|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import os | 
					
						
						|  |  | 
					
						
						|  | import pytest | 
					
						
						|  | import torch | 
					
						
						|  | from accelerate.utils.imports import is_bf16_available | 
					
						
						|  | from safetensors import safe_open | 
					
						
						|  | from torch import nn | 
					
						
						|  |  | 
					
						
						|  | from peft import PeftModel, VeraConfig, get_peft_model | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MLP(nn.Module): | 
					
						
						|  | def __init__(self, bias=True): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.relu = nn.ReLU() | 
					
						
						|  | self.lin0 = nn.Linear(10, 20, bias=bias) | 
					
						
						|  | self.lin1 = nn.Linear(20, 20, bias=bias) | 
					
						
						|  | self.lin2 = nn.Linear(20, 20, bias=bias) | 
					
						
						|  | self.lin3 = nn.Linear(20, 2, bias=bias) | 
					
						
						|  | self.sm = nn.LogSoftmax(dim=-1) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, X): | 
					
						
						|  | X = self.lin0(X) | 
					
						
						|  | X = self.relu(X) | 
					
						
						|  | X = self.lin1(X) | 
					
						
						|  | X = self.relu(X) | 
					
						
						|  | X = self.lin2(X) | 
					
						
						|  | X = self.relu(X) | 
					
						
						|  | X = self.lin3(X) | 
					
						
						|  | X = self.sm(X) | 
					
						
						|  | return X | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class TestVera: | 
					
						
						|  | @pytest.fixture | 
					
						
						|  | def mlp(self): | 
					
						
						|  | torch.manual_seed(0) | 
					
						
						|  | model = MLP() | 
					
						
						|  | return model | 
					
						
						|  |  | 
					
						
						|  | @pytest.fixture | 
					
						
						|  | def mlp_same_prng(self, mlp): | 
					
						
						|  | torch.manual_seed(0) | 
					
						
						|  |  | 
					
						
						|  | config = VeraConfig(target_modules=["lin1", "lin2"], init_weights=False) | 
					
						
						|  |  | 
					
						
						|  | peft_model = get_peft_model(mlp, config) | 
					
						
						|  | config2 = VeraConfig(target_modules=["lin1", "lin2"], init_weights=False) | 
					
						
						|  | peft_model.add_adapter("other", config2) | 
					
						
						|  | return peft_model | 
					
						
						|  |  | 
					
						
						|  | def test_multiple_adapters_same_prng_weights(self, mlp_same_prng): | 
					
						
						|  |  | 
					
						
						|  | assert ( | 
					
						
						|  | mlp_same_prng.base_model.model.lin1.vera_A["default"] | 
					
						
						|  | is mlp_same_prng.base_model.model.lin1.vera_A["other"] | 
					
						
						|  | ) | 
					
						
						|  | assert ( | 
					
						
						|  | mlp_same_prng.base_model.model.lin1.vera_B["default"] | 
					
						
						|  | is mlp_same_prng.base_model.model.lin1.vera_B["other"] | 
					
						
						|  | ) | 
					
						
						|  | assert ( | 
					
						
						|  | mlp_same_prng.base_model.model.lin2.vera_A["default"] | 
					
						
						|  | is mlp_same_prng.base_model.model.lin2.vera_A["other"] | 
					
						
						|  | ) | 
					
						
						|  | assert ( | 
					
						
						|  | mlp_same_prng.base_model.model.lin2.vera_B["default"] | 
					
						
						|  | is mlp_same_prng.base_model.model.lin2.vera_B["other"] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | input = torch.randn(5, 10) | 
					
						
						|  | mlp_same_prng.set_adapter("default") | 
					
						
						|  | output_default = mlp_same_prng(input) | 
					
						
						|  | mlp_same_prng.set_adapter("other") | 
					
						
						|  | output_other = mlp_same_prng(input) | 
					
						
						|  | assert not torch.allclose(output_default, output_other, atol=1e-3, rtol=1e-3) | 
					
						
						|  |  | 
					
						
						|  | def test_multiple_adapters_different_prng_raises(self): | 
					
						
						|  |  | 
					
						
						|  | model = MLP() | 
					
						
						|  | config = VeraConfig(target_modules=["lin1", "lin2"], init_weights=False) | 
					
						
						|  |  | 
					
						
						|  | peft_model = get_peft_model(model, config) | 
					
						
						|  | config2 = VeraConfig(target_modules=["lin1", "lin2"], init_weights=False, projection_prng_key=123) | 
					
						
						|  |  | 
					
						
						|  | msg = ( | 
					
						
						|  | r"Vera PRNG initialisation key must be the same for all adapters. Got config.projection_prng_key=123 but " | 
					
						
						|  | r"previous config had 0" | 
					
						
						|  | ) | 
					
						
						|  | with pytest.raises(ValueError, match=msg): | 
					
						
						|  | peft_model.add_adapter("other", config2) | 
					
						
						|  |  | 
					
						
						|  | def test_multiple_adapters_save_load_save_projection_true(self, mlp_same_prng, tmp_path): | 
					
						
						|  |  | 
					
						
						|  | torch.manual_seed(0) | 
					
						
						|  | input = torch.randn(5, 10) | 
					
						
						|  | mlp_same_prng.set_adapter("default") | 
					
						
						|  | output_default = mlp_same_prng(input) | 
					
						
						|  | mlp_same_prng.set_adapter("other") | 
					
						
						|  | output_other = mlp_same_prng(input) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | assert not torch.allclose(output_default, output_other, atol=1e-3, rtol=1e-3) | 
					
						
						|  |  | 
					
						
						|  | save_path = tmp_path / "vera" | 
					
						
						|  | mlp_same_prng.save_pretrained(save_path) | 
					
						
						|  | assert os.path.exists(save_path / "adapter_config.json") | 
					
						
						|  | assert os.path.exists(save_path / "other" / "adapter_config.json") | 
					
						
						|  |  | 
					
						
						|  | torch.manual_seed(0) | 
					
						
						|  | mlp = MLP() | 
					
						
						|  | peft_model = PeftModel.from_pretrained(mlp, save_path) | 
					
						
						|  | peft_model.load_adapter(save_path / "other", "other") | 
					
						
						|  |  | 
					
						
						|  | peft_model.set_adapter("default") | 
					
						
						|  | output_default_loaded = peft_model(input) | 
					
						
						|  | peft_model.set_adapter("other") | 
					
						
						|  | output_other_loaded = peft_model(input) | 
					
						
						|  |  | 
					
						
						|  | assert torch.allclose(output_default, output_default_loaded, atol=1e-3, rtol=1e-3) | 
					
						
						|  | assert torch.allclose(output_other, output_other_loaded, atol=1e-3, rtol=1e-3) | 
					
						
						|  |  | 
					
						
						|  | def test_multiple_adapters_save_load_save_projection_false(self, mlp, tmp_path): | 
					
						
						|  |  | 
					
						
						|  | torch.manual_seed(1) | 
					
						
						|  | config = VeraConfig(target_modules=["lin1", "lin2"], init_weights=False, save_projection=False) | 
					
						
						|  |  | 
					
						
						|  | peft_model = get_peft_model(mlp, config, adapter_name="first") | 
					
						
						|  | config2 = VeraConfig(target_modules=["lin1", "lin2"], init_weights=False, save_projection=False) | 
					
						
						|  | peft_model.add_adapter("second", config2) | 
					
						
						|  |  | 
					
						
						|  | input = torch.randn(5, 10) | 
					
						
						|  | peft_model.set_adapter("first") | 
					
						
						|  | output_first = peft_model(input) | 
					
						
						|  | peft_model.set_adapter("second") | 
					
						
						|  | output_second = peft_model(input) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | assert not torch.allclose(output_first, output_second, atol=1e-3, rtol=1e-3) | 
					
						
						|  |  | 
					
						
						|  | save_path = tmp_path / "vera" | 
					
						
						|  | peft_model.save_pretrained(save_path) | 
					
						
						|  | assert os.path.exists(save_path / "first" / "adapter_config.json") | 
					
						
						|  | assert os.path.exists(save_path / "second" / "adapter_config.json") | 
					
						
						|  |  | 
					
						
						|  | torch.manual_seed(0) | 
					
						
						|  | mlp = MLP() | 
					
						
						|  | peft_model = PeftModel.from_pretrained(mlp, save_path / "first", adapter_name="first") | 
					
						
						|  | peft_model.load_adapter(save_path / "second", "second") | 
					
						
						|  |  | 
					
						
						|  | peft_model.set_adapter("first") | 
					
						
						|  | output_first_loaded = peft_model(input) | 
					
						
						|  | peft_model.set_adapter("second") | 
					
						
						|  | output_second_loaded = peft_model(input) | 
					
						
						|  |  | 
					
						
						|  | assert torch.allclose(output_first, output_first_loaded, atol=1e-3, rtol=1e-3) | 
					
						
						|  | assert torch.allclose(output_second, output_second_loaded, atol=1e-3, rtol=1e-3) | 
					
						
						|  |  | 
					
						
						|  | def test_multiple_adapters_save_projection_true_contains_vera_A_vera_B(self, mlp_same_prng, tmp_path): | 
					
						
						|  |  | 
					
						
						|  | save_path = tmp_path / "vera" | 
					
						
						|  | mlp_same_prng.save_pretrained(save_path) | 
					
						
						|  |  | 
					
						
						|  | sd_default = {} | 
					
						
						|  | with safe_open(save_path / "adapter_model.safetensors", framework="pt", device="cpu") as f: | 
					
						
						|  | for key in f.keys(): | 
					
						
						|  | sd_default[key] = f.get_tensor(key) | 
					
						
						|  |  | 
					
						
						|  | assert any("vera_A" in key for key in sd_default) | 
					
						
						|  | assert any("vera_B" in key for key in sd_default) | 
					
						
						|  |  | 
					
						
						|  | assert sd_default["base_model.vera_A"].shape == (256, 20) | 
					
						
						|  | assert sd_default["base_model.vera_B"].shape == (20, 256) | 
					
						
						|  |  | 
					
						
						|  | sd_other = {} | 
					
						
						|  | with safe_open(save_path / "other" / "adapter_model.safetensors", framework="pt", device="cpu") as f: | 
					
						
						|  | for key in f.keys(): | 
					
						
						|  | sd_other[key] = f.get_tensor(key) | 
					
						
						|  |  | 
					
						
						|  | assert any("vera_A" in key for key in sd_other) | 
					
						
						|  | assert any("vera_B" in key for key in sd_other) | 
					
						
						|  | assert sd_other["base_model.vera_A"].shape == (256, 20) | 
					
						
						|  | assert sd_other["base_model.vera_B"].shape == (20, 256) | 
					
						
						|  |  | 
					
						
						|  | def test_multiple_adapters_save_projection_false_contains_no_vera_A_vera_B(self, mlp, tmp_path): | 
					
						
						|  | torch.manual_seed(1) | 
					
						
						|  | config = VeraConfig(target_modules=["lin1", "lin2"], init_weights=False, save_projection=False) | 
					
						
						|  |  | 
					
						
						|  | peft_model = get_peft_model(mlp, config, adapter_name="first") | 
					
						
						|  | config2 = VeraConfig(target_modules=["lin1", "lin2"], init_weights=False, save_projection=False) | 
					
						
						|  | peft_model.add_adapter("second", config2) | 
					
						
						|  |  | 
					
						
						|  | save_path = tmp_path / "vera" | 
					
						
						|  | peft_model.save_pretrained(save_path) | 
					
						
						|  |  | 
					
						
						|  | sd_default = {} | 
					
						
						|  | with safe_open(save_path / "first" / "adapter_model.safetensors", framework="pt", device="cpu") as f: | 
					
						
						|  | for key in f.keys(): | 
					
						
						|  | sd_default[key] = f.get_tensor(key) | 
					
						
						|  |  | 
					
						
						|  | assert not any("vera_A" in key for key in sd_default) | 
					
						
						|  | assert not any("vera_B" in key for key in sd_default) | 
					
						
						|  |  | 
					
						
						|  | sd_other = {} | 
					
						
						|  | with safe_open(save_path / "second" / "adapter_model.safetensors", framework="pt", device="cpu") as f: | 
					
						
						|  | for key in f.keys(): | 
					
						
						|  | sd_other[key] = f.get_tensor(key) | 
					
						
						|  |  | 
					
						
						|  | assert not any("vera_A" in key for key in sd_other) | 
					
						
						|  | assert not any("vera_B" in key for key in sd_other) | 
					
						
						|  |  | 
					
						
						|  | def test_vera_A_vera_B_share_memory(self, mlp_same_prng): | 
					
						
						|  | vera_A = mlp_same_prng.vera_A["default"] | 
					
						
						|  | vera_B = mlp_same_prng.vera_B["default"] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | assert vera_A.data_ptr() == mlp_same_prng.base_model.model.lin1.vera_A["default"].data_ptr() | 
					
						
						|  | assert vera_B.data_ptr() == mlp_same_prng.base_model.model.lin1.vera_B["default"].data_ptr() | 
					
						
						|  | assert vera_A.data_ptr() == mlp_same_prng.base_model.model.lin2.vera_A["default"].data_ptr() | 
					
						
						|  | assert vera_B.data_ptr() == mlp_same_prng.base_model.model.lin2.vera_B["default"].data_ptr() | 
					
						
						|  |  | 
					
						
						|  | assert vera_A.data_ptr() != vera_B.data_ptr() | 
					
						
						|  |  | 
					
						
						|  | def test_vera_lambda_dont_share_memory(self, mlp_same_prng): | 
					
						
						|  |  | 
					
						
						|  | assert ( | 
					
						
						|  | mlp_same_prng.base_model.model.lin1.vera_lambda_b["default"].data_ptr() | 
					
						
						|  | != mlp_same_prng.base_model.model.lin1.vera_lambda_b["other"].data_ptr() | 
					
						
						|  | ) | 
					
						
						|  | assert ( | 
					
						
						|  | mlp_same_prng.base_model.model.lin1.vera_lambda_b["default"].data_ptr() | 
					
						
						|  | != mlp_same_prng.base_model.model.lin2.vera_lambda_b["default"].data_ptr() | 
					
						
						|  | ) | 
					
						
						|  | assert ( | 
					
						
						|  | mlp_same_prng.base_model.model.lin1.vera_lambda_b["other"].data_ptr() | 
					
						
						|  | != mlp_same_prng.base_model.model.lin2.vera_lambda_b["other"].data_ptr() | 
					
						
						|  | ) | 
					
						
						|  | assert ( | 
					
						
						|  | mlp_same_prng.base_model.model.lin1.vera_lambda_d["default"].data_ptr() | 
					
						
						|  | != mlp_same_prng.base_model.model.lin1.vera_lambda_d["other"].data_ptr() | 
					
						
						|  | ) | 
					
						
						|  | assert ( | 
					
						
						|  | mlp_same_prng.base_model.model.lin1.vera_lambda_d["default"].data_ptr() | 
					
						
						|  | != mlp_same_prng.base_model.model.lin2.vera_lambda_d["default"].data_ptr() | 
					
						
						|  | ) | 
					
						
						|  | assert ( | 
					
						
						|  | mlp_same_prng.base_model.model.lin1.vera_lambda_d["other"].data_ptr() | 
					
						
						|  | != mlp_same_prng.base_model.model.lin2.vera_lambda_d["other"].data_ptr() | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def test_vera_different_shapes(self, mlp): | 
					
						
						|  | config = VeraConfig(target_modules=["lin0", "lin3"], init_weights=False) | 
					
						
						|  | mlp_different_shapes = get_peft_model(mlp, config) | 
					
						
						|  |  | 
					
						
						|  | vera_A = mlp_different_shapes.vera_A["default"] | 
					
						
						|  | vera_B = mlp_different_shapes.vera_B["default"] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | assert mlp.lin0.base_layer.weight.shape != mlp.lin3.base_layer.weight.shape | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | assert vera_A.shape == (config.r, mlp.lin3.in_features) | 
					
						
						|  | assert vera_B.shape == (mlp.lin0.out_features, config.r) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | input = torch.randn(5, 10) | 
					
						
						|  | mlp_different_shapes(input) | 
					
						
						|  |  | 
					
						
						|  | @pytest.mark.parametrize("dtype", [torch.float32, torch.float16, torch.bfloat16]) | 
					
						
						|  | def test_vera_dtypes(self, dtype): | 
					
						
						|  | if dtype == torch.bfloat16: | 
					
						
						|  |  | 
					
						
						|  | if not is_bf16_available(): | 
					
						
						|  | pytest.skip("bfloat16 not supported on this system, skipping the test") | 
					
						
						|  |  | 
					
						
						|  | model = MLP().to(dtype) | 
					
						
						|  | config = VeraConfig(target_modules=["lin1", "lin2"], init_weights=False) | 
					
						
						|  | peft_model = get_peft_model(model, config) | 
					
						
						|  | inputs = torch.randn(5, 10).to(dtype) | 
					
						
						|  | output = peft_model(inputs) | 
					
						
						|  | assert output.dtype == dtype | 
					
						
						|  |  |