lora_alpha / (config.rank_pattern["embed"] ** 0.5),
"conv2d": config.alpha_pattern["conv2d"] / (config.rank_pattern["conv2d"] ** 0.5),
}
assert model.linear.scaling["default"] == expected_scaling["linear"]
assert model.embed.scaling["default"] == expected_scaling["embed"]
assert model.conv2d.scaling["default"] == expected_scaling["conv2d"]
def test_modules_to_save_targets_lora_layer_raises(self):
# There is no good reason to have auxiliary modules to target a LoRA layer. As auxiliary modules are applied
# *after* BaseTunerLayers, a possible way for this to happen accidentally is if the
# modules_to_save/trainable_token_indices coincide with the adapter name, e.g. if the adapter name is "foobar",
# we can have a module named model.base_model.model.self_attn.lora_A.foobar. If
# modules_to_save/trainable_token_indices is also "foobar", there would be a match.
# Note: Theoretically, a lot more PEFT methods support modules_to_save, so would have to be tested, but the code
# path is the same for all of them, so only testing LoRA.
model = self.get_model()
config = LoraConfig(
target_modules=["linear"],
modules_to_save=["foobar"],
)
msg = (
"You are trying to target a module with <class 'peft.utils.other.ModulesToSaveWrapper'> that is a child of "
"<class 'peft.tuners.lora.layer.Linear'>. This is almost certainly not the intended behavior. Please "
"ensure that the adapter name, 'foobar', does not conflict with any of the targeted modules."
)
with pytest.raises(ValueError, match=msg):
get_peft_model(model, config, adapter_name="foobar")
def test_trainable_token_indices_targets_lora_layer_raises(self):
# Same test as test_modules_to_save_targets_lora_layer_raises, but using trainable_token_indices
model = self.get_model()
# check scaling factor use_rslora=True with rank and alpha pattern
config = LoraConfig(target_modules=["embed"], trainable_token_indices={"foobar": [1, 2, 3]})
msg = (
"You are trying to target a module with <class 'peft.utils.other.TrainableTokensWrapper'> that is a child "
"of <class 'peft.tuners.lora.layer.Embedding'>. This is almost certainly not the intended behavior. Please "
"ensure that the adapter name, 'foobar', does not conflict with any of the targeted modules."
)
with pytest.raises(ValueError, match=msg):
get_peft_model(model, config, adapter_name="foobar")
@require_deterministic_for_xpu
def test_lora_use_dora_linear(self, data):
# check that dora is a no-op when initialized
torch.manual_seed(0)
model = self.get_model()
output_base, _, _ = model(data)
# check scaling factor use_rslora=True
config = LoraConfig(target_modules=["linear"], use_dora=True)
model = get_peft_model(model, config)
with model.disable_adapter():
output_disabled, _, _ = model(data)
output_dora, _, _ = model(data)
assert torch.allclose(output_base, output_disabled)
assert torch.allclose(output_base, output_dora)
@require_deterministic_for_xpu
def test_lora_use_dora_linear_init_false(self, data):
# with init_lora_weights=False, dora should not be a no-op
torch.manual_seed(0)
model = self.get_model()
output_base, _, _ = model(data)
# check scaling factor use_rslora=True
config = LoraConfig(target_modules=["linear"], use_dora=True, init_lora_weights=False)
model = get_peft_model(model, config)
with model.disable_adapter():
output_disabled, _, _ = model(data)
output_dora, _, _ = model(data)
assert torch.allclose(output_base, output_disabled)
assert not torch.allclose(output_base, output_dora)
def test_lora_use_dora_with_megatron_core_raises(self):
megatron_config = {"does-not": "matter-here"}
with pytest.raises(ValueError, match="DoRA does not support megatron_core"):
LoraConfig(target_modules=["linear"], use_dora=True, megatron_config=megatron_config)
@pytest.fixture
def mha_cls(self):
class ModelMha(nn.Module):
def __init__(self, kdim=None, vdim=None):
super().__init__()
self.mha = nn.MultiheadAttention(10, 2, kdim=kdim, vdim=vdim)
self.lin0 = nn.Linear(10, 2)
self.sm = nn.LogSoftmax(dim=-1)
def forward(self, X):
X = X.float()
X, _ = self.mha(X, X, X)
X = self.lin0(X)
X = self.sm(X)
return X
return ModelMha
def test_mha_load_init_model_first(self, mha_cls):
# This test used to fail and require a workaround, for more context, see:
# https://github.com/huggingface/peft/pull/1324#issuecomment-2252473980
# The workaround was that _restore_weights had to be called manually on lora.MHA layers in order to make loading
# the state dict work. With recent changes, this workaround is no longer required, so that test has been
# deleted.
inputs = torch.rand(10, 10, 10)
model = mha_cls()
config = LoraConfig(target_modules=["mha"], init_lora_weights=False)
model = get_peft_model(model, config).eval()
restore_state_dict = {k: v.detach().cpu() for k, v in model.state_dict().items()}
del model
model = mha_cls()
model = get_peft_model(model, config)
# the workaround used to be:
# for module in model.modules():
# if isinstance(module, peft.tuners.lora.layer.MultiheadAttention):
# module._restore_weights()
model(inputs)
model.load_state_dict(restore_state_dict)
def test_mha_with_separate_qkv_embed_raises(self, mha_cls):
# passing different kdim and vdim results in separate parameters for q, k, v, which is not supported (yet)
model = mha_cls(kdim=20, vdim=30)
config = LoraConfig(target_modules=["mha"])
msg = "Only same embed for query/key/value is supported as of now for MultiheadAttention"
with pytest.raises(ValueError, match=msg):
get_peft_model(model, config)
def test_mha_with_dora_raises(self, mha_cls):
model = mha_cls()
config = LoraConfig(target_modules=["mha"], use_dora=True)
msg = re.escape("MultiheadAttention does not support DoRA (yet), please set use_dora to False")
with pytest.raises(ValueError, match=msg):
get_peft_model(model, config)
def test_mha_exposes_attributes(self, mha_cls):
# MHA requires a bunch of attributes to be exposed, try to check them exhaustively here
model = mha_cls()
embed_dim = model.mha.embed_dim
kdim = model.mha.kdim
vdim = model.mha.vdim
qkv_same_embed_dim = model.mha._qkv_same_embed_dim
num_heads = model.mha.num_heads
dropout = model.mha.dropout
batch_first = model.mha.batch_first
head_dim = model.mha.head_dim
in_proj_weight = model.mha.in_proj_weight
in_proj_bias = model.mha.in_proj_bias
out_proj = model.mha.out_proj
bias_k = model.mha.bias_k
bias_v = model.mha.bias_v
add_zero_attn = model.mha.add_zero_attn
config = LoraConfig(target_modules=["mha"])
peft_model = get_peft_model(model, config)
assert peft_model.base_model.mha.embed_dim == embed_dim
assert peft_model.base_model.mha.kdim == kdim
assert peft_model.base_model.mha.vdim == vdim
assert peft_model.base_model.mha._qkv_same_embed_dim == qkv_same_embed_dim
assert peft_model.base_model.mha.num_heads == num_heads
assert peft_model.base_model.mha.dropout == dropout
assert peft_model.base_model.mha.batch_first == batch_first
assert peft_model.base_model.mha.head_dim == head_dim
if in_proj_weight is not None:
assert torch.allclose(peft_model.base_model.mha.in_proj_weight, in_proj_weight)
else:
assert peft_model.base_model.mha.in_proj_weight is None
if in_proj_bias is not None:
assert torch.allclose(peft_model.base_model.mha.in_proj_bias, in_proj_bias)
else:
assert peft_model.base_model.mha.in_proj_bias is None
assert peft_model.base_model.mha.out_proj is out_proj
if bias_k is not None:
assert torch.allclose(peft_model.base_model.mha.bias_k, bias_k)
else:
assert peft_model.base_model.mha.bias_k is None
if bias_v is not None:
assert torch.allclose(peft_model.base_model.mha.bias_v, bias_v)
else:
assert peft_model.base_model.mha.bias_v is None
assert peft_model.base_model.mha.add_zero_attn == add_zero_attn
def test_mha_merge_masks_method(self, mha_cls):
# MHA requires a merge_masks method to be exposed, check that it works
model = mha_cls()
config = LoraConfig(target_modules=["mha"])
peft_model = get_peft_model(model, config)
attn_mask = torch.randint(0, 2, (10, 10))
key_padding_mask = torch.randint(0, 2, (10, 10))
query = torch.rand(10, 10, 10)
merged_mask0, mask_type0 = model.mha.merge_masks(attn_mask, key_padding_mask, query)
merged_mask1, mask_type1 = peft_model.base_model.mha.merge_masks(attn_mask, key_padding_mask, query)
assert torch.allclose(merged_mask0, merged_mask1)
assert mask_type0 == mask_type1
@pytest.mark.parametrize("bias", ["none", "all", "lora_only", "invalid"])
def test_lora_with_bias_argument(self, bias):
model = self.get_model()
config = LoraConfig(target_modules=["linear", "conv2d"], bias=bias)
if bias == "invalid":
with pytest.raises(NotImplementedError):
get_peft_model(model, config)
return
model = get_peft_model(model, config) # does not raise
for name, param in model.named_parameters():
if not name.endswith("bias"):
continue
if bias == "none":
assert param.requires_grad is False
elif bias == "all":
assert param.requires_grad is True
elif bias == "lora_only":
# only layers targeted with target_modules
assert param.requires_grad is ("linear" in name) or ("conv2d" in name)
def test_lora_with_bias_extra_params(self):
# lora with lora_bias=True
model = self.get_model()
config = LoraConfig(target_modules=["linear", "conv2d"], lora_bias=False)
model_no_bias = get_peft_model(model, config)
model = self.get_model()
config = LoraConfig(target_modules=["linear", "conv2d"], lora_bias=True)
model_bias = get_peft_model(model, config)
# check that bias for LoRA B is set
assert model_no_bias.base_model.model.linear.lora_B["default"].bias is None
assert model_bias.base_model.model.linear.lora_B["default"].bias.shape == (1000,)
assert model_no_bias.base_model.model.conv2d.lora_B["default"].bias is None
assert model_bias.base_model.model.conv2d.lora_B["default"].bias.shape == (100,)
# check that the same params are present except for the extra bias term
params_no_bias = {name for name, _ in model_no_bias.named_parameters()}
params_bias = {name for name, _ in model_bias.named_parameters()}
extra_params = {
"base_model.model.linear.lora_B.default.bias",
"base_model.model.conv2d.lora_B.default.bias",
}
assert params_bias - params_no_bias == extra_params
assert params_no_bias.issubset(params_bias)
def test_lora_with_bias_embedding_raises(self):
# lora with lora_bias=True is not supported for embedding layers
model = self.get_model()
config = LoraConfig(target_modules=["embed"], lora_bias=True)
msg = "lora_bias=True is not supported for Embedding"
with pytest.raises(ValueError, match=msg):
get_peft_model(model, config)
@pytest.mark.parametrize(
"extra_kwargs",
[
{"use_dora": True},
{"init_lora_weights": "eva"},
{"init_lora_weights": "gaussian"},
{"init_lora_weights": "loftq", "loftq_config": LoftQConfig()},
{"init_lora_weights": "olora"},
{"init_lora_weights": "pissa"},
{"init_lora_weights": "pissa_niter_3"},
{"init_lora_weights": "orthogonal"},
],
)
def test_lora_with_bias_incompatible_arguments(self, extra_kwargs):
# some arguments don't work in conjunction with lora_bias and should raise
# just check the common chunk of the error message
msg = "The argument lora_bias=True is"
with pytest.raises(ValueError, match=msg):
LoraConfig(target_modules=["linear"], lora_bias=True, **extra_kwargs)
def test_lora_linear_with_bias_when_base_layer_has_no_bias_warns(self):
model = self.get_model(bias=False)
config = LoraConfig(target_modules=["linear"], lora_bias=True)
msg = re.escape("`lora_bias=True` was passed but the targeted layer of type Linear has no bias")
with pytest.warns(PeftWarning, match=msg):
get_peft_model(model, config)
def test_lora_conv2d_with_bias_when_base_layer_has_no_bias_warns(self):
model = self.get_model(bias=False)
config = LoraConfig(target_modules=["conv2d"], lora_bias=True)
msg = re.escape("`lora_bias=True` was passed but the targeted layer of type Conv2d has no bias")
with pytest.warns(PeftWarning, match=msg):
get_peft_model(model, config)
def test_lora_incompatible_mamba_modules(self):
# Ensure LoRA raises an error when applying to forbidden modules
# ('out_proj', 'conv1d') in Mamba-based architectures like Falcon-Mamba tiny.
model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-mamba-tiny-dev")
config = LoraConfig(
task_type="CAUSAL_LM",
target_modules=["out_proj", "conv1d"], # Forbidden modules for Mamba-based models
)
msg = "is incompatible with Mamba-based models"
with pytest.raises(ValueError, match=msg):
get_peft_model(model, config)
def get_model_conv2d_groups(self):
class ModelConv2DGroups(nn.Module):
"""For testing when groups argument is used in conv layer"""
def __init__(self):
super().__init__()
self.conv2d = nn.Conv2d(16, 32, 3, padding=1, groups=2)
self.relu = nn.ReLU()
self.flat = nn.Flatten()
self.lin0 = nn.Linear(12800, 2)
self.sm = nn.LogSoftmax(dim=-1)
self.dtype = torch.float
def forward(self, X):
# This is ignoring input since main usage is for checking raising of error when peft is applied
X = torch.arange(9 * 16 * 20 * 20).view([9, 16, 20, 20]).to(self.conv2d.weight.device)
X = X.to(self.dtype)
X = self.conv2d(X)
X = self.relu(X)
X = self.flat(X)
X = self.lin0(X)
X = self.sm(X)
return X
return ModelConv2DGroups().eval().to(self.torch_device)
@pytest.mark.parametrize(
"config_cls, config_kwargs",
[
pytest.param(LoraConfig, {"r": 8, "target_modules": ["conv2d"]}, id="lora with rank divisible by groups"),
pytest.param(LoraConfig, {"r": 2, "target_modules": ["conv2d"]}, id="lora with rank equal to groups"),
pytest.param(
LoraConfig, {"r": 1, "target_modules": ["conv2d"]}, id="lora with rank not divisible by groups"
),
pytest.param(
LoraConfig,
{"r": 8, "target_modules": ["conv2d"], "use_dora": True},
id="dora with rank divisible by groups",
),
pytest.param(
LoraConfig,
{"r": 2, "target_modules": ["conv2d"], "use_dora": True},
id="dora with rank equal to groups",
),
pytest.param(
LoraConfig,
{"r": 1, "target_modules": ["conv2d"], "use_dora": True},
id="dora with rank not divisible by groups",
),
],
)
def test_error_raised_if_rank_not_divisible_by_groups(self, config_cls, config_kwargs):
# This test checks if error is raised when rank is not divisible by groups for conv layer since
# currently, support is limited to conv layers where the rank is divisible by groups in lora and dora
base_model = self.get_model_conv2d_groups()
peft_config = config_cls(**config_kwargs)
r = config_kwargs["r"]
base_layer = base_model.conv2d
groups = base_layer.groups
if r % groups != 0:
with pytest.raises(
ValueError,
match=(
f"Targeting a {base_layer.__class__.__name__} with groups={base_layer.groups} and rank {r}. "
"Currently, support is limited to conv layers where the rank is divisible by groups. "
"Either choose a different rank or do not target this specific layer."
),
):
peft_model = get_peft_model(base_model, peft_config)
else:
# No error should be raised
peft_model = get_peft_model(base_model, peft_config)
def test_target_module_and_target_parameter_on_same_layer(self):
# When targeting an nn.Parameter with LoRA using target_parameters, ensure that this is not already another LoRA
# layer (i.e. avoid double wrapping).
class MyModule(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(10, 10)
base_model = MyModule()
config = LoraConfig(target_modules=["linear"], target_parameters=["linear.weight"])
msg = "Trying to wrap an `nn.Parameter` of layer 'linear' of type Linear, which is not a valid target."
with pytest.raises(ValueError, match=msg):
get_peft_model(base_model, config)
@pytest.mark.parametrize("target_parameters", [["linear"], ["foobar"], ["foobar.weight"], ["foo", "bar"]])
@pytest.mark.parametrize("target_modules", [None, [], ""])
def test_valid_no_target_module_nor_target_parameter_match_raises(self, target_parameters, target_modules):
model = self.get_model()
config = LoraConfig(target_modules=target_modules, target_parameters=target_parameters)
msg = re.escape(
"No `target_modules` passed but also no `target_parameters` found. Please check the values for "
"these arguments."
)
with pytest.raises(ValueError, match=msg):
get_peft_model(model, config)
def test_target_parameters_wrong_type_raises(self):
# Check that target_parameters being a string raises a useful error message -- this is an easy mistake to make
# because strings are allowed for target_modules
model = self.get_model()
msg = "`target_parameters` must be a list of strings or None."
with pytest.raises(TypeError, match=msg):
LoraConfig(target_parameters="linear.weight")
def test_valid_target_parameters_invalid_target_modules_warns(self):
model = self.get_model()
config = LoraConfig(target_modules=["foobar"], target_parameters=["linear.weight"])
msg = re.escape("target_modules={'foobar'} were set but no module was matched.")
with pytest.warns(RuntimeWarning, match=msg):
get_peft_model(model, config)
def test_valid_target_modules_invalid_target_parameters_warns(self):
model = self.get_model()
config = LoraConfig(target_modules=["linear"], target_parameters=["foobar.weight"])
msg = re.escape("target_parameters=['foobar.weight'] were set but no parameter was matched.")
with pytest.warns(RuntimeWarning, match=msg):
get_peft_model(model, config)
def test_adding_multiple_adapters_with_target_parameters_raises(self):
model = self.get_model()
config = LoraConfig(target_modules=[], target_parameters=["linear.weight"])
model = get_peft_model(model, config)
msg = re.escape("only one LoRA adapter per model with `target_parameters` is allowed")
with pytest.raises(ValueError, match=msg):
model.add_adapter(adapter_name="other", peft_config=config)
def test_loading_loading_adapters_with_target_parameters_raises(self, tmp_path):
model = self.get_model()
config = LoraConfig(target_modules=[], target_parameters=["linear.weight"])
model = get_peft_model(model, config)
model.save_pretrained(tmp_path)
model = self.get_model()
model = PeftModel.from_pretrained(model, tmp_path)
msg = re.escape("only one LoRA adapter per model with `target_parameters` is allowed")
with pytest.raises(ValueError, match=msg):
model.load_adapter(tmp_path, adapter_name="other")
def test_multiple_configs_with_bias_raises(self, tmp_path):
# There cannot be more than one config with bias != "none".
# Note: This would need to be tested for all PEFT methods that support the bias parameter, but as this method
# comes from BaseTuner, it's fine to only check LoRA.
model = self.get_model()
config0 = LoraConfig(target_modules=["linear"], bias="all")
model = get_peft_model(model, config0)
config1 = LoraConfig(target_modules=["linear"], bias="lora_only")
msg = "supports only 1 adapter with bias. When using multiple adapters"
with pytest.raises(ValueError, match=msg):
model.add_adapter("other", config1)
# the invalid peft config was not added
assert len(model.peft_config) == 1
# it's okay to add a config with bias="none" (the default)
config2 = LoraConfig(target_modules=["linear"], bias="none")
model.add_adapter("other", config2) # does not raise
class TestLokrInitialization:
torch_device = infer_device()
def get_model(self):
class MyModule(nn.Module):
def __init__(self):
super().__init__()
# Choose a large weight so that averages are close to expected values.
self.linear = nn.Linear(1000, 1000)
self.conv2d = nn.Conv2d(100, 100, 3)
def forward(self, x):
x_4d = x.flatten().reshape(1, 100, 10, 10)
return self.linear(x), self.conv2d(x_4d)
return MyModule().eval().to(self.torch_device)
@pytest.fixture
def data(self):
return torch.rand(10, 1000).to(self.torch_device)
@require_deterministic_for_xpu
def test_lokr_linear_init_default(self, data):
torch.manual_seed(0)
model = self.get_model()
output_before = model(data)[0]
config = LoKrConfig(target_modules=["linear"])
model = get_peft_model(model, config)
output_after = model(data)[0]
assert torch.allclose(output_before, output_after)
def test_lokr_linear_init_false(self, data):
torch.manual_seed(0)
model = self.get_model()
output_before = model(data)[0]
config = LoKrConfig(target_modules=["linear"], init_weights=False)
model = get_peft_model(model, config)
output_after = model(data)[0]
assert not torch.allclose(output_before, output_after)
@require_deterministic_for_xpu
def test_lokr_linear_init_lycoris(self, data):
torch.manual_seed(0)
model = self.get_model()
output_before = model(data)[0]
config = LoKrConfig(target_modules=["linear"], init_weights="lycoris")
model = get_peft_model(model, config)
output_after = model(data)[0]
assert torch.allclose(output_before, output_after)
def test_lokr_conv2d_init_default(self, data):
torch.manual_seed(0)
model = self.get_model()
output_before = model(data)[1]
config = LoKrConfig(target_modules=["conv2d"])
model = get_peft_model(model, config)
output_after = model(data)[1]
assert torch.allclose(output_before, output_after)
def test_lokr_conv2d_init_false(self, data):
torch.manual_seed(0)
model = self.get_model()
output_before = model(data)[1]
config = LoKrConfig(target_modules=["conv2d"], init_weights=False)
model = get_peft_model(model, config)
output_after = model(data)[1]
assert not torch.allclose(output_before, output_after)
def test_lokr_conv2d_init_lycoris(self, data):
torch.manual_seed(0)
model = self.get_model()
output_before = model(data)[1]
config = LoKrConfig(target_modules=["conv2d"], init_weights="lycoris")
model = get_peft_model(model, config)
output_after = model(data)[1]
assert torch.allclose(output_before, output_after)
class TestAdaLoraInitialization:
torch_device = infer_device()
def test_adalora_target_modules_set(self):
config = AdaLoraConfig(target_modules=["linear", "embed", "conv2d"], total_step=1)
assert config.target_modules == {"linear", "embed", "conv2d"}
def test_adalora_use_dora_raises(self):
with pytest.raises(ValueError, match="ADALORA does not support DoRA"):
AdaLoraConfig(use_dora=True, total_step=1)
def test_adalora_loftq_config_raises(self):
with pytest.raises(ValueError, match="ADALORA does not support LOFTQ"):
AdaLoraConfig(init_lora_weights="loftq", loftq_config={"loftq": "config"}, total_step=1)
def get_model(self):
class MyModule(nn.Module):
def __init__(self):
super().__init__()
# choose a large weight so that averages are close to expected values
self.linear = nn.Linear(1000, 1000)
def forward(self, x):
return self.linear(x)
return MyModule().eval().to(self.torch_device)
@pytest.fixture
def data(self):
return torch.rand(10, 1000).to(self.torch_device)
@require_deterministic_for_xpu
def test_adalora_default_init_identity(self, data):
# default is True
torch.manual_seed(0)
model = self.get_model()
output_before = model(data)
config = AdaLoraConfig(target_modules=["linear"], total_step=1)
model = get_peft_model(model, config)
output_after = model(data)
assert torch.allclose(output_before, output_after)
class TestPromptTuningInitialization:
torch_device = infer_device()
def get_model(self):
class MyModule(nn.Module):
def __init__(self):
super().__init__()
# choose a large weight so that averages are close to expected values
self.linear = nn.Linear(1000, 1000)
self.embed = nn.Embedding(1000, 1000)
self.conv2d = nn.Conv2d(100, 100, 3)
def forward(self, x):
x_int = (100 * x).int()
x_4d = x.flatten().reshape(1, 100, 10, 10)
return self.linear(x), self.embed(x_int), self.conv2d(x_4d)
return MyModule().eval().to(self.torch_device)
def test_use_prompt_tuning_init_text_raises(self):
with pytest.raises(ValueError, match="When prompt_tuning_init='TEXT', tokenizer_name_or_path can't be None"):
PromptTuningConfig(prompt_tuning_init="TEXT", prompt_tuning_init_text="prompt tuning init text")
with pytest.raises(ValueError, match="When prompt_tuning_init='TEXT', prompt_tuning_init_text can't be None"):
PromptTuningConfig(prompt_tuning_init="TEXT", tokenizer_name_or_path="t5-base")
class TestVeraInitialization:
torch_device = infer_device()
def get_model(self):
class MLP(nn.Module):
def __init__(self, bias=True):
super().__init__()
self.lin0 = nn.Linear(10, 20, bias=bias)
self.lin1 = nn.Linear(20, 2, bias=bias)
def forward(self, X):
X = self.lin0(X)
X = self.lin1(X)
return X
return MLP().to(self.torch_device)
def test_vera_mixing_save_projection_raises(self):
# it is unclear what the right thing to do would be if some adapters save the projection weights and some don't
# so we better raise an error
config0 = VeraConfig(target_modules=["lin0"], init_weights=False, save_projection=True)
model = self.get_model()
model = get_peft_model(model, config0)
config1 = VeraConfig(target_modules=["lin0"], init_weights=False, save_projection=False)
msg = re.escape(
"VeRA projection weights must be saved for all adapters or none, but got multiple different values: "
"[False, True]"
)
with pytest.raises(ValueError, match=msg):
model.add_adapter("other", config1)
def test_vera_add_second_adapter_with_incompatible_input_shape(self):
config0 = VeraConfig(target_modules=["lin0"], r=8)
config1 = VeraConfig(target_modules=["lin1"])
base_model = self.get_model()
lin0_in_feat = base_model.lin0.in_features
lin1_in_feat = base_model.lin1.in_features
model = get_peft_model(base_model, config0)
# not full message but enough to identify the error
msg = f"vera_A has a size of {lin0_in_feat} but {lin1_in_feat} or greater is required"
with pytest.raises(ValueError, match=msg):
model.add_adapter("other", config1)
def test_vera_add_second_adapter_with_higher_rank(self):
rank0 = 123
rank1 = 456
config0 = VeraConfig(target_modules=["lin0"], r=rank0)
# second adapter has higher rank
config1 = VeraConfig(target_modules=["lin0"], r=rank1)
model = get_peft_model(self.get_model(), config0)
# not full message but enough to identify the error
msg = f"vera_A has a size of {rank0} but {rank1} or greater is required"
with pytest.raises(ValueError, match=msg):
model.add_adapter("other", config1)
class TestVBLoraInitialization:
torch_device = infer_device()
def get_model(self):
class MLP(nn.Module):
def __init__(self, bias=True):
super().__init__()
self.lin0 = nn.Linear(10, 30, bias=bias)
self.lin1 = nn.Linear(30, 2, bias=bias)
def forward(self, X):
X = self.lin0(X)
X = self.lin1(X)
return X
return MLP().to(self.torch_device)
def test_vblora_with_incompatible_vector_length_with_in_features(self):
vector_length = 3
model = self.get_model()
config = VBLoRAConfig(target_modules=["lin0"], vector_length=vector_length)
msg = f"`in_features` {model.lin0.in_features} must be divisible by `vector_length` {vector_length}"
with pytest.raises(ValueError, match=msg):
get_peft_model(model, config)
def test_vblora_with_incompatible_vector_length_with_out_features(self):
vector_length = 3
model = self.get_model()
config = VBLoRAConfig(target_modules=["lin1"], vector_length=vector_length)
msg = f"`out_features` {model.lin1.out_features} must be divisible by `vector_length` {vector_length}"
with pytest.raises(ValueError, match=msg):
get_peft_model(model, config)
class TestC3AInitialization:
torch_device = infer_device()
def get_model(self):
class MLP(nn.Module):
def __init__(self, bias=True):
super().__init__()
self.lin0 = nn.Linear(10, 30, bias=bias)
self.lin1 = nn.Linear(30, 2, bias=bias)
def forward(self, X):
X = self.lin0(X)
X = self.lin1(X)
return X
return MLP().to(self.torch_device)
def test_c3a_with_incompatible_block_size_with_in_features(self):
block_size = 3
model = self.get_model()
config = C3AConfig(target_modules=["lin0"], block_size=block_size)
msg = f"The block size should be a factor of the input size. However, the input size is {model.lin0.in_features} and the block size is {block_size}"
with pytest.raises(ValueError, match=msg):
get_peft_model(model, config)
def test_c3a_with_incompatible_block_size_with_out_features(self):
block_size = 3
model = self.get_model()
config = C3AConfig(target_modules=["lin1"], block_size=block_size)
msg = f"The block size should be a factor of the output size. However, the output size is {model.lin1.out_features} and the block size is {block_size}"
with pytest.raises(ValueError, match=msg):
get_peft_model(model, config)
class TestWaveFTInitialization:
"""Test class to check the initialization of WaveFT adapters."""
torch_device = infer_device()
def get_model(self):
class MyModule(nn.Module):
def __init__(self):
super().__init__()
# Choose a large weight so that averages are close to expected values.
self.linear = nn.Linear(1000, 1000)
self.conv2d = nn.Conv2d(100, 100, 3)
def forward(self, x):
x_4d = x.flatten().reshape(1, 100, 10, 10)
return self.linear(x), self.conv2d(x_4d)
return MyModule().eval().to(self.torch_device)
@pytest.fixture
def data(self):
return torch.rand(10, 1000).to(self.torch_device)
@require_deterministic_for_xpu
def test_waveft_linear_init_default(self, data):
# Default initialization should result in no change to output (zeros initialization)
torch.manual_seed(0)
model = self.get_model()
output_before = model(data)[0]
config = WaveFTConfig(target_modules=["linear"], n_frequency=100, init_weights=True)
model = get_peft_model(model, config)
output_after = model(data)[0]
assert torch.allclose(output_before, output_after, atol=1e-6)
def test_waveft_linear_init_false(self, data):
# With init_weights=False, output should change (random initialization)
torch.manual_seed(0)
model = self.get_model()
output_before = model(data)[0]
config = WaveFTConfig(target_modules=["linear"], n_frequency=100, init_weights=False)
model = get_peft_model(model, config)
output_after = model(data)[0]
assert not torch.allclose(output_before, output_after, atol=1e-6)
@require_deterministic_for_xpu
def test_waveft_linear_with_scaling(self, data):
# Test that scaling parameter affects output correctly
torch.manual_seed(0)
model = self.get_model()
output_before = model(data)[0]
config = WaveFTConfig(target_modules=["linear"], n_frequency=100, init_weights=False, scaling=10.0)
model = get_peft_model(model, config)
output_after = model(data)[0]
assert not torch.allclose(output_before, output_after, atol=1e-6)
@require_deterministic_for_xpu
def test_waveft_different_wavelet_families(self, data):
# Test different wavelet families
torch.manual_seed(0)
model1 = self.get_model()
config1 = WaveFTConfig(target_modules=["linear"], n_frequency=100, wavelet_family="db1", init_weights=False)
model1 = get_peft_model(model1, config1)
output1 = model1(data)[0]
torch.manual_seed(0)
model2 = self.get_model()
config2 = WaveFTConfig(target_modules=["linear"], n_frequency=100, wavelet_family="sym2", init_weights=False)
model2 = get_peft_model(model2, config2)
output2 = model2(data)[0]
# Different wavelet families should produce different results
assert not torch.allclose(output1, output2, atol=1e-6)
@require_deterministic_for_xpu
def test_waveft_use_idwt_flag(self, data):
# Test use_idwt flag
torch.manual_seed(0)
model1 = self.get_model()
config1 = WaveFTConfig(target_modules=["linear"], n_frequency=100, use_idwt=True, init_weights=False)
model1 = get_peft_model(model1, config1)
output1 = model1(data)[0]
torch.manual_seed(0)
model2 = self.get_model()
config2 = WaveFTConfig(target_modules=["linear"], n_frequency=100, use_idwt=False, init_weights=False)
model2 = get_peft_model(model2, config2)
output2 = model2(data)[0]
# Different use_idwt settings should produce different results
assert not torch.allclose(output1, output2, atol=1e-6)
def test_waveft_non_positive_n_frequency_raises(self):
# Test that n_frequency <= 0 raises appropriate error
model = self.get_model()
# Test with n_frequency = 0
n_frequency = 0
msg = f"`n_frequency` should be a positive integer value but the value passed is {n_frequency}"
with pytest.raises(ValueError, match=re.escape(msg)):
config = WaveFTConfig(target_modules=["linear"], n_frequency=n_frequency)
get_peft_model(model, config)
# Test with negative n_frequency
n_frequency = -1
msg = f"`n_frequency` should be a positive integer value but the value passed is {n_frequency}"
with pytest.raises(ValueError, match=re.escape(msg)):
config = WaveFTConfig(target_modules=["linear"], n_frequency=n_frequency)
get_peft_model(model, config)
def test_waveft_excessive_n_frequency_raises(self):
# Test that n_frequency > in_features * out_features raises appropriate error
model = self.get_model()
# The model has a linear layer with 1000 in_features and 1000 out_features
# So the maximum n_frequency should be 1000 * 1000 = 1,000,000
max_allowed = 1000 * 1000
n_frequency = max_allowed + 1
msg = (
f"`n_frequency` should be less than or equal to the product of the input and output dimensions "
f"but the value passed is {n_frequency} and the product is {max_allowed}"
)
with pytest.raises(ValueError, match=re.escape(msg)):
config = WaveFTConfig(target_modules=["linear"], n_frequency=n_frequency)
get_peft_model(model, config)
def test_waveft_n_frequency_pattern(self, data):
# Test n_frequency_pattern functionality
torch.manual_seed(0)
model = self.get_model()
config = WaveFTConfig(
target_modules=["linear"], n_frequency=50, n_frequency_pattern={"linear": 100}, init_weights=True
)
model = get_peft_model(model, config)
# Check that the pattern was applied
waveft_layer = model.base_model.model.linear
assert hasattr(waveft_layer, "waveft_n_frequency")
assert waveft_layer.waveft_n_frequency["default"] == 100
def test_waveft_layers_pattern_without_layers_to_transform_raises(self):
# Test that when layers_pattern is specified, layers_to_transform must also be specified
msg = "When `layers_pattern` is specified, `layers_to_transform` must also be specified."
with pytest.raises(ValueError, match=re.escape(msg)):
WaveFTConfig(target_modules=["linear"], layers_pattern=["layers"], layers_to_transform=None)
def test_waveft_invalid_wavelet_family_raises(self):
# Test that invalid wavelet families raise appropriate errors
invalid_family = "invalid_wavelet"
msg = f"Wavelet family {invalid_family} not supported. Supported wavelet families are:"
with pytest.raises(ValueError, match=re.escape(msg)):
WaveFTConfig(target_modules=["linear"], wavelet_family=invalid_family)
class TestRoadInitialization:
torch_device = infer_device()
def get_model(self):
class MLP(nn.Module):
def __init__(self, bias=True):
super().__init__()
self.lin0 = nn.Linear(10, 30, bias=bias)
self.lin1 = nn.Linear(30, 2, bias=bias)
def forward(self, X):
X = self.lin0(X)
X = self.lin1(X)
return X
return MLP().to(self.torch_device)
def get_conv2d_model(self):
class MyModule(nn.Module):
def __init__(self):
super().__init__()
# choose a large weight so that averages are close to expected values
self.linear = nn.Linear(1000, 1000)
self.embed = nn.Embedding(1000, 1000)
self.conv2d = nn.Conv2d(100, 100, 3)
def forward(self, x):
x_int = (100 * x).int()
x_4d = x.flatten().reshape(1, 100, 10, 10)
return self.linear(x), self.embed(x_int), self.conv2d(x_4d)
return MyModule().eval().to(self.torch_device)
def test_road_default_initialization(self):
torch.manual_seed(0)
model = self.get_model()
config = RoadConfig(target_modules=["lin0"], group_size=2)
model = get_peft_model(model, config)
weight_alpha = model.lin0.road_alpha["default"].data
weight_theta = model.lin0.road_theta["default"].data
torch.allclose(weight_alpha, torch.ones_like(weight_alpha))
torch.allclose(weight_theta, torch.zeros_like(weight_theta))
def test_road_with_odd_group_size(self):
group_size = 3 # odd values are not allowed
msg = f"The group_size must be divisible by 2 when using RoadLayer, but got {group_size}."
with pytest.raises(ValueError, match=re.escape(msg)):
RoadConfig(group_size=group_size)
def test_road_with_too_large_group_size(self):
group_size = 64 # larger than out_features
msg = (
f"The out_features of the base layer must be divisible by group_size ({group_size}) when using RoadLayer."
)
model = self.get_model()
config = RoadConfig(target_modules=["lin0"], group_size=group_size)
with pytest.raises(ValueError, match=re.escape(msg)):
get_peft_model(model, config)
def test_road_with_incompatible_group_size_with_out_features(self):
group_size = 4 # even, but 30 does not divide by 4
model = self.get_model()
config = RoadConfig(target_modules=["lin0"], group_size=group_size)
msg = (
f"The out_features of the base layer must be divisible by group_size ({group_size}) when using RoadLayer."
)
with pytest.raises(ValueError, match=re.escape(msg)):
get_peft_model(model, config)
def test_road_with_conv2d_layer(self):
model = self.get_conv2d_model()
config = RoadConfig(target_modules=["conv2d"], group_size=2)
msg = "Target module Conv2d(100, 100, kernel_size=(3, 3), stride=(1, 1)) is not supported. Currently, only the following modules are supported: `torch.nn.Linear`."
with pytest.raises(ValueError, match=re.escape(msg)):
get_peft_model(model, config)
class TestNoInfiniteRecursionDeepspeed:
# see #1892 for details
classes = [
PeftModel,
PeftMixedModel,
PeftModelForSequenceClassification,
PeftModelForQuestionAnswering,
PeftModelForTokenClassification,
PeftModelForCausalLM,
PeftModelForSeq2SeqLM,
PeftModelForFeatureExtraction,
]
@pytest.fixture
def wrap_init(self):
# emulates the wrapper from DeepSpeed
import functools
def decorator(f):
@functools.wraps(f)
def wrapper(self, *args, **kwargs):
hasattr(self, "abc") # any hasattr will do
f(self, *args, **kwargs)
return wrapper
return decorator
@pytest.fixture
def model(self):
class MyModule(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(10, 10)
# to emulate LMs:
self.prepare_inputs_for_generation = None
self._prepare_encoder_decoder_kwargs_for_generation = None
return MyModule()
@pytest.mark.parametrize("cls", classes)
def test_no_infinite_recursion(self, cls, model, wrap_init):
original_init = cls.__init__
try:
cls.__init__ = wrap_init(cls.__init__)
# this would trigger an infinite loop before the fix in 1892
cls(model, LoraConfig(target_modules=["linear"]))
finally:
# ensure there are no side effects of this test
cls.__init__ = original_init
class TestLoadAdapterOfflineMode:
base_model = "hf-internal-testing/tiny-random-OPTForCausalLM"
peft_model_id = "peft-internal-testing/tiny-OPTForCausalLM-lora"
# make sure that PEFT honors offline mode
@contextmanager
def hub_offline_ctx(self):
# this is required to simulate offline mode, setting the env var dynamically inside the test does not work
# because the value is checked only once at the start of the session
if reset_sessions is None:
# this means we're using huggingface_hub >= 1.0.0, there is no need to call reset_sessions() anymore
with patch("huggingface_hub.constants.HF_HUB_OFFLINE", True):
yield
else:
# in huggingface_hub < 1.0.0, it's necessary to reset the session
# TODO: remove once huggingface_hub < 1.0.0 is no longer supported
with patch("huggingface_hub.constants.HF_HUB_OFFLINE", True):
reset_sessions()
yield
reset_sessions()
def test_load_from_hub_then_offline_model(self):
# this uses LoRA but it's the same mechanism for other methods
base_model = AutoModelForCausalLM.from_pretrained(self.base_model)
# first ensure that the adapter model has been downloaded
PeftModel.from_pretrained(base_model, self.peft_model_id)
del base_model
base_model = AutoModelForCausalLM.from_pretrained(self.base_model)
with self.hub_offline_ctx():
# does not raise
PeftModel.from_pretrained(base_model, self.peft_model_id)
@pytest.fixture
def changed_default_cache_dir(self, tmp_path, monkeypatch):
# ensure that this test does not interact with other tests that may use the HF cache
monkeypatch.setattr("huggingface_hub.constants.HF_HOME", tmp_path)
monkeypatch.setattr("huggingface_hub.constants.HF_HUB_CACHE", tmp_path / "hub")
monkeypatch.setattr("huggingface_hub.constants.HF_TOKEN_PATH", tmp_path / "token")
def load_checkpoints(self, cache_dir):
# download model and lora checkpoint to a specific cache dir
snapshot_download(self.base_model, cache_dir=cache_dir)
snapshot_download(self.peft_model_id, cache_dir=cache_dir)
def test_load_checkpoint_offline_non_default_cache_dir(self, changed_default_cache_dir, tmp_path):
# See #2373 for context
self.load_checkpoints(tmp_path)
with self.hub_offline_ctx():
base_model = AutoModelForCausalLM.from_pretrained(self.base_model, cache_dir=tmp_path)
PeftModel.from_pretrained(base_model, self.peft_model_id, cache_dir=tmp_path)
class TestCustomModelConfigWarning:
# Check potential warnings when the user provided base_model_name_or_path is overridden by PEFT. See #2001 for
# context. We use LoRA for this test but the same applies to other methods
@pytest.fixture
def custom_module(self):
class MyModule(nn.Module):
def __init__(self):
super().__init__()
self.lin = nn.Linear(10, 10)
return MyModule()
def test_no_warning_by_default_transformers_model(self, recwarn):
# first a sanity test that there is no warning by default when using a model from transformers
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-OPTForCausalLM")
get_peft_model(model, LoraConfig())
for warning in recwarn.list:
assert "renamed" not in str(warning.message)
def test_no_warning_by_default_custom_model(self, custom_module, recwarn):
# same as above but with a custom model
get_peft_model(custom_module, LoraConfig(target_modules=["lin"]))
for warning in recwarn.list:
assert "renamed" not in str(warning.message)
def test_warning_name_transformers_model(self, recwarn):
# The base_model_name_or_path provided by the user is overridden.
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-OPTForCausalLM")
custom_name = "custom_name"
get_peft_model(model, LoraConfig(base_model_name_or_path=custom_name))
msg = f"was renamed from '{custom_name}' to 'hf-internal-testing/tiny-random-OPTForCausalLM'"
assert any(msg in str(warning.message) for warning in recwarn.list)
def test_warning_name_custom_model(self, custom_module, recwarn):
custom_name = "custom_name"
get_peft_model(custom_module, LoraConfig(target_modules=["lin"], base_model_name_or_path=custom_name))
msg = f"was renamed from '{custom_name}' to 'None'"
assert any(msg in str(warning.message) for warning in recwarn.list)
def test_warning_name_custom_model_with_custom_name(self, custom_module, recwarn):
custom_name = "custom_name"
custom_module.name_or_path = "foobar"
get_peft_model(custom_module, LoraConfig(target_modules=["lin"], base_model_name_or_path=custom_name))
msg = f"was renamed from '{custom_name}' to 'foobar'"
assert any(msg in str(warning.message) for warning in recwarn.list)
class TestLowCpuMemUsage:
"""Test for the low CPU memory usage option for loading PEFT models.
Note that we have `test_load_model_low_cpu_mem_usage` in the custom model and stable diffusion tests. Those are
broad tests (i.e. testing all the supported PEFT methods) but not very deep (only testing if loading works and the
device is correctly set). The test class here goes deeper but only tests LoRA, as checking all PEFT methods would
be too much.
"""
# test on CPU and optionally on accelerator device
devices = ["cpu"]
_device = infer_device()
if _device != "cpu":
devices.append(_device)
model_id = "hf-internal-testing/tiny-random-OPTForCausalLM"
def get_model(self):
return AutoModelForCausalLM.from_pretrained(self.model_id)
@pytest.fixture(scope="class")
def lora_config(self):
return LoraConfig(init_lora_weights=False, target_modules="all-linear")
@pytest.fixture(scope="class")
def lora_path(self, tmp_path_factory, lora_config):
torch.manual_seed(0)
tmp_path = tmp_path_factory.mktemp("lora")
model = self.get_model()
model = get_peft_model(model, lora_config)
model.save_pretrained(tmp_path)
return tmp_path
@pytest.fixture(scope="class")
def inputs(self):
return {"input_ids": torch.randint(0, 100, (1, 10)), "attention_mask": torch.ones(1, 10)}
@pytest.mark.parametrize("device", devices)
def test_from_pretrained_low_cpu_mem_usage_works(self, device, inputs, lora_path):
model = self.get_model().to(device)
inputs = {k: v.to(device) for k, v in inputs.items()}
model = PeftModel.from_pretrained(model, lora_path, torch_device=device).eval()
device_set_not_low_cpu_mem = {p.device.type for p in model.parameters()}
logits_not_low_cpu_mem = model(**inputs).logits
del model
model = self.get_model().to(device)
model = PeftModel.from_pretrained(model, lora_path, low_cpu_mem_usage=True, torch_device=device).eval()
device_set_low_cpu_mem = {p.device.type for p in model.parameters()}
logits_low_cpu_mem = model(**inputs).logits
assert device_set_low_cpu_mem == device_set_not_low_cpu_mem
assert torch.allclose(logits_low_cpu_mem, logits_not_low_cpu_mem, atol=1e-6, rtol=1e-6)
@pytest.mark.parametrize("device", devices)
def test_load_adapter_low_cpu_mem_usage_works(self, device, inputs, lora_path, lora_config):
model = self.get_model().to(device)
inputs = {k: v.to(device) for k, v in inputs.items()}
torch.manual_seed(0)
model = get_peft_model(model, lora_config)
model.load_adapter(lora_path, adapter_name="other", torch_device=device)
model.set_adapter("other")
model.eval()
device_set_not_low_cpu_mem = {p.device.type for p in model.parameters()}
logits_not_low_cpu_mem = model(**inputs).logits
del model
model = self.get_model().to(device)
torch.manual_seed(0)
model = get_peft_model(model, lora_config)
model.load_adapter(lora_path, adapter_name="other", low_cpu_mem_usage=True, torch_device=device)
model.set_adapter("other")
model.eval()
device_set_low_cpu_mem = {p.device.type for p in model.parameters()}
logits_low_cpu_mem = model(**inputs).logits
assert device_set_low_cpu_mem == device_set_not_low_cpu_mem
assert torch.allclose(logits_low_cpu_mem, logits_not_low_cpu_mem, atol=1e-6, rtol=1e-6)
@pytest.mark.parametrize("device", devices)
def test_get_peft_model_low_cpu_mem_usage_works(self, device, inputs):
# when calling get_peft_model, the PEFT weights will not be initialized on device but remain on meta
model = self.get_model().to(device)
model = get_peft_model(model, LoraConfig(target_modules="all-linear"), low_cpu_mem_usage=True)
devices_lora_weights = {p.device for n, p in model.named_parameters() if "lora_" in n}
expected = {torch.device("meta")}
assert devices_lora_weights == expected
@pytest.mark.parametrize("device", devices)
def test_get_peft_model_with_task_type_low_cpu_mem_usage_works(self, device, inputs):
# same as the previous test, but pass the task_type argument
model = self.get_model().to(device)
model = get_peft_model(
model, LoraConfig(target_modules="all-linear", task_type="CAUSAL_LM"), low_cpu_mem_usage=True
)
devices_lora_weights = {p.device for n, p in model.named_parameters() if "lora_" in n}
expected = {torch.device("meta")}
assert devices_lora_weights == expected
@pytest.mark.parametrize("device", devices)
def test_inject_adapter_low_cpu_mem_usage_works(self, device, inputs, lora_path, lora_config):
# external libs like transformers and diffusers use inject_adapter_in_model, let's check that this also works
model = self.get_model().to(device)
inputs = {k: v.to(device) for k, v in inputs.items()}
torch.manual_seed(0)
model = get_peft_model(model, lora_config)
model.load_adapter(lora_path, adapter_name="other", torch_device=device)
model.set_adapter("other")
model.eval()
device_set_not_low_cpu_mem = {p.device.type for p in model.parameters()}
logits_not_low_cpu_mem = model(**inputs).logits
del model
torch.manual_seed(0)
model = self.get_model().to(device)
inject_adapter_in_model(lora_config, model, low_cpu_mem_usage=True)
device_set_before_loading = {p.device.type for p in model.parameters()}
# at this stage, lora weights are still on meta device
assert device_set_before_loading == {"meta", device}
state_dict = load_file(lora_path / "adapter_model.safetensors")
remapped_dict = {}
prefix = "base_model.model."
for key, val in state_dict.items():
new_key = key[len(prefix) :]
remapped_dict[new_key] = val.to(device)
errors = set_peft_model_state_dict(model, remapped_dict, low_cpu_mem_usage=True)
# sanity check: no unexpected keys
assert not errors.unexpected_keys
model.eval()
device_set_low_cpu_mem = {p.device.type for p in model.parameters()}
logits_low_cpu_mem = model(**inputs).logits
assert device_set_low_cpu_mem == device_set_not_low_cpu_mem
assert torch.allclose(logits_low_cpu_mem, logits_not_low_cpu_mem, atol=1e-6, rtol=1e-6)
############################
# tests for PeftMixedModel #
############################
@pytest.mark.parametrize("device", devices)
def test_mixed_model_from_pretrained_low_cpu_mem_usage_works(self, device, inputs, lora_path):
model = self.get_model().to(device)
inputs = {k: v.to(device) for k, v in inputs.items()}
model = PeftMixedModel.from_pretrained(model, lora_path, torch_device=device).eval()
device_set_not_low_cpu_mem = {p.device.type for p in model.parameters()}
logits_not_low_cpu_mem = model(**inputs).logits
del model
model = self.get_model().to(device)
model = PeftMixedModel.from_pretrained(model, lora_path, low_cpu_mem_usage=True, torch_device=device).eval()
device_set_low_cpu_mem = {p.device.type for p in model.parameters()}
logits_low_cpu_mem = model(**inputs).logits
assert device_set_low_cpu_mem == device_set_not_low_cpu_mem
assert torch.allclose(logits_low_cpu_mem, logits_not_low_cpu_mem, atol=1e-6, rtol=1e-6)
@pytest.mark.parametrize("device", devices)
def test_mixed_model_load_adapter_low_cpu_mem_usage_works(self, device, inputs, lora_path, lora_config):
model = self.get_model().to(device)
inputs = {k: v.to(device) for k, v in inputs.items()}
torch.manual_seed(0)
model = PeftModel.from_pretrained(model, lora_path)
model.load_adapter(lora_path, adapter_name="other", torch_device=device)
model.set_adapter("other")
model.eval()
device_set_not_low_cpu_mem = {p.device.type for p in model.parameters()}
logits_not_low_cpu_mem = model(**inputs).logits
del model
model = self.get_model().to(device)
torch.manual_seed(0)
model = PeftModel.from_pretrained(model, lora_path)
model.load_adapter(lora_path, adapter_name="other", low_cpu_mem_usage=True, torch_device=device)
model.set_adapter("other")
model.eval()
device_set_low_cpu_mem = {p.device.type for p in model.parameters()}
logits_low_cpu_mem = model(**inputs).logits
assert device_set_low_cpu_mem == device_set_not_low_cpu_mem
assert torch.allclose(logits_low_cpu_mem, logits_not_low_cpu_mem, atol=1e-6, rtol=1e-6)
def test_from_pretrained_missing_keys_warning(recwarn, tmp_path):
# For more context, see issue 2115
# When loading a PEFT adapter and we're missing a PEFT-specific weight, there should be a warning.
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-OPTForCausalLM")
config = LoraConfig()
model = get_peft_model(model, config)
state_dict = model.state_dict()
# first, sanity check that there are no warnings if no key is missing
model.save_pretrained(tmp_path)
del model
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-OPTForCausalLM")
model = PeftModel.from_pretrained(model, tmp_path)
msg = "Found missing adapter keys"
assert not any(msg in str(w.message) for w in recwarn.list)
# remove a key from the state_dict
missing_key = "base_model.model.model.decoder.layers.0.self_attn.v_proj.lora_A.default.weight"
def new_state_dict():
return {k: v for k, v in state_dict.items() if k != missing_key}
model.state_dict = new_state_dict
model.save_pretrained(tmp_path)
del model
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-OPTForCausalLM")
model = PeftModel.from_pretrained(model, tmp_path)
assert any(msg in str(w.message) for w in recwarn.list)
assert any(missing_key in str(w.message) for w in recwarn.list)
class TestNamingConflictWarning:
"""
Tests for warnings related to naming conflicts between adapter names and tuner prefixes. References: Issue 2252
"""
@pytest.fixture(autouse=True)
def setup(self):
self.peft_config = LoraConfig()
self.prefix = PEFT_TYPE_TO_PREFIX_MAPPING[self.peft_config.peft_type]
self.base_model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-OPTForCausalLM")
def _save_and_reload_model(self, model, adapter_name, tmp_path):
# Helper method to save and reload the PEFT model
model.save_pretrained(tmp_path, selected_adapters=[adapter_name])
del model
reloaded_base_model = AutoModelForCausalLM.from_pretrained(tmp_path / adapter_name)
return PeftModel.from_pretrained(reloaded_base_model, tmp_path / adapter_name)
def test_no_warning_without_naming_conflict_get_peft_model(self, recwarn):
# No warning should be raised when there is no naming conflict during get_peft_model.
non_conflict_adapter = "adapter"
_ = get_peft_model(self.base_model, self.peft_config, adapter_name=non_conflict_adapter)
expected_msg = f"Adapter name '{non_conflict_adapter}' should not be contained in the prefix '{self.prefix}'."
assert not any(expected_msg in str(w.message) for w in recwarn.list)
def test_no_warning_without_naming_conflict_add_adapter(self, recwarn):
# No warning should be raised when adding an adapter without naming conflict.
non_conflict_adapter = "adapter"
other_non_conflict_adapter = "other_adapter"
model = get_peft_model(self.base_model, self.peft_config, adapter_name=non_conflict_adapter)
_ = model.add_adapter(other_non_conflict_adapter, self.peft_config)
expected_msg = (
f"Adapter name '{other_non_conflict_adapter}' should not be contained in the prefix '{self.prefix}'."
)
assert not any(expected_msg in str(w.message) for w in recwarn.list)
def test_no_warning_without_naming_conflict_save_and_load(self, recwarn, tmp_path):
# No warning should be raised when saving and loading the model without naming conflict.
non_conflict_adapter = "adapter"
model = get_peft_model(self.base_model, self.peft_config, adapter_name=non_conflict_adapter)
_ = self._save_and_reload_model(model, non_conflict_adapter, tmp_path)
expected_msg = f"Adapter name '{non_conflict_adapter}' should not be contained in the prefix '{self.prefix}'."
assert not any(expected_msg in str(w.message) for w in recwarn.list)
def test_warning_naming_conflict_get_peft_model(self, recwarn):
# Warning is raised when the adapter name conflicts with the prefix in get_peft_model.
conflicting_adapter_name = self.prefix[:-1]
_ = get_peft_model(self.base_model, self.peft_config, adapter_name=conflicting_adapter_name)
expected_msg = (
f"Adapter name '{conflicting_adapter_name}' should not be contained in the prefix '{self.prefix}'."
)
assert any(expected_msg in str(w.message) for w in recwarn.list)
def test_warning_naming_conflict_add_adapter(self, recwarn):
# Warning is raised when adding an adapter with a name that conflicts with the prefix.
conflicting_adapter = self.prefix[1:]
non_conflict_adapter = "adapter"
model = get_peft_model(self.base_model, self.peft_config, adapter_name=non_conflict_adapter)
_ = model.add_adapter(conflicting_adapter, self.peft_config)
expected_msg = f"Adapter name '{conflicting_adapter}' should not be contained in the prefix '{self.prefix}'."
assert any(expected_msg in str(w.message) for w in recwarn.list)
def test_warning_naming_conflict_save_and_load(self, recwarn, tmp_path):
# Warning is raised when saving and loading the model with a naming conflict.
conflicting_adapter = self.prefix[:-1]
model = get_peft_model(self.base_model, self.peft_config, adapter_name=conflicting_adapter)
_ = self._save_and_reload_model(model, conflicting_adapter, tmp_path)
expected_msg = f"Adapter name '{conflicting_adapter}' should not be contained in the prefix '{self.prefix}'."
assert any(expected_msg in str(w.message) for w in recwarn.list)
class TestCordaInitialization:
"""Test class to check the initialization of CorDA adapters."""
torch_device = infer_device()
def get_model(self):
class MyModule(nn.Module):
def __init__(self):
super().__init__()
# choose a large weight so that averages are close to expected values
self.linear = nn.Linear(1000, 1000)
def forward(self, x):
return self.linear(x)
return MyModule().eval().to(self.torch_device)
@pytest.fixture
def data(self):
# larger data is required to pass KPM test
torch.manual_seed(233)
return torch.rand(1000, 1000).to(self.torch_device)
@pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
def test_lora_corda_no_redundant_fields(self, data, corda_method):
original_model = self.get_model()
model = deepcopy(original_model)
corda_config = CordaConfig(
corda_method=corda_method,
)
config = LoraConfig(
init_lora_weights="corda",
target_modules=["linear"],
corda_config=corda_config,
)
preprocess_corda(
model,
config,
run_model=lambda: model(data),
hooked_model=model,
)
peft_model = get_peft_model(model, config)
# check if the redundant fields are removed
assert not hasattr(peft_model.base_model.linear, "sample_count")
assert not hasattr(peft_model.base_model.linear, "covariance_matrix")
assert not hasattr(peft_model.base_model.linear, "corda_method")
assert not hasattr(peft_model.base_model.linear, "rank")
assert not hasattr(peft_model.base_model.linear, "eigens")
# legacy debug fields
assert not hasattr(peft_model.base_model.linear, "mean")
assert not hasattr(peft_model.base_model.linear, "std")
@pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
def test_lora_corda_sample_count(self, data, corda_method):
original_model = self.get_model()
model = deepcopy(original_model)
corda_config = CordaConfig(
corda_method=corda_method,
prune_temporary_fields=False,
)
config = LoraConfig(
init_lora_weights="corda",
target_modules=["linear"],
corda_config=corda_config,
)
preprocess_corda(
model,
config,
run_model=lambda: [model(data), model(data)], # running model twice to test `sample_count`
hooked_model=model,
)
# covariance of linear should be data.T @ data
layer = model.linear
assert hasattr(layer, "covariance_matrix")
assert torch.allclose(layer.covariance_matrix, data.T @ data, atol=1e-06)
# sample count of linear should be 2
assert hasattr(layer, "sample_count")
assert layer.sample_count == 2
@pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
def test_lora_corda_hook_unregister(self, data, corda_method):
original_model = self.get_model()
model = deepcopy(original_model)
hook_call_count = 0
def hook(*args):
nonlocal hook_call_count
hook_call_count += 1
model.linear.register_forward_hook(hook)
corda_config = CordaConfig(
corda_method=corda_method,
prune_temporary_fields=False,
)
config = LoraConfig(
init_lora_weights="corda",
target_modules=["linear"],
corda_config=corda_config,
)
preprocess_corda(
model,
config,
run_model=lambda: model(data),
hooked_model=model,
)
# after preprocessing, external and internal hook should be run once
assert hook_call_count == 1
assert model.linear.sample_count == 1
# run preprocessed model once
model(data)[0]
# the external hook should be kept, but the internal hook should be gone
assert hook_call_count == 2
assert model.linear.sample_count == 1
@pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
def test_lora_corda_linear_init_default(self, data, tmp_path, corda_method):
original_model = self.get_model()
model = deepcopy(original_model)
output_base = model(data)[0]
corda_config = CordaConfig(
cache_file=tmp_path / "corda_cache.pt",
covariance_file=tmp_path / "covariance_cache.pt",
corda_method=corda_method,
)
config = LoraConfig(
init_lora_weights="corda",
target_modules=["linear"],
corda_config=corda_config,
)
preprocess_corda(
model,
config,
run_model=lambda: model(data),
hooked_model=model,
)
peft_model = get_peft_model(model, config)
# check if adapter performs an identity transformantion
assert torch.allclose(output_base, peft_model(data)[0], atol=1e-06)
# modify the weights, or else the adapter performs an identity transformation
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
output_corda = peft_model(data)[0]
# sanity check
tol = 1e-06
assert not torch.allclose(output_base, output_corda, atol=tol, rtol=tol)
# if load SVD result from cache, the output should be the same
model = deepcopy(original_model)
config = LoraConfig(
init_lora_weights="corda",
target_modules=["linear"],
corda_config=CordaConfig(cache_file=tmp_path / "corda_cache.pt", corda_method=corda_method),
)
preprocess_corda(model, config)
peft_model = get_peft_model(model, config)
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
assert torch.allclose(output_corda, peft_model(data)[0], atol=1e-06)
# if load covariance from cache, the output should be the same
model = deepcopy(original_model)
config = LoraConfig(
init_lora_weights="corda",
target_modules=["linear"],
corda_config=CordaConfig(covariance_file=tmp_path / "covariance_cache.pt", corda_method=corda_method),
)
preprocess_corda(model, config)
peft_model = get_peft_model(model, config)
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
assert torch.allclose(output_corda, peft_model(data)[0], atol=1e-06)
@pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
def test_lora_corda_hooked_model_linear_init_default(self, data, tmp_path, corda_method):
original_model = self.get_model()
model = deepcopy(original_model)
hooked_model = deepcopy(model)
output_base = model(data)[0]
corda_config = CordaConfig(
cache_file=tmp_path / "corda_cache.pt",
covariance_file=tmp_path / "covariance_cache.pt",
corda_method=corda_method,
)
config = LoraConfig(
init_lora_weights="corda",
target_modules=["linear"],
corda_config=corda_config,
)
# difference from the above test: this test uses a copied model as hooked model
preprocess_corda(
model,
config,
run_model=lambda: hooked_model(data),
hooked_model=hooked_model,
)
peft_model = get_peft_model(model, config)
# check if adapter performs an identity transformantion
assert torch.allclose(output_base, peft_model(data)[0], atol=1e-06)
# modify the weights, or else the adapter performs an identity transformation
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
output_corda = peft_model(data)[0]
# sanity check
tol = 1e-06
assert not torch.allclose(output_base, output_corda, atol=tol, rtol=tol)
# if load SVD result from cache, the output should be the same
model = deepcopy(original_model)
config = LoraConfig(
init_lora_weights="corda",
target_modules=["linear"],
corda_config=CordaConfig(cache_file=tmp_path / "corda_cache.pt", corda_method=corda_method),
)
preprocess_corda(model, config)
peft_model = get_peft_model(model, config)
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
assert torch.allclose(output_corda, peft_model(data)[0], atol=1e-06)
# if load covariance from cache, the output should be the same
model = deepcopy(original_model)
config = LoraConfig(
init_lora_weights="corda",
target_modules=["linear"],
corda_config=CordaConfig(covariance_file=tmp_path / "covariance_cache.pt", corda_method=corda_method),
)
preprocess_corda(model, config)
peft_model = get_peft_model(model, config)
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
assert torch.allclose(output_corda, peft_model(data)[0], atol=1e-06)
@pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
def test_lora_corda_linear_init_default_with_rank_pattern(self, data, tmp_path, corda_method):
original_model = self.get_model()
model = deepcopy(original_model)
output_base = model(data)[0]
corda_config = CordaConfig(
cache_file=tmp_path / "corda_cache.pt",
covariance_file=tmp_path / "covariance_cache.pt",
corda_method=corda_method,
)
config = LoraConfig(
rank_pattern={"linear": 8, "embed": 16, "conv2d": 32},
init_lora_weights="corda",
target_modules=["linear"],
corda_config=corda_config,
)
preprocess_corda(
model,
config,
run_model=lambda: model(data),
)
peft_model = get_peft_model(model, config)
# check if adapter performs an identity transformantion
assert torch.allclose(output_base, peft_model(data)[0], atol=1e-06)
# modify the weights, or else the adapter performs an identity transformation
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
output_corda = peft_model(data)[0]
# sanity check
tol = 1e-06
assert not torch.allclose(output_base, output_corda, atol=tol, rtol=tol)
# if load SVD result from cache, the output should be the same
model = deepcopy(original_model)
config = LoraConfig(
rank_pattern={"linear": 8, "embed": 16, "conv2d": 32},
init_lora_weights="corda",
target_modules=["linear"],
corda_config=CordaConfig(cache_file=tmp_path / "corda_cache.pt", corda_method=corda_method),
)
preprocess_corda(model, config)
peft_model = get_peft_model(model, config)
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
assert torch.allclose(output_corda, peft_model(data)[0], atol=1e-06)
# if load covariance from cache, the output should be the same
model = deepcopy(original_model)
config = LoraConfig(
rank_pattern={"linear": 8, "embed": 16, "conv2d": 32},
init_lora_weights="corda",
target_modules=["linear"],
corda_config=CordaConfig(covariance_file=tmp_path / "covariance_cache.pt", corda_method=corda_method),
)
preprocess_corda(model, config)
peft_model = get_peft_model(model, config)
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
assert torch.allclose(output_corda, peft_model(data)[0], atol=1e-06)
@pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
def test_lora_corda_conversion_same_output_after_loading(self, data, tmp_path, corda_method):
model = self.get_model()
output_base = model(data)[0]
corda_config = CordaConfig(corda_method=corda_method)
config = LoraConfig(init_lora_weights="corda", target_modules=["linear"], r=8, corda_config=corda_config)
preprocess_corda(model, config, run_model=lambda: model(data), hooked_model=model)
peft_model = get_peft_model(deepcopy(model), config)
# save the initial model
peft_model.peft_config["default"].init_lora_weights = True
peft_model.save_pretrained(tmp_path / "init-model")
peft_model.peft_config["default"].init_lora_weights = "corda"
# modify the weights, or else the adapter performs an identity transformation
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
output_corda = peft_model(data)[0]
# sanity check
tol = 1e-06
assert not torch.allclose(output_base, output_corda, atol=tol, rtol=tol)
# save the model normally
peft_model.save_pretrained(tmp_path / "corda-model")
model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "corda-model")
output_loaded = model_loaded(data)[0]
assert torch.allclose(output_corda, output_loaded, atol=tol, rtol=tol)
# sanity check: ranks should still be 8 as initially
assert model_loaded.peft_config["default"].r == 8
assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 8
# sanity check: the base model weights were indeed changed
assert not torch.allclose(
model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
)
# save the model with conversion
peft_config_keys_before = list(peft_model.peft_config.keys())
peft_config_dict_before = peft_model.peft_config["default"].to_dict()
peft_model.save_pretrained(
tmp_path / "corda-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
)
peft_config_keys_after = list(peft_model.peft_config.keys())
peft_config_dict_after = peft_model.peft_config["default"].to_dict()
assert peft_config_keys_before == peft_config_keys_after
assert peft_config_dict_before == peft_config_dict_after
model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "corda-model-converted")
output_converted = model_converted(data)[0]
assert torch.allclose(output_corda, output_converted, atol=tol, rtol=tol)
# rank should be double of what it was initially
assert model_converted.peft_config["default"].r == 16
assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 16
# base model weights should be the same as the initial model
assert torch.allclose(
model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
)
@pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
def test_lora_corda_conversion_same_output_after_loading_with_rank_pattern(self, data, tmp_path, corda_method):
# same as above, but using rank_pattern
model = self.get_model()
output_base = model(data)[0]
# use rank_pattern here; note that since there is only a single linear layer, r is completely overridden
corda_config = CordaConfig(corda_method=corda_method)
config = LoraConfig(
init_lora_weights="corda",
target_modules=["linear"],
r=8,
rank_pattern={"linear": 32},
corda_config=corda_config,
)
preprocess_corda(model, config, run_model=lambda: model(data), hooked_model=model)
peft_model = get_peft_model(deepcopy(model), config)
# save the initial model
peft_model.peft_config["default"].init_lora_weights = True
peft_model.save_pretrained(tmp_path / "init-model")
peft_model.peft_config["default"].init_lora_weights = "corda"
# modify the weights, or else the adapter performs an identity transformation
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
output_corda = peft_model(data)[0]
# sanity check
tol = 1e-06
assert not torch.allclose(output_base, output_corda, atol=tol, rtol=tol)
# save the model normally
peft_model.save_pretrained(tmp_path / "corda-model")
model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "corda-model")
output_loaded = model_loaded(data)[0]
assert torch.allclose(output_corda, output_loaded, atol=tol, rtol=tol)
# sanity check: ranks should still be 8 as initially
assert model_loaded.peft_config["default"].r == 8
assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 32
# sanity check: the base model weights were indeed changed
assert not torch.allclose(
model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
)
# save the model with conversion
peft_model.save_pretrained(
tmp_path / "corda-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
)
model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "corda-model-converted")
output_converted = model_converted(data)[0]
assert torch.allclose(output_corda, output_converted, atol=tol, rtol=tol)
# rank should be double of what it was initially
assert model_converted.peft_config["default"].r == 16
assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 64
# base model weights should be the same as the initial model
assert torch.allclose(
model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
)
@pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
def test_lora_corda_conversion_same_output_after_loading_with_alpha_pattern(self, data, tmp_path, corda_method):
# same as above, but using alpha_pattern
model = self.get_model()
output_base = model(data)[0]
# use alpha_pattern here; note that since there is only a single linear layer, lora_alpha is completely
# overridden
corda_config = CordaConfig(corda_method=corda_method)
config = LoraConfig(
init_lora_weights="corda",
target_modules=["linear"],
alpha_pattern={"linear": 5},
corda_config=corda_config,
)
preprocess_corda(model, config, run_model=lambda: model(data), hooked_model=model)
peft_model = get_peft_model(deepcopy(model), config)
# save the initial model
peft_model.peft_config["default"].init_lora_weights = True
peft_model.save_pretrained(tmp_path / "init-model")
peft_model.peft_config["default"].init_lora_weights = "corda"
# modify the weights, or else the adapter performs an identity transformation
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
output_corda = peft_model(data)[0]
# sanity check
tol = 1e-06
assert not torch.allclose(output_base, output_corda, atol=tol, rtol=tol)
# save the model normally
peft_model.save_pretrained(tmp_path / "corda-model")
model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "corda-model")
output_loaded = model_loaded(data)[0]
assert torch.allclose(output_corda, output_loaded, atol=tol, rtol=tol)
# sanity check: ranks should still be 8 as initially
assert model_loaded.peft_config["default"].r == 8
assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 8
assert model_loaded.base_model.model.linear.scaling["default"] == 5 / 8
# sanity check: the base model weights were indeed changed
assert not torch.allclose(
model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
)
# save the model with conversion
peft_model.save_pretrained(
tmp_path / "corda-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
)
model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "corda-model-converted")
output_converted = model_converted(data)[0]
assert torch.allclose(output_corda, output_converted, atol=tol, rtol=tol)
# rank should be double of what it was initially
assert model_converted.peft_config["default"].r == 16
assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 16
assert model_converted.base_model.model.linear.scaling["default"] == 10 / 16
# base model weights should be the same as the initial model
assert torch.allclose(
model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
)
@pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
def test_lora_corda_conversion_same_output_after_loading_with_rslora(self, data, tmp_path, corda_method):
model = self.get_model()
output_base = model(data)[0]
corda_config = CordaConfig(corda_method=corda_method)
config = LoraConfig(
init_lora_weights="corda", target_modules=["linear"], r=8, use_rslora=True, corda_config=corda_config
)
preprocess_corda(model, config, run_model=lambda: model(data), hooked_model=model)
peft_model = get_peft_model(deepcopy(model), config)
# save the initial model
peft_model.peft_config["default"].init_lora_weights = True
peft_model.save_pretrained(tmp_path / "init-model")
peft_model.peft_config["default"].init_lora_weights = "corda"
# modify the weights, or else the adapter performs an identity transformation
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
output_corda = peft_model(data)[0]
# sanity check
tol = 1e-06
assert not torch.allclose(output_base, output_corda, atol=tol, rtol=tol)
# save the model normally
peft_model.save_pretrained(tmp_path / "corda-model")
model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "corda-model")
output_loaded = model_loaded(data)[0]
assert torch.allclose(output_corda, output_loaded, atol=tol, rtol=tol)
# sanity check: ranks should still be 8 as initially
assert model_loaded.peft_config["default"].r == 8
assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 8
assert model_loaded.base_model.model.linear.scaling["default"] == 8 / (8**0.5)
# sanity check: the base model weights were indeed changed
assert not torch.allclose(
model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
)
# save the model with conversion
peft_model.save_pretrained(
tmp_path / "corda-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
)
model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "corda-model-converted")
output_converted = model_converted(data)[0]
assert torch.allclose(output_corda, output_converted, atol=tol, rtol=tol)
# rank should be double of what it was initially
assert model_converted.peft_config["default"].r == 16
assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 16
# same scale as before with a little bit of floating point imprecision
assert model_converted.base_model.model.linear.scaling["default"] == pytest.approx(8 / (8**0.5))
# base model weights should be the same as the initial model
assert torch.allclose(
model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
)
@pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
def test_lora_corda_rank_pattern_and_rslora_raises(self, data, tmp_path, corda_method):
# it's not possible to determine the correct scale when using rslora with rank or alpha pattern, because the
# scale is not stored in the state_dict
model = self.get_model()
corda_config = CordaConfig(corda_method=corda_method)
config = LoraConfig(
init_lora_weights="corda",
target_modules=["linear"],
r=8,
rank_pattern={"linear": 2},
use_rslora=True,
corda_config=corda_config,
)
preprocess_corda(model, config, run_model=lambda: model(data), hooked_model=model)
peft_model = get_peft_model(model, config)
peft_model.save_pretrained(tmp_path / "init-model")
msg = re.escape("Passing `path_initial_model_for_weight_conversion` to `save_pretrained`")
with pytest.raises(ValueError, match=msg):
peft_model.save_pretrained(
tmp_path / "corda-model", path_initial_model_for_weight_conversion=tmp_path / "init-model"
)
@pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
def test_lora_corda_alpha_pattern_and_rslora_raises(self, data, tmp_path, corda_method):
# it's not possible to determine the correct scale when using rslora with rank or alpha pattern, because the
# scale is not stored in the state_dict
model = self.get_model()
corda_config = CordaConfig(corda_method=corda_method)
config = LoraConfig(
init_lora_weights="corda",
target_modules=["linear"],
r=8,
alpha_pattern={"linear": 2},
use_rslora=True,
corda_config=corda_config,
)
preprocess_corda(model, config, run_model=lambda: model(data), hooked_model=model)
peft_model = get_peft_model(model, config)
peft_model.save_pretrained(tmp_path / "init-model")
msg = re.escape("Passing `path_initial_model_for_weight_conversion` to `save_pretrained`")
with pytest.raises(ValueError, match=msg):
peft_model.save_pretrained(
tmp_path / "corda-model", path_initial_model_for_weight_conversion=tmp_path / "init-model"
)
class TestEvaInitialization:
"""Tests for the EVA (Explained Variance Adaptation) initialization method.
This test suite verifies:
1. Consistency of initialization across different seeds
2. Proper error handling for invalid inputs
3. Compatibility with different model architectures
4. Reproducibility of results
5. Proper handling of edge cases
"""
# Constants for test configuration
COSINE_SIMILARITY_THRESHOLD = 0.75
NUM_SEEDS = 2
BATCH_SIZE = 4
MAX_LENGTH = 256
LORA_DIM = 8
LORA_ALPHA = 1
DEVICE = infer_device()
# for caching purposes:
_dataset = load_dataset_english_quotes()["train"]
@pytest.fixture
def tokenizer(self):
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
tokenizer.pad_token = tokenizer.eos_token
return tokenizer
@pytest.fixture
def dataset(self, tokenizer):
# concatenate examples
examples = []
example = ""
for data in self._dataset:
if len(example) >= self.MAX_LENGTH:
examples.append(example)
example = ""
example = example + " " + data["quote"]
dataset = Dataset.from_dict({"text": examples})
# tokenize
dataset = dataset.map(
lambda x: tokenizer(x["text"], padding="max_length", truncation=True, max_length=self.MAX_LENGTH),
batched=True,
remove_columns=dataset.column_names,
)
dataset.set_format(type="torch")
return dataset
@pytest.fixture
def model(self):
model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
model.transformer.h = model.transformer.h[:2] # truncate to 2 layers
return model.to(self.DEVICE)
@pytest.fixture
def peft_config(self):
return LoraConfig(
r=self.LORA_DIM,
lora_alpha=self.LORA_ALPHA,
target_modules=["c_attn"],
init_lora_weights="eva",
eva_config=EvaConfig(rho=2),
)
@staticmethod
def collate_fn(examples):
return {k: torch.stack([v[k] for v in examples], dim=0) for k in examples[0].keys()}
@staticmethod
def prepare_layer_inputs_fn(layer_input, model_input, layer_name):
return layer_input[0].view(-1, layer_input[0].size(-1))
def get_dataloader(self, dataset):
return DataLoader(
dataset,
batch_size=self.BATCH_SIZE,
collate_fn=self.collate_fn,
shuffle=False,
)
@pytest.mark.parametrize(
"prepare_layer_inputs_keys, expected_outcome",
[
(None, "success"),
(["transformer.h.0.attn.c_attn"], "success"),
(
["transformer.h.0.attn.c_attn", "transformer.h.1.attn.c_attn", "transformer.h.2.attn.c_attn"],
"value_error",
),
],
)
def test_eva_state_dict_prepare_inputs_mapping(
self, model, dataset, peft_config, prepare_layer_inputs_keys, expected_outcome
):
"""
Tests for cases where prepare_layer_inputs_fn is a mapping. Checks that if not all target modules are present,
the prepare_layer_inputs_fn for the remaining modules is set to None. Also checks that if more keys than target
modules are present, a ValueError is raised.
"""
def fn(x, *args):
return x[0].view(-1, x[0].size(-1))
if prepare_layer_inputs_keys is None:
prepare_layer_inputs_fn = fn
else:
prepare_layer_inputs_fn = {k: fn for k in prepare_layer_inputs_keys}
shuffled_dataset = dataset.shuffle(seed=0)
dataloader = self.get_dataloader(shuffled_dataset)
modified_peft_config = deepcopy(peft_config)
modified_peft_config.eva_config.tau = 0 # converge immediately
if expected_outcome == "success":
sd = get_eva_state_dict(
model,
dataloader,
modified_peft_config,
prepare_model_inputs_fn=None,
prepare_layer_inputs_fn=prepare_layer_inputs_fn,
)
assert len(sd) == 2
assert "transformer.h.0.attn.c_attn" in sd
assert "transformer.h.1.attn.c_attn" in sd
else:
with pytest.raises(
ValueError, match="prepare_layer_inputs_fn is a mapping but the following module names were not found"
):
get_eva_state_dict(
model,
dataloader,
modified_peft_config,
prepare_model_inputs_fn=None,
prepare_layer_inputs_fn=prepare_layer_inputs_fn,
)
@pytest.mark.parametrize(
"eva_config",
[EvaConfig(rho=2, adjust_scaling_factors=True)],
)
def test_eva_state_dict_adjust_scaling_factors(self, model, dataset, peft_config, eva_config):
"""
Tests that the scaling factors are adjusted so that all LoRA gradients have the same scale regardless of their
rank.
"""
modified_peft_config = deepcopy(peft_config)
modified_peft_config.eva_config = eva_config
dataloader = self.get_dataloader(dataset)
peft_model = get_peft_model(deepcopy(model), modified_peft_config)
scaling_factors_before = {}
for n, m in peft_model.named_modules():
if isinstance(m, LoraLayer):
scaling_factors_before[n] = m.scaling["default"]
initialize_lora_eva_weights(peft_model, dataloader)
for n, m in peft_model.named_modules():
if isinstance(m, LoraLayer):
assert m.scaling["default"] == scaling_factors_before[n]
@pytest.mark.parametrize(
"eva_config",
[
# note: lower tau to decrease number of iterations until convergence, as tests are slow on CPU
EvaConfig(rho=2, tau=0.9),
EvaConfig(rho=1, tau=0.9),
EvaConfig(rho=1, whiten=True, tau=0.9),
EvaConfig(rho=1.0001, tau=0.9),
],
)
def test_eva_initialization_consistency(self, model, dataset, peft_config, eva_config):
"""
Tests that the state dict returned by `get_eva_state_dict` is consistent across different seeds based on the
cosine similarity of the svd components.
"""
modified_peft_config = deepcopy(peft_config)
modified_peft_config.eva_config = eva_config
state_dicts = []
for seed in range(self.NUM_SEEDS):
shuffled_dataset = dataset.shuffle(seed=seed)
dataloader = self.get_dataloader(shuffled_dataset)
sd = get_eva_state_dict(model, dataloader, modified_peft_config, show_progress_bar=False)
state_dicts.append(sd)
cos_sims = defaultdict(list)
for i, j in itertools.combinations(range(self.NUM_SEEDS), 2):
for k, v1 in state_dicts[i].items():
v2 = state_dicts[j][k]
min_size = min(v1.size(0), v2.size(0))
cos_sims[k].extend(torch.cosine_similarity(v1[:min_size].abs(), v2[:min_size].abs(), dim=1).tolist())
mean_cosine_similarities = {k: torch.tensor(v).mean() for k, v in cos_sims.items()}
for layer_name, mean_cosine_similarity in mean_cosine_similarities.items():
assert mean_cosine_similarity > self.COSINE_SIMILARITY_THRESHOLD, (
f"Mean absolute cosine similarity {mean_cosine_similarity:.4f} "
f"is not greater than {self.COSINE_SIMILARITY_THRESHOLD}"
)
@pytest.mark.parametrize("has_rank_zero", [True, False])
def test_load_eva_state_dict(self, model, dataset, peft_config, tmp_path, has_rank_zero):
"""
Tests that the `eva_state_dict` argument in `initialize_lora_eva_weights` can be used to initialize a model
with EVA weights and that the initialized model can be saved and loaded correctly.
"""
dataloader = self.get_dataloader(dataset)
peft_model = get_peft_model(deepcopy(model), peft_config)
sd = get_eva_state_dict(peft_model, dataloader)
if has_rank_zero:
k = "base_model.model.transformer.h.0.attn.c_attn"
sd[k] = sd[k][:0]
initialize_lora_eva_weights(peft_model, eva_state_dict=sd)
if has_rank_zero:
assert not isinstance(peft_model.model.transformer.h[0].attn.c_attn, LoraLayer)
else:
assert isinstance(peft_model.model.transformer.h[0].attn.c_attn, LoraLayer)
peft_model.save_pretrained(tmp_path)
peft_model = PeftModel.from_pretrained(model, tmp_path, torch_device=self.DEVICE, low_cpu_mem_usage=True)
peft_model(**{k: v.to(self.DEVICE) for k, v in next(iter(dataloader)).items()})
def test_missing_eva_inits(self, model, dataset, peft_config):
"""
Tests that a warning is raised when some adapter modules were not initialized with EVA weights.
"""
modified_peft_config = deepcopy(peft_config)
modified_peft_config.target_modules = ["wte"]
dataloader = self.get_dataloader(dataset)
peft_model = get_peft_model(deepcopy(model), modified_peft_config)
with pytest.warns(
UserWarning,
match="the following layers were initialized with init_lora_weights=True because they were not found in the eva state_dict:*",
):
initialize_lora_eva_weights(peft_model, dataloader)
def test_load_eva_model(self, model, dataset, peft_config, tmp_path):
"""
Tests that a model initialized with EVA weights can be loaded correctly.
"""
dataloader = self.get_dataloader(dataset)
peft_model = get_peft_model(deepcopy(model), peft_config)
initialize_lora_eva_weights(peft_model, dataloader)
peft_model.save_pretrained(tmp_path)
peft_model = PeftModel.from_pretrained(model, tmp_path, torch_device=self.DEVICE, low_cpu_mem_usage=True)
peft_model(**{k: v.to(self.DEVICE) for k, v in next(iter(dataloader)).items()})
def test_eva_initialization_with_invalid_dataloader(self, model, peft_config):
"""Test that appropriate error is raised when dataloader is empty."""
empty_dataset = Dataset.from_dict({"text": []})
dataloader = self.get_dataloader(empty_dataset)
with pytest.raises(ValueError, match="dataloader is empty"):
get_eva_state_dict(model, dataloader, peft_config)
def test_eva_config_rho(self):
"""
Tests that EvaConfig.__init__ raises a ValueError when rho is negative.
"""
with pytest.raises(ValueError, match="`rho` must be >= 1.0"):
EvaConfig(rho=-1)
def test_eva_config_tau(self):
"""
Tests that EvaConfig.__init__ raises a ValueError when tau is not between 0.0 and 1.0.
"""
with pytest.raises(ValueError, match="`tau` must be between 0.0 and 1.0."):
EvaConfig(tau=-0.1)
with pytest.raises(ValueError, match="`tau` must be between 0.0 and 1.0."):
EvaConfig(tau=1.1)
def test_lora_config_raises_warning_with_eva_init_but_not_eva_config(self):
"""
Tests that LoraConfig.__init__ raises a warning when init_lora_weights='eva' but eva_config is not set.
"""
with pytest.warns(
UserWarning,
match="`init_lora_weights` is 'eva' but `eva_config` is not specified. Using default EVA config.",
):
LoraConfig(init_lora_weights="eva")
def test_lora_config_raises_warning_with_eva_config_but_not_eva_init(self):
"""
Tests that LoraConfig.__init__ raises a warning when init_lora_weights is not 'eva' but eva_config is set.
"""
with pytest.warns(
UserWarning, match="`eva_config` specified but will be ignored when `init_lora_weights` is not 'eva'."
):
LoraConfig(init_lora_weights=True, eva_config=EvaConfig())
@pytest.mark.skipif(
platform.system() != "Linux", reason="Out of the box, torch.compile does not work on Windows or MacOS"
)
class TestHotSwapping:
"""Tests for the hotswapping function"""
torch_device = infer_device()
def compile(self, model, do_compile):
if not do_compile:
return model
return torch.compile(model)
def get_model(self):
class MLP(nn.Module):
def __init__(self, bias=True):
super().__init__()
self.lin0 = nn.Linear(10, 20, bias=True)
self.relu = nn.ReLU()
self.lin1 = nn.Linear(20, 5, bias=False)
def forward(self, X):
X = X.float()
X = self.lin0(X)
X = self.relu(X)
X = self.lin1(X)
return X
torch.manual_seed(0)
return MLP().to(self.torch_device)
def get_model_conv2d(self):
class ConvModel(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Conv2d(3, 10, kernel_size=3)
def forward(self, X):
return self.conv(X)
torch.manual_seed(0)
return ConvModel().to(self.torch_device)
# this works with all adapters except prompt learning, but we don't test all
# as it is unnecessary and would be slow
@pytest.mark.parametrize(
"config",
[
LoraConfig(init_lora_weights=0, target_modules=["lin0"]),
LoraConfig(init_lora_weights=0, target_modules=["lin0", "lin1"]),
],
)
@pytest.mark.parametrize("do_compile", [False, True])
def test_hotswap_works(self, config, do_compile, tmp_path):
# Load 2 different adapters and check that we can hotswap between them, with the model optionally being
# compiled.
atol, rtol = 1e-4, 1e-4
inputs = torch.rand(3, 10).to(self.torch_device)
# create adapter 0
model = self.get_model()
torch.manual_seed(0)
model = get_peft_model(model, config)
model = self.compile(model, do_compile=do_compile)
model.eval()
with torch.inference_mode():
output0 = model(inputs)
model.save_pretrained(tmp_path / "adapter0")
del model
# create adapter 1
model = self.get_model()
torch.manual_seed(1)
model = get_peft_model(model, config)
model = self.compile(model, do_compile=do_compile)
model.eval()
with torch.inference_mode():
output1 = model(inputs)
model.save_pretrained(tmp_path / "adapter1")
# sanity check: they're not the same
assert not torch.allclose(output0, output1, atol=atol, rtol=rtol)
del model
# load adapter 0
model = self.get_model()
model = PeftModel.from_pretrained(model, tmp_path / "adapter0")
model = self.compile(model, do_compile=do_compile)
with torch.inference_mode():
output_loaded0 = model(inputs)
# sanity check: same output after loading for adapter 0
assert torch.allclose(output0, output_loaded0, atol=atol, rtol=rtol)
# hotswap with adapter 1
hotswap_adapter(model, tmp_path / "adapter1", adapter_name="default")
with torch.inference_mode():
output_loaded1 = model(inputs)
# real check: model now behaves like adapter 1
assert torch.allclose(output1, output_loaded1, atol=atol, rtol=rtol)
# hotswap back to adapter 0
hotswap_adapter(model, tmp_path / "adapter0", adapter_name="default")
with torch.inference_mode():
output_loaded_back0 = model(inputs)
# real check: model now behaves again like adapter 0
assert torch.allclose(output0, output_loaded_back0, atol=atol, rtol=rtol)
def test_hotswap_different_peft_types_raises(self, tmp_path):
# When the configs of the two adapters are different PEFT methods, raise
config0 = LoraConfig(target_modules=["lin0"])
config1 = IA3Config(target_modules=["lin0"], feedforward_modules=[])
model = self.get_model()
model = get_peft_model(model, config0)
model.save_pretrained(tmp_path / "adapter0")
del model
model = self.get_model()
model = get_peft_model(model, config1)
model.save_pretrained(tmp_path / "adapter1")
del model
# load adapter 0
model = self.get_model()
model = PeftModel.from_pretrained(model, tmp_path / "adapter0")
msg = r"Incompatible PEFT types found: LORA and IA3"
with pytest.raises(ValueError, match=msg):
hotswap_adapter(model, tmp_path / "adapter1", adapter_name="default")
def test_hotswap_wrong_peft_types_raises(self, tmp_path):
# Only LoRA is supported at the moment
config0 = IA3Config(target_modules=["lin0"], feedforward_modules=[])
config1 = IA3Config(target_modules=["lin0"], feedforward_modules=[])
model = self.get_model()
model = get_peft_model(model, config0)
model.save_pretrained(tmp_path / "adapter0")
del model
model = self.get_model()
model = get_peft_model(model, config1)
model.save_pretrained(tmp_path / "adapter1")
del model
# load adapter 0
model = self.get_model()
model = PeftModel.from_pretrained(model, tmp_path / "adapter0")
msg = r"Hotswapping only supports LORA but IA3 was passed"
with pytest.raises(ValueError, match=msg):
hotswap_adapter(model, tmp_path / "adapter1", adapter_name="default")
def test_hotswap_missing_key_works(self, tmp_path):
# When a key is missing, it is fine, the extra weight is zeroed out
config = LoraConfig(target_modules=["lin0", "lin1"])
model = self.get_model()
model = get_peft_model(model, config)
model.save_pretrained(tmp_path / "adapter0")
del model
model = self.get_model()
model = get_peft_model(model, config)
# remove one key from the state_dict
key = "base_model.model.lin1.lora_A.default.weight"
state_dict = model.state_dict()
del state_dict[key]
model.state_dict = lambda: state_dict
model.save_pretrained(tmp_path / "adapter1")
del model
# load adapter 0
model = self.get_model()
model = PeftModel.from_pretrained(model, tmp_path / "adapter0")
# sanity check: the missing weight is not already all zeros
assert not (model.base_model.model.lin1.lora_A["default"].weight == 0).all()
hotswap_adapter(model, tmp_path / "adapter1", adapter_name="default")
# after hotswapping, it is zeroed out
assert (model.base_model.model.lin1.lora_A["default"].weight == 0).all()
def test_hotswap_extra_key_raises(self, tmp_path):
# When there is an extra key, raise
config = LoraConfig(target_modules=["lin0"])
model = self.get_model()
model = get_peft_model(model, config)
model.save_pretrained(tmp_path / "adapter0")
del model
model = self.get_model()
model = get_peft_model(model, config)
# add an unexpected key
state_dict = model.state_dict()
new_key = "base_model.model.lin1.lora_A.default.weight"
state_dict[new_key] = torch.zeros(8, 20)
model.state_dict = lambda: state_dict
model.save_pretrained(tmp_path / "adapter1")
del model
# load adapter 0
model = self.get_model()
model = PeftModel.from_pretrained(model, tmp_path / "adapter0")
msg = f"Hot swapping the adapter did not succeed, unexpected keys found: {new_key}"
with pytest.raises(RuntimeError, match=msg):
hotswap_adapter(model, tmp_path / "adapter1", adapter_name="default")
@pytest.mark.parametrize("ranks", [(7, 13), (13, 7)])
def test_hotswap_works_different_ranks_alphas(self, ranks, tmp_path):
# same as test_hotswap_works but different rank and alpha
# Load 2 different adapters and check that we can hotswap between them, with the model optionally being
# compiled.
atol, rtol = 1e-4, 1e-4
inputs = torch.rand(3, 10).to(self.torch_device)
# create adapter 0
config0 = LoraConfig(target_modules=["lin0", "lin1"], r=ranks[0], lora_alpha=ranks[0], init_lora_weights=False)
model = self.get_model()
torch.manual_seed(0)
model = get_peft_model(model, config0)
model.eval()
with torch.inference_mode():
output0 = model(inputs)
model.save_pretrained(tmp_path / "adapter0")
del model
# create adapter 1
config1 = LoraConfig(target_modules=["lin0"], r=ranks[1], lora_alpha=ranks[1], init_lora_weights=False)
model = self.get_model()
torch.manual_seed(1)
model = get_peft_model(model, config1)
model.eval()
with torch.inference_mode():
output1 = model(inputs)
model.save_pretrained(tmp_path / "adapter1")
# sanity check: they're not the same
assert not torch.allclose(output0, output1, atol=atol, rtol=rtol)
del model
# load adapter 0
model = self.get_model()
model = PeftModel.from_pretrained(model, tmp_path / "adapter0")
with torch.inference_mode():
output_loaded0 = model(inputs)
# sanity check: same output after loading for adapter 0
assert torch.allclose(output0, output_loaded0, atol=atol, rtol=rtol)
# hotswap with adapter 1
hotswap_adapter(model, tmp_path / "adapter1", adapter_name="default")
with torch.inference_mode():
output_loaded1 = model(inputs)
# real check: model now behaves like adapter 1
assert torch.allclose(output1, output_loaded1, atol=atol, rtol=rtol)
# hotswap back to adapter 0
hotswap_adapter(model, tmp_path / "adapter0", adapter_name="default")
with torch.inference_mode():
output_loaded_back0 = model(inputs)
# real check: model now behaves again like adapter 0
assert torch.allclose(output0, output_loaded_back0, atol=atol, rtol=rtol)
@pytest.mark.parametrize("ranks", [(7, 13), (13, 7)])
def test_hotswap_works_different_ranks_alphas_conv2d(self, ranks, tmp_path):
# same as previous test, but for a Conv2d model
atol, rtol = 1e-4, 1e-4
inputs = torch.rand(3, 3, 10, 10).to(self.torch_device)
# create adapter 0
config0 = LoraConfig(target_modules=["conv"], r=ranks[0], init_lora_weights=False)
model = self.get_model_conv2d()
torch.manual_seed(0)
model = get_peft_model(model, config0)
model.eval()
with torch.inference_mode():
output0 = model(inputs)
model.save_pretrained(tmp_path / "adapter0")
del model
# create adapter 1
config1 = LoraConfig(target_modules=["conv"], r=ranks[1], init_lora_weights=False)
model = self.get_model_conv2d()
torch.manual_seed(1)
model = get_peft_model(model, config1)
model.eval()
with torch.inference_mode():
output1 = model(inputs)
model.save_pretrained(tmp_path / "adapter1")
# sanity check: they're not the same
assert not torch.allclose(output0, output1, atol=atol, rtol=rtol)
del model
# load adapter 0
model = self.get_model_conv2d()
model = PeftModel.from_pretrained(model, tmp_path / "adapter0")
with torch.inference_mode():
output_loaded0 = model(inputs)
# sanity check: same output after loading for adapter 0
assert torch.allclose(output0, output_loaded0, atol=atol, rtol=rtol)
# hotswap with adapter 1
hotswap_adapter(model, tmp_path / "adapter1", adapter_name="default")
with torch.inference_mode():
output_loaded1 = model(inputs)
# real check: model now behaves like adapter 1
assert torch.allclose(output1, output_loaded1, atol=atol, rtol=rtol)
# hotswap back to adapter 0
hotswap_adapter(model, tmp_path / "adapter0", adapter_name="default")
with torch.inference_mode():
output_loaded_back0 = model(inputs)
# real check: model now behaves again like adapter 0
assert torch.allclose(output0, output_loaded_back0, atol=atol, rtol=rtol)
def test_prepare_model_for_compiled_hotswap_scalings_are_tensors(self):
config = LoraConfig(target_modules=["lin0", "lin1"])
model = self.get_model()
model = get_peft_model(model, config)
# sanity check: all scalings are floats
scalings_before = {}
for name, module in model.named_modules():
if hasattr(module, "scaling"):
for key, val in module.scaling.items():
assert isinstance(val, float)
scalings_before[f"{name}.{key}"] = val
prepare_model_for_compiled_hotswap(model)
scalings_after = {}
for name, module in model.named_modules():
if hasattr(module, "scaling"):
for key, val in module.scaling.items():
assert isinstance(val, torch.Tensor)
scalings_after[f"{name}.{key}"] = val.item()
assert scalings_before == scalings_after
def test_prepare_model_for_compiled_hotswap_rank_padding_works(self):
old_rank = 8
config = LoraConfig(target_modules=["lin0", "lin1"], r=old_rank)
model = self.get_model()
model = get_peft_model(model, config)
# sanity check
for name, param in model.named_parameters():
if "lora_A" in name:
assert param.shape[0] == old_rank
elif "lora_B" in name:
assert param.shape[1] == old_rank
new_rank = 13
prepare_model_for_compiled_hotswap(model, target_rank=new_rank)
for name, param in model.named_parameters():
if "lora_A" in name:
assert param.shape[0] == new_rank
elif "lora_B" in name:
assert param.shape[1] == new_rank
def test_prepare_model_for_compiled_hotswap_same_rank_padding_works(self):
# same as previous test, but ensure there is no error if the rank to pad to is the same
old_rank = 8
config = LoraConfig(target_modules=["lin0", "lin1"], r=old_rank)
model = self.get_model()
model = get_peft_model(model, config)
prepare_model_for_compiled_hotswap(model, target_rank=old_rank)
for name, param in model.named_parameters():
if "lora_A" in name:
assert param.shape[0] == old_rank
elif "lora_B" in name:
assert param.shape[1] == old_rank
def test_prepare_model_for_compiled_hotswap_conv2d_rank_padding_works(self):
# same as previous test, but for a Conv2d model
old_rank = 8
config = LoraConfig(target_modules=["conv"], r=old_rank)
model = self.get_model_conv2d()
model = get_peft_model(model, config)
# sanity check
for name, param in model.named_parameters():
if "lora_A" in name:
assert param.shape[0] == old_rank
elif "lora_B" in name:
assert param.shape[1] == old_rank
new_rank = 13
prepare_model_for_compiled_hotswap(model, target_rank=new_rank)
for name, param in model.named_parameters():
if "lora_A" in name:
assert param.shape[0] == new_rank
elif "lora_B" in name:
assert param.shape[1] == new_rank
def test_prepare_model_for_compiled_hotswap_lower_rank_padding_raises(self):
# when trying to pad to a lower rank, raise an error
old_rank0 = 8
old_rank1 = 10
new_rank = 9
config = LoraConfig(target_modules=["lin0", "lin1"], r=old_rank0, rank_pattern={"lin1": old_rank1})
model = self.get_model()
model = get_peft_model(model, config)
msg = re.escape("Trying to pad the adapter to the target rank 9, but the original rank is larger (10)")
with pytest.raises(ValueError, match=msg):
prepare_model_for_compiled_hotswap(model, target_rank=new_rank)
def test_prepare_model_for_compiled_hotswap_with_rank_pattern(self):
old_rank0 = 8
old_rank1 = 9
config = LoraConfig(target_modules=["lin0", "lin1"], r=old_rank0, rank_pattern={"lin1": old_rank1})
model = self.get_model()
model = get_peft_model(model, config)
# sanity check
for name, param in model.named_parameters():
if "lora_A" in name:
if "lin0" in name:
assert param.shape[0] == old_rank0
else:
assert param.shape[0] == old_rank1
elif "lora_B" in name:
if "lin0" in name:
assert param.shape[1] == old_rank0
else:
assert param.shape[1] == old_rank1
new_rank = 13
prepare_model_for_compiled_hotswap(model, target_rank=new_rank)
for name, param in model.named_parameters():
if "lora_A" in name:
assert param.shape[0] == new_rank
elif "lora_B" in name:
assert param.shape[1] == new_rank
def test_prepare_model_for_compiled_hotswap_model_already_compiled_raises(self):
config = LoraConfig(target_modules=["lin0"])
model = self.get_model()
model = get_peft_model(model, config)
model = torch.compile(model, mode="reduce-overhead")
msg = re.escape("Call prepare_model_for_compiled_hotswap *before* compiling the model")
with pytest.raises(ValueError, match=msg):
prepare_model_for_compiled_hotswap(model)
def test_prepare_model_for_compiled_hotswap_model_already_compiled_warns(self, recwarn):
config = LoraConfig(target_modules=["lin0"])
model = self.get_model()
model = get_peft_model(model, config)
model = torch.compile(model, mode="reduce-overhead")
msg = "prepare_model_for_compiled_hotswap was called with a model that is already compiled"
prepare_model_for_compiled_hotswap(model, check_compiled="warn")
assert any(msg in str(w.message) for w in recwarn)
def test_prepare_model_for_compiled_hotswap_model_already_compiled_ignore(self, recwarn):
config = LoraConfig(target_modules=["lin0"])
model = self.get_model()
model = get_peft_model(model, config)
model = torch.compile(model, mode="reduce-overhead")
msg = "prepare_model_for_compiled_hotswap was called with a model that is already compiled"
prepare_model_for_compiled_hotswap(model, check_compiled="ignore")
# no error, no warning
assert not any(msg in str(w.message) for w in recwarn)
def test_prepare_model_for_compiled_hotswap_model_already_compiled_wrong_argument(self, recwarn):
config = LoraConfig(target_modules=["lin0"])
model = self.get_model()
model = get_peft_model(model, config)
model = torch.compile(model, mode="reduce-overhead")
msg = re.escape("check_compiles should be one of 'error', 'warn', or 'ignore', got 'wrong-option' instead.")
with pytest.raises(ValueError, match=msg):
prepare_model_for_compiled_hotswap(model, check_compiled="wrong-option")
def test_prepare_model_for_compiled_hotswap_model_no_adapter_raises(self):
model = self.get_model()
msg = re.escape("No adapter layers found on the model")
with pytest.raises(ValueError, match=msg):
prepare_model_for_compiled_hotswap(model)
def test_prepare_model_for_compiled_hotswap_does_not_change_output(self):
# preparing the model for hotswapping should not change the model output
inputs = torch.rand(3, 10).to(self.torch_device)
model = self.get_model().eval()
with torch.inference_mode():
output_base = model(inputs)
old_rank = 8
config = LoraConfig(target_modules=["lin0", "lin1"], r=old_rank, init_lora_weights=False)
model = get_peft_model(model, config).eval()
with torch.inference_mode():
output_before = model(inputs)
# sanity check: LoRA changed output
assert not torch.allclose(output_base, output_before)
new_rank = 13
prepare_model_for_compiled_hotswap(model, target_rank=new_rank)
with torch.inference_mode():
output_after = model(inputs)
assert torch.allclose(output_before, output_after)
def test_prepare_model_for_compiled_hotswap_does_not_change_output_conv2d(self):
# preparing the model for hotswapping should not change the model output
inputs = torch.rand(3, 3, 10, 10).to(self.torch_device)
model = self.get_model_conv2d().eval()
with torch.inference_mode():
output_base = model(inputs)
old_rank = 8
config = LoraConfig(target_modules=["conv"], r=old_rank, init_lora_weights=False)
model = get_peft_model(model, config).eval()
with torch.inference_mode():
output_before = model(inputs)
# sanity check: LoRA changed output
assert not torch.allclose(output_base, output_before)
new_rank = 13
prepare_model_for_compiled_hotswap(model, target_rank=new_rank)
with torch.inference_mode():
output_after = model(inputs)
assert torch.allclose(output_before, output_after)
def test_prepare_model_for_compiled_hotswap_scalings_update_config(self):
old_rank0 = 11
old_rank1 = 13
config = LoraConfig(target_modules=["lin0", "lin1"], r=old_rank0, rank_pattern={"lin1": old_rank1})
model = self.get_model()
model = get_peft_model(model, config)
new_rank = 15
prepare_model_for_compiled_hotswap(model, target_rank=new_rank, config=model.peft_config)
assert model.peft_config["default"].r == new_rank
assert model.peft_config["default"].rank_pattern == {"lin1": new_rank}
def test_prepare_model_for_compiled_hotswap_lora_bias(self):
# When setting lora_bias=True in the LoraConfig, the LoRA B parameter will have a bias term. Check that padding
# still works correctly. Note that the LoRA A parameter still won't have a bias term.
old_rank = 8
config = LoraConfig(target_modules=["lin0", "lin1"], r=old_rank, lora_bias=True)
model = self.get_model()
model = get_peft_model(model, config)
# sanity check
for name, param in model.named_parameters():
if "lora_A" in name and name.endswith(".weight"):
assert param.shape[0] == old_rank
elif "lora_B" in name and name.endswith(".weight"):
assert param.shape[1] == old_rank
elif "lora_A" in name and name.endswith(".bias"):
assert False, "LoRA A should not have a bias term"
elif "lora_B" in name and name.endswith(".bias"):
assert param.shape[0] in (5, 20) # output shapes of the 2 layers
new_rank = 13
prepare_model_for_compiled_hotswap(model, target_rank=new_rank)
for name, param in model.named_parameters():
if "lora_A" in name and name.endswith(".weight"):
assert param.shape[0] == new_rank
elif "lora_B" in name and name.endswith(".weight"):
assert param.shape[1] == new_rank
elif "lora_A" in name and name.endswith(".bias"):
assert False, "LoRA A should not have a bias term"
elif "lora_B" in name and name.endswith(".bias"):
assert param.shape[0] in (5, 20) # output shapes of the 2 layers
def test_prepare_model_for_compiled_hotswap_conv2d_lora_bias(self):
# same as previous test, but for a Conv2d model
old_rank = 8
config = LoraConfig(target_modules=["conv"], r=old_rank, lora_bias=True)
model = self.get_model_conv2d()
model = get_peft_model(model, config)
# sanity check
for name, param in model.named_parameters():
if "lora_A" in name and name.endswith(".weight"):
assert param.shape[0] == old_rank
elif "lora_B" in name and name.endswith(".weight"):
assert param.shape[1] == old_rank
elif "lora_A" in name and name.endswith(".bias"):
assert False, "LoRA A should not have a bias term"
elif "lora_B" in name and name.endswith(".bias"):
assert param.shape[0] == 10 # output shape of conv layer
new_rank = 13
prepare_model_for_compiled_hotswap(model, target_rank=new_rank)
for name, param in model.named_parameters():
if "lora_A" in name and name.endswith(".weight"):
assert param.shape[0] == new_rank
elif "lora_B" in name and name.endswith(".weight"):
assert param.shape[1] == new_rank
elif "lora_A" in name and name.endswith(".bias"):
assert False, "LoRA A should not have a bias term"
elif "lora_B" in name and name.endswith(".bias"):
assert param.shape[0] == 10 # output shape of conv layer
def test_import_peft_type_to_model_mapping_deprecation_warning(recwarn):
# This is for backwards compatibility: In #2282, PEFT_TYPE_TO_MODEL_MAPPING was removed as it was redundant with
# PEFT_TYPE_TO_TUNER_MAPPING. However, third party code could still use this mapping, e.g.:
# https://github.com/AutoGPTQ/AutoGPTQ/blob/6689349625de973b9ee3016c28c11f32acf7f02c/auto_gptq/utils/peft_utils.py#L8
# TODO: Remove after 2026-01
# first check that there is no warning under normal circumstances
from peft.peft_model import PeftModel # noqa
expected = (
"PEFT_TYPE_TO_MODEL_MAPPING is deprecated, please use `from peft import PEFT_TYPE_TO_TUNER_MAPPING` instead"
)
warnings = (w.message.args[0] for w in recwarn.list)
assert not any(w.startswith(expected) for w in warnings)
from peft.peft_model import PEFT_TYPE_TO_MODEL_MAPPING # noqa
# check that there is a warning with this message after importing the variable
warnings = (w.message.args[0] for w in recwarn.list)
assert any(w.startswith(expected) for w in warnings)
class TestScaling:
"""Tests for scaling and unscaling
Those methods are currently only implemented for LoRA and were added for use in diffusers.
"""
@pytest.fixture
def model(self):
# tiny opt with 5 attention layers
model_id = "hf-internal-testing/tiny-random-OPTForCausalLM"
return AutoModelForCausalLM.from_pretrained(model_id)
def get_scalings(self, model, adapter_name="default"):
# helper function, returns the scalings of the 5 attention layers
return [m.scaling[adapter_name] for m in model.modules() if isinstance(m, LoraLayer)]
def set_scale(self, model, adapter_name, scale):
for module in model.modules():
if isinstance(module, LoraLayer):
module.set_scale(adapter_name, scale)
def scale_layer(self, model, scale):
for module in model.modules():
if isinstance(module, LoraLayer):
module.scale_layer(scale)
def unscale_layer(self, model, scale):
for module in model.modules():
if isinstance(module, LoraLayer):
module.unscale_layer(scale)
def test_scaling_simple(self, model):
n_layers = 5
rank, lora_alpha = 8, 16
config = LoraConfig(
r=rank,
lora_alpha=lora_alpha,
target_modules=["k_proj"],
)
model = get_peft_model(model, config)
scalings = self.get_scalings(model)
expected = [lora_alpha / rank] * n_layers
assert scalings == expected
# double
self.scale_layer(model, 2)
scalings = self.get_scalings(model)
expected = [4.0] * n_layers
assert scalings == expected
# back to original
self.unscale_layer(model, None)
scalings = self.get_scalings(model)
expected = [2.0] * n_layers
assert scalings == expected
# triple
self.set_scale(model, "default", 3)
scalings = self.get_scalings(model)
expected = [6.0] * n_layers
assert scalings == expected
# back to original
self.unscale_layer(model, 3)
scalings = self.get_scalings(model)
expected = [2.0] * n_layers
assert scalings == expected
def test_scaling_with_rslora(self, model):
n_layers = 5
rank, lora_alpha = 8, 16
config = LoraConfig(
r=rank,
lora_alpha=lora_alpha,
use_rslora=True,
target_modules=["k_proj"],
)
model = get_peft_model(model, config)
scalings = self.get_scalings(model)
expected = [lora_alpha / math.sqrt(rank)] * n_layers
assert scalings == expected
# double
self.scale_layer(model, 2)
scalings = self.get_scalings(model)
expected = [2 * lora_alpha / math.sqrt(rank)] * n_layers
assert scalings == expected
# back to original
self.unscale_layer(model, None)
scalings = self.get_scalings(model)
expected = [lora_alpha / math.sqrt(rank)] * n_layers
assert scalings == expected
# triple
self.set_scale(model, "default", 3)
scalings = self.get_scalings(model)
expected = [3 * lora_alpha / math.sqrt(rank)] * n_layers
assert scalings == expected
# back to original
self.unscale_layer(model, 3)
scalings = self.get_scalings(model)
expected = [lora_alpha / math.sqrt(rank)] * n_layers
assert scalings == expected
def test_scaling_rank_pattern_alpha_pattern(self, model):
# layer 0: 8 / 8
# layer 1: 8 / 16
# layer 2: 4 / 32
# layer 3: 16 / 8
# layer 4: 8 / 8
config = LoraConfig(
r=8,
lora_alpha=8,
target_modules=["k_proj"],
rank_pattern={"layers.1.self_attn.k_proj": 16, "layers.2.self_attn.k_proj": 32},
alpha_pattern={"layers.2.self_attn.k_proj": 4, "layers.3.self_attn.k_proj": 16},
)
model = get_peft_model(model, config)
scalings = self.get_scalings(model)
expected = [1.0, 0.5, 0.125, 2.0, 1.0]
assert scalings == expected
# double
self.scale_layer(model, 2)
scalings = self.get_scalings(model)
expected = [2.0, 1.0, 0.25, 4.0, 2.0]
assert scalings == expected
# back to original
self.unscale_layer(model, None)
scalings = self.get_scalings(model)
expected = [1.0, 0.5, 0.125, 2.0, 1.0]
assert scalings == expected
# triple
self.set_scale(model, "default", 3)
scalings = self.get_scalings(model)
expected = [3.0, 1.5, 0.375, 6.0, 3.0]
assert scalings == expected
# back to original
self.unscale_layer(model, 3)
scalings = self.get_scalings(model)
expected = [1.0, 0.5, 0.125, 2.0, 1.0]
assert scalings == expected
def test_scaling_multiple_times(self, model):
# same as previous test, but scale and unscale multiple times in a row
# layer 0: 8 / 8
# layer 1: 8 / 16
# layer 2: 4 / 32
# layer 3: 16 / 8
# layer 4: 8 / 8
config = LoraConfig(
r=8,
lora_alpha=8,
target_modules=["k_proj"],
rank_pattern={"layers.1.self_attn.k_proj": 16, "layers.2.self_attn.k_proj": 32},
alpha_pattern={"layers.2.self_attn.k_proj": 4, "layers.3.self_attn.k_proj": 16},
)
model = get_peft_model(model, config)
scalings = self.get_scalings(model)
expected = [1.0, 0.5, 0.125, 2.0, 1.0]
assert scalings == expected
# scale of 1 makes no difference
self.scale_layer(model, 1)
scalings = self.get_scalings(model)
expected = [1.0, 0.5, 0.125, 2.0, 1.0]
# double
self.scale_layer(model, 2)
scalings = self.get_scalings(model)
expected = [2.0, 1.0, 0.25, 4.0, 2.0]
assert scalings == expected
# triple, on top of previous double
self.scale_layer(model, 3)
scalings = self.get_scalings(model)
expected = [6.0, 3.0, 0.75, 12.0, 6.0]
assert scalings == expected
# half
self.unscale_layer(model, 2)
scalings = self.get_scalings(model)
expected = [3.0, 1.5, 0.375, 6.0, 3.0]
assert scalings == expected
# divide by 3, on top of previous half
self.unscale_layer(model, 3)
scalings = self.get_scalings(model)
expected = [1.0, 0.5, 0.125, 2.0, 1.0]
assert scalings == expected
# set scale to 2
self.set_scale(model, "default", 2)
scalings = self.get_scalings(model)
expected = [2.0, 1.0, 0.25, 4.0, 2.0]
assert scalings == expected
# set scale to 3, it is cumulative but based on the initial scaling, so factor 3, not 6
self.set_scale(model, "default", 3)
scalings = self.get_scalings(model)
expected = [3.0, 1.5, 0.375, 6.0, 3.0]
assert scalings == expected
# back to original
self.unscale_layer(model, None)
scalings = self.get_scalings(model)
expected = [1.0, 0.5, 0.125, 2.0, 1.0]
assert scalings == expected
# back to original again
self.unscale_layer(model, None)
scalings = self.get_scalings(model)
expected = [1.0, 0.5, 0.125, 2.0, 1.0]
assert scalings == expected
def test_scaling_multiple_adapters(self, model):
# ensure that scaling works with multiple adapters
n_layers = 5
rank0, lora_alpha0 = 8, 16
config0 = LoraConfig(
r=rank0,
lora_alpha=lora_alpha0,
target_modules=["k_proj"],
)
rank1, lora_alpha1 = 16, 8
config1 = LoraConfig(
r=rank1,
lora_alpha=lora_alpha1,
target_modules=["k_proj"],
)
model = get_peft_model(model, config0)
model.add_adapter("other", config1)
scalings_default = self.get_scalings(model, "default")
scalings_other = self.get_scalings(model, "other")
expected_default = [lora_alpha0 / rank0] * n_layers
expected_other = [lora_alpha1 / rank1] * n_layers
assert scalings_default == expected_default
assert scalings_other == expected_other
# double the scale for other
self.set_scale(model, "other", 2)
scalings_default = self.get_scalings(model, "default")
scalings_other = self.get_scalings(model, "other")
expected_default = [lora_alpha0 / rank0] * n_layers
expected_other = [2 * lora_alpha1 / rank1] * n_layers
assert scalings_default == expected_default
assert scalings_other == expected_other
# quarter the scale for default
self.set_scale(model, "default", 0.25)
scalings_default = self.get_scalings(model, "default")
scalings_other = self.get_scalings(model, "other")
expected_default = [lora_alpha0 / rank0 / 4] * n_layers
expected_other = [2 * lora_alpha1 / rank1] * n_layers
assert scalings_default == expected_default
assert scalings_other == expected_other
# unscale resets for all *active* adapters
self.unscale_layer(model, None)
scalings_default = self.get_scalings(model, "default")
scalings_other = self.get_scalings(model, "other")
expected_default = [lora_alpha0 / rank0] * n_layers
expected_other = [2 * lora_alpha1 / rank1] * n_layers # stays the same as 'other' is not active
assert scalings_default == expected_default
assert scalings_other == expected_other
# scale all *active* adapters by 2
self.scale_layer(model, 2)
scalings_default = self.get_scalings(model, "default")
scalings_other = self.get_scalings(model, "other")
expected_default = [2 * lora_alpha0 / rank0] * n_layers
expected_other = [2 * lora_alpha1 / rank1] * n_layers # stays the same as 'other' is not active
assert scalings_default == expected_default
assert scalings_other == expected_other
# switch to 'other'
model.set_adapter("other")
# unscale, this time 'other'
self.unscale_layer(model, None)
scalings_default = self.get_scalings(model, "default")
scalings_other = self.get_scalings(model, "other")
expected_default = [2 * lora_alpha0 / rank0] * n_layers # stays the same as 'other' is not active
expected_other = [lora_alpha1 / rank1] * n_layers
assert scalings_default == expected_default
assert scalings_other == expected_other
# scale all *active* adapters by 3
self.scale_layer(model, 3)
scalings_default = self.get_scalings(model, "default")
scalings_other = self.get_scalings(model, "other")
expected_default = [2 * lora_alpha0 / rank0] * n_layers # stays the same as 'other' is not active
expected_other = [3 * lora_alpha1 / rank1] * n_layers
assert scalings_default == expected_default
assert scalings_other == expected_other
class TestLoadPeftKeyMapping:
# See discussion in https://github.com/huggingface/transformers/pull/38627
# transformers PR #37033 re-arranges the way visual language models are built by moving the LM head from the
# language model to the top-level VLM (among other things). A consequence of this is that the keys in the PEFT
# state_dict now also follow the new architecture. This test class serves to ensure that old checkpoints can be
# loaded with the changed architecture. Unfortunately, new checkpoints cannot be loaded with the old architecture,
# the corresponding test is marked as xfail.
# Note: We only test prefix tuning (prompt learning method), LoRA (non-prompt learning method), and VBLoRA (shared
# parameters) as the other PEFT methods should work the same way. It would be excessive to test all of them here.
@pytest.fixture
def fake_model_config(self):
# mimics a transformers model config
class FakeConfig(dict):
def __init__(self):
self.vocab_size = 10
def __getattr__(self, item):
if item in self:
return self[item]
raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{item}'")
return FakeConfig()
@pytest.fixture
def old_model(self, fake_model_config):
# create a small model that mimics the old architecture of, for instance, Qwen/Qwen2-VL-2B-Instruct
# Qwen2VLForConditionalGeneration(
# (visual): Qwen2VisionTransformerPretrainedModel(
# (patch_embed): PatchEmbed(
# (proj): Conv3d(3, 1280, kernel_size=(2, 14, 14), stride=(2, 14, 14), bias=False)
# )
# (rotary_pos_emb): VisionRotaryEmbedding()
# (blocks): ModuleList(
# (0-31): 32 x Qwen2VLVisionBlock(
# (norm1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
# (norm2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
# (attn): VisionSdpaAttention(
# (qkv): Linear(in_features=1280, out_features=3840, bias=True)
# (proj): Linear(in_features=1280, out_features=1280, bias=True)
# )
# (mlp): VisionMlp(
# (fc1): Linear(in_features=1280, out_features=5120, bias=True)
# (act): QuickGELUActivation()
# (fc2): Linear(in_features=5120, out_features=1280, bias=True)
# )
# )
# )
# (merger): PatchMerger(
# (ln_q): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
# (mlp): Sequential(
# (0): Linear(in_features=5120, out_features=5120, bias=True)
# (1): GELU(approximate='none')
# (2): Linear(in_features=5120, out_features=1536, bias=True)
# )
# )
# )
# (model): Qwen2VLModel(
# (embed_tokens): Embedding(151936, 1536)
# (layers): ModuleList(
# (0-27): 28 x Qwen2VLDecoderLayer(
# (self_attn): Qwen2VLSdpaAttention(
# (q_proj): Linear(in_features=1536, out_features=1536, bias=True)
# (k_proj): Linear(in_features=1536, out_features=256, bias=True)
# (v_proj): Linear(in_features=1536, out_features=256, bias=True)
# (o_proj): Linear(in_features=1536, out_features=1536, bias=False)
# (rotary_emb): Qwen2VLRotaryEmbedding()
# )
# (mlp): Qwen2MLP(
# (gate_proj): Linear(in_features=1536, out_features=8960, bias=False)
# (up_proj): Linear(in_features=1536, out_features=8960, bias=False)
# (down_proj): Linear(in_features=8960, out_features=1536, bias=False)
# (act_fn): SiLU()
# )
# (input_layernorm): Qwen2RMSNorm((1536,), eps=1e-06)
# (post_attention_layernorm): Qwen2RMSNorm((1536,), eps=1e-06)
# )
# )
# (norm): Qwen2RMSNorm((1536,), eps=1e-06)
# (rotary_emb): Qwen2VLRotaryEmbedding()
# )
# (lm_head): Linear(in_features=1536, out_features=151936, bias=False)
# )
class Block(nn.Module):
def __init__(self):
super().__init__()
self.attn = nn.Linear(10, 10)
class OldModel(nn.Module):
def __init__(self):
super().__init__()
self.config = fake_model_config
self.device = "cpu"
self.proj = nn.Conv3d(3, 10, 3)
self.visual = nn.ModuleDict(
{
"blocks": nn.ModuleList([Block() for _ in range(2)]),
}
)
self.model = nn.ModuleDict(
{
"layers": nn.ModuleList([Block() for _ in range(2)]),
}
)
self.lm_head = nn.Linear(10, 10)
def prepare_inputs_for_generation(self):
return
model = OldModel()
return model
@pytest.fixture
def new_model(self, fake_model_config):
# create a small model that mimics the new architecture of, for instance, Qwen/Qwen2-VL-2B-Instruct
# Qwen2VLForConditionalGeneration(
# (model): Qwen2VLModel(
# (visual): Qwen2VisionTransformerPretrainedModel(
# (patch_embed): PatchEmbed(
# (proj): Conv3d(3, 1280, kernel_size=(2, 14, 14), stride=(2, 14, 14), bias=False)
# )
# (rotary_pos_emb): VisionRotaryEmbedding()
# (blocks): ModuleList(
# (0-31): 32 x Qwen2VLVisionBlock(
# (norm1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
# (norm2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
# (attn): VisionSdpaAttention(
# (qkv): Linear(in_features=1280, out_features=3840, bias=True)
# (proj): Linear(in_features=1280, out_features=1280, bias=True)
# )
# (mlp): VisionMlp(
# (fc1): Linear(in_features=1280, out_features=5120, bias=True)
# (act): QuickGELUActivation()
# (fc2): Linear(in_features=5120, out_features=1280, bias=True)
# )
# )
# )
# (merger): PatchMerger(
# (ln_q): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
# (mlp): Sequential(
# (0): Linear(in_features=5120, out_features=5120, bias=True)
# (1): GELU(approximate='none')
# (2): Linear(in_features=5120, out_features=1536, bias=True)
# )
# )
# )
# (language_model): Qwen2VLTextModel(
# (embed_tokens): Embedding(151936, 1536)
# (layers): ModuleList(
# (0-27): 28 x Qwen2VLDecoderLayer(
# (self_attn): Qwen2VLAttention(
# (q_proj): Linear(in_features=1536, out_features=1536, bias=True)
# (k_proj): Linear(in_features=1536, out_features=256, bias=True)
# (v_proj): Linear(in_features=1536, out_features=256, bias=True)
# (o_proj): Linear(in_features=1536, out_features=1536, bias=False)
# (rotary_emb): Qwen2VLRotaryEmbedding()
# )
# (mlp): Qwen2MLP(
# (gate_proj): Linear(in_features=1536, out_features=8960, bias=False)
# (up_proj): Linear(in_features=1536, out_features=8960, bias=False)
# (down_proj): Linear(in_features=8960, out_features=1536, bias=False)
# (act_fn): SiLU()
# )
# (input_layernorm): Qwen2RMSNorm((1536,), eps=1e-06)
# (post_attention_layernorm): Qwen2RMSNorm((1536,), eps=1e-06)
# )
# )
# (norm): Qwen2RMSNorm((1536,), eps=1e-06)
# (rotary_emb): Qwen2VLRotaryEmbedding()
# )
# )
# (lm_head): Linear(in_features=1536, out_features=151936, bias=False)
# )
class Block(nn.Module):
def __init__(self):
super().__init__()
self.attn = nn.Linear(10, 10)
class InnerModel(nn.Module):
def __init__(self):
super().__init__()
self.visual = nn.ModuleDict(
{
"blocks": nn.ModuleList([Block() for _ in range(2)]),
}
)
self.language_model = nn.ModuleDict(
{
"layers": nn.ModuleList([Block() for _ in range(2)]),
}
)
class NewModel(nn.Module):
def __init__(self):
super().__init__()
self.config = fake_model_config
self.device = "cpu"
self.model = InnerModel()
self.lm_head = nn.Linear(10, 10)
# new transformers models have this attribute to map old checkpoints to new ones:
self._checkpoint_conversion_mapping = {
"^visual": "model.visual",
"^model(?!\\.(language_model|visual))": "model.language_model",
}
def prepare_inputs_for_generation(self):
return
model = NewModel()
return model
def check_lora_load_no_warning(self, model1, model2, path):
# helper method: save with model1, load with model2, ensure that there is no warning about missing keys and that
# the parameters are loaded correctly
model1 = copy.deepcopy(model1)
model2 = copy.deepcopy(model2)
config = LoraConfig(target_modules=["attn"])
peft_model = get_peft_model(copy.deepcopy(model1), config)
# set all values to 1.0 or 2.0 so we can check that they are loaded correctly
for name, param in peft_model.named_parameters():
if name.endswith("lora_A.default.weight"):
param.data.fill_(1.0)
elif name.endswith("lora_B.default.weight"):
param.data.fill_(2.0)
peft_model.save_pretrained(path)
del peft_model
# ensure that there is no warning: UserWarning: Found missing adapter keys while loading the checkpoint
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
loaded = PeftModel.from_pretrained(copy.deepcopy(model2), path)
assert not any("Found missing adapter keys" in str(warning.message) for warning in w)
# sanity check on parameter values to not only rely on the absence of warnings
for name, param in loaded.named_parameters():
if name.endswith("lora_A.default.weight"):
assert torch.allclose(param, torch.full_like(param, 1.0))
elif name.endswith("lora_B.default.weight"):
assert torch.allclose(param, torch.full_like(param, 2.0))
def check_prefix_tuning_load_no_warning(self, model1, model2, path):
# helper method: save with model1, load with model2, ensure that there is no warning about missing keys and that
# the parameters are loaded correctly.
model1 = copy.deepcopy(model1)
model2 = copy.deepcopy(model2)
config = PrefixTuningConfig(
task_type="CAUSAL_LM", num_virtual_tokens=5, num_layers=2, token_dim=10, num_attention_heads=2
)
peft_model = get_peft_model(copy.deepcopy(model1), config)
# set all values to 1.0 so we can check that they are loaded correctly
peft_model.prompt_encoder.default.embedding.weight.data.fill_(1.0)
peft_model.save_pretrained(path)
del peft_model
# ensure that there is no warning: UserWarning: Found missing adapter keys while loading the checkpoint
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
loaded = PeftModel.from_pretrained(copy.deepcopy(model2), path)
assert not any("Found missing adapter keys" in str(warning.message) for warning in w)
# sanity check on parameter values to not only rely on the absence of warnings
weight = loaded.prompt_encoder.default.embedding.weight
assert torch.allclose(weight, torch.full_like(weight, 1.0))
def check_vblora_load_no_warning(self, model1, model2, path):
# helper method: save with model1, load with model2, ensure that there is no warning about missing keys and that
# the parameters are loaded correctly
model1 = copy.deepcopy(model1)
model2 = copy.deepcopy(model2)
config = VBLoRAConfig(target_modules=["attn"], vector_length=2, num_vectors=4)
peft_model = get_peft_model(copy.deepcopy(model1), config)
# set all values to 1.0 or 2.0 so we can check that they are loaded correctly
peft_model.base_model.vblora_vector_bank["default"].data.fill_(1.0)
for name, param in peft_model.named_parameters():
if "logits" in name:
param.data.fill_(2.0)
peft_model.save_pretrained(path)
del peft_model
# ensure that there is no warning: UserWarning: Found missing adapter keys while loading the checkpoint
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
loaded = PeftModel.from_pretrained(copy.deepcopy(model2), path)
assert not any("Found missing adapter keys" in str(warning.message) for warning in w)
# sanity check on parameter values to not only rely on the absence of warnings
param = loaded.base_model.vblora_vector_bank["default"]
assert torch.allclose(param, torch.full_like(param, 1.0))
for name, param in loaded.named_parameters():
if "logits" in name:
assert torch.allclose(param, torch.full_like(param, 2.0))
def test_key_mapping_save_new_load_new_lora(self, new_model, tmp_path):
# save and load the new model, should work without issues
self.check_lora_load_no_warning(new_model, new_model, tmp_path)
def test_key_mapping_save_old_load_old_lora(self, old_model, tmp_path):
# save and load the old model, should work without issues
self.check_lora_load_no_warning(old_model, old_model, tmp_path)
def test_key_mapping_save_old_load_new_lora(self, old_model, new_model, tmp_path):
# save the old model, load it into the new model, should work without issues (backwards compatibility)
self.check_lora_load_no_warning(old_model, new_model, tmp_path)
@pytest.mark.xfail(reason="Loading new checkpoints with old transformers is not supported.", strict=True)
def test_key_mapping_save_new_load_old_lora(self, old_model, new_model, tmp_path):
# save the new model, load it into the old model, should work without issues (forwards compatibility)
self.check_lora_load_no_warning(new_model, old_model, tmp_path)
def test_key_mapping_save_new_load_new_prefix_tuning(self, new_model, tmp_path):
# save and load the new model, should work without issues
self.check_prefix_tuning_load_no_warning(new_model, new_model, tmp_path)
def test_key_mapping_save_old_load_old_prefix_tuning(self, old_model, tmp_path):
# save and load the old model, should work without issues
self.check_prefix_tuning_load_no_warning(old_model, old_model, tmp_path)
def test_key_mapping_save_old_load_new_prefix_tuning(self, old_model, new_model, tmp_path):
# save the old model, load it into the new model, should work without issues (backwards compatibility)
self.check_prefix_tuning_load_no_warning(old_model, new_model, tmp_path)
def test_key_mapping_save_new_load_old_prefix_tuning(self, old_model, new_model, tmp_path):
# save the new model, load it into the old model, should work without issues (forwards compatibility)
self.check_prefix_tuning_load_no_warning(new_model, old_model, tmp_path)
def test_key_mapping_save_new_load_new_vblora(self, new_model, tmp_path):
# save and load the new model, should work without issues
self.check_vblora_load_no_warning(new_model, new_model, tmp_path)
def test_key_mapping_save_old_load_old_vblora(self, old_model, tmp_path):
# save and load the old model, should work without issues
self.check_vblora_load_no_warning(old_model, old_model, tmp_path)
def test_key_mapping_save_old_load_new_vblora(self, old_model, new_model, tmp_path):
# save the old model, load it into the new model, should work without issues (backwards compatibility)
self.check_vblora_load_no_warning(old_model, new_model, tmp_path)
@pytest.mark.xfail(reason="Loading new checkpoints with old transformers is not supported.", strict=True)
def test_key_mapping_save_new_load_old_vblora(self, old_model, new_model, tmp_path):
# save the new model, load it into the old model, should work without issues (forwards compatibility)
self.check_vblora_load_no_warning(new_model, old_model, tmp_path)
|