File size: 3,136 Bytes
302920f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations

import torch
from torch import nn

from peft.import_utils import is_bnb_available
from peft.optimizers import create_loraplus_optimizer

from .testing_utils import require_bitsandbytes, torch_device


if is_bnb_available():
    import bitsandbytes as bnb


class SimpleNet(nn.Module):
    def __init__(self, bias=True):
        super().__init__()
        self.embedding = nn.Embedding(100, 20)
        self.layer_norm = nn.LayerNorm(20)
        self.lin0 = nn.Linear(20, 20, bias=bias)
        self.relu = nn.ReLU()
        self.lin1 = nn.Linear(20, 16, bias=bias)

    def forward(self, X):
        X = self.lin0(self.layer_norm(self.embedding(X)))
        X = self.relu(X)
        X = self.lin1(X)
        return X


@require_bitsandbytes
def test_lora_plus_helper_sucess():
    model = SimpleNet()
    optimizer_cls = bnb.optim.Adam8bit
    lr = 5e-5
    optim_config = {
        "eps": 1e-6,
        "betas": (0.9, 0.999),
        "loraplus_weight_decay": 0.0,
    }
    loraplus_lr_ratio = 1.2
    loraplus_lr_embedding = 1e-6
    optim = create_loraplus_optimizer(
        model=model,
        optimizer_cls=optimizer_cls,
        lr=lr,
        loraplus_lr_ratio=loraplus_lr_ratio,
        loraplus_lr_embedding=loraplus_lr_embedding,
        **optim_config,
    )
    assert optim is not None
    assert len(optim.param_groups) == 4
    assert optim.param_groups[0]["lr"] == lr
    assert optim.param_groups[1]["lr"] == loraplus_lr_embedding
    assert optim.param_groups[2]["lr"] == optim.param_groups[3]["lr"] == (lr * loraplus_lr_ratio)


@require_bitsandbytes
def test_lora_plus_optimizer_sucess():
    """
    Test if the optimizer is correctly created and step function runs without any exception
    """
    optimizer_cls = bnb.optim.Adam8bit
    optim_config = {
        "eps": 1e-6,
        "betas": (0.9, 0.999),
        "loraplus_weight_decay": 0.0,
    }
    model: SimpleNet = SimpleNet().to(torch_device)
    optim = create_loraplus_optimizer(
        model=model,
        optimizer_cls=optimizer_cls,
        lr=5e-5,
        loraplus_lr_ratio=1.2,
        loraplus_lr_embedding=1e-6,
        **optim_config,
    )
    loss = torch.nn.CrossEntropyLoss()
    bnb.optim.GlobalOptimManager.get_instance().register_parameters(model.parameters())
    x = torch.randint(100, (2, 4, 10)).to(torch_device)
    output = model(x).permute(0, 3, 1, 2)
    label = torch.randint(16, (2, 4, 10)).to(torch_device)
    loss_value = loss(output, label)
    loss_value.backward()
    optim.step()